Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery \& Lifecycle Information:
Fairchild Semiconductor
FSAT66P5X

For any questions, you can email us directly:
sales@integrated-circuit.com

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Logic Symbol

Pin Descriptions

Pin Names	Description
OE	Switch Enable Input
A	Bus A I/O
B	Bus B I/O
NC	No Connect

Function Table

Analog Symbol

Connection Diagrams

Pin Assignments for SOT23 and SC70

Pad Assignments for MicroPak

DC Electrical Characteristics

Note 4: All typical values are at the specified $V_{C C}$, and $T_{A}=25^{\circ} \mathrm{C}$.
Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the
voltages on the two (A or B) pins.
Note 6: Parameter is characterized but not tested in production.
Note 7: Flatness is defined as the difference between the minimum and maximum value of On Resistance over the specified range of conditions.

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of FSAT66P5X - IC SWITCH SPST SC70-5
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

AC Electrical Characteristics

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions	Figure Number
			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 8) } \end{gathered}$	Max			
$\overline{t_{\text {PHL }}, \mathrm{t}_{\text {PLH }}}$	Propagation Delay Bus to Bus (Note 9)	1.65 to 1.95		2.0	4.3	ns	$\mathrm{V}_{\text {IN }}=$ OPEN	Figures 1, 2
		2.3 to 2.7		1.1	2.5			
		3.0 to 3.6		0.7	1.5			
		4.5 to 5.5		0.35	1.0			
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time	1.65 to 1.95	1.5	4.0	12.0	ns	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2 \times \mathrm{V}_{\mathrm{CC}} \text { for } t_{\mathrm{PZL}} \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figures 1, 2
		2.3 to 2.7	1.2	2.5	7.0			
		3.0 to 3.6	0.8	2.0	5.5			
		4.5 to 5.5	0.5	1.5	4.5			
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Output Disable Time	1.65 to 1.95	2.5	7.5	15.0	ns	$\begin{aligned} & V_{I N}=2 \times V_{C C} \text { for } t_{\text {PLZ }} \\ & V_{I N}=0 V \text { for } t_{P H Z} \end{aligned}$	Figures 1, 2
		2.3 to 2.7	2.0	5.5	9.0			
		3.0 to 3.6	1.5	4.5	7.0			
		4.5 to 5.5	1.0	3.5	5.5			
Q	Charge Injection (Note 10)	1.65 to 5.5		0.05		pC	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	Figure 3
OIRR	Off Isolation (Note 11)	1.65 to 5.5		-50.0		dB	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	Figure 4
BW	-3dB Bandwidth	1.65 to 5.5		>250		MHz	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	Figure 5
THD	Total Harmonic Distortion (Note 8)	5.0		. 011		\%	$\begin{aligned} & \hline R_{L}=600 \Omega \\ & 0.5 V_{P-P} \\ & f=600 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \end{aligned}$	

Note 9: This parameter is guaranteed by design but is not tested. The switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
Note 10: Guaranteed by design.
Note 11: Off Isolation $=20 \log _{10}\left[V_{A} / V_{B n}\right]$

Capacitance

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	2.0		pF	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {IO OFF }}$	Input/Output Capacitance	6.0		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{OE}=0.0 \mathrm{~V}$
$\mathrm{C}_{\text {I/O ON }}$	Input/Output Capacitance	12.0		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{OE}=\mathrm{V}_{\mathrm{CC}}$

Tape and Reel Specification

TAPE FORMAT FOR SOT23, SC70

TAPE FORMAT FOR SOT23, SC70				
Package	Tape	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
M5X, P5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	$75($ typ)	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)

Package	Tape Size	DIM A	DIM B	DIM F	DIM K ${ }_{0}$	DIM P1	DIM W
SC70-5	8 mm	$\begin{aligned} & \hline 0.093 \\ & (2.35) \end{aligned}$	$\begin{aligned} & \hline 0.096 \\ & (2.45) \end{aligned}$	$\begin{gathered} 0.138 \pm 0.004 \\ (3.5 \pm 0.10) \end{gathered}$	$\begin{gathered} 0.053 \pm 0.004 \\ (1.35 \pm 0.10) \end{gathered}$	$\begin{gathered} 0.157 \\ (4) \end{gathered}$	$\begin{gathered} 0.315 \pm 0.004 \\ (8 \pm 0.1) \end{gathered}$
SOT23-5	8 mm	$\begin{aligned} & \hline 0.130 \\ & (3.3) \end{aligned}$	$\begin{gathered} \hline 0.130 \\ (3.3) \end{gathered}$	$\begin{gathered} 0.138 \pm 0.002 \\ (3.5 \pm 0.05) \end{gathered}$	$\begin{gathered} 0.055 \pm 0.004 \\ (1.4 \pm 0.11) \end{gathered}$	0.157 (4)	$\begin{gathered} 0.315 \pm 0.012 \\ (8 \pm 0.3) \end{gathered}$

Tape and Reel Specification (Continued) TAPE FORMAT FOR MicroPak								
						Number Cavities	Cavity Status	Cover Tape Status
	X		Leader Ca Trailer	tart End) rier Hub End)		$\begin{gathered} 125 \text { (typ) } \\ 5000 \\ 75 \text { (typ) } \end{gathered}$	Empty Filled Empty	Sealed Sealed Sealed
Tape Size	A	B	C	D	N	W1	W2	W3
8 mm	$\begin{array}{c\|} \hline 7.0 \\ (177.8) \end{array}$	$\begin{aligned} & 0.059 \\ & (1.50) \end{aligned}$	$\begin{gathered} 0.512 \\ (13.00) \end{gathered}$	$\begin{gathered} 0.795 \\ (20.20) \end{gathered}$	$\begin{gathered} 2.165 \\ (55.00) \end{gathered}$	$\begin{array}{r} 0.331+0.059 \\ (8.40+1.50 \end{array}$	$\begin{gathered} 0.567 \\ (14.40) \end{gathered}$	$\begin{aligned} & \hline W 1+0.078 /-0.039 \\ & (W 1+2.00 /-1.00) \end{aligned}$

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE CONFORMS TO JEDEC MO-178, ISSUE B, VARIATION AA DATED JANUARY 1999.
B) ALL DIMENSIONS ARE IN MILLIMETERS

5-Lead SOT23, JEDEC MO-178, 1.6mm Package Number MA05B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

NOTES:
A. CONFORMS TO EIAJ REGISTERED OUTLINE DRAWING SC88A.
B. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH

MAA05ARevC
C. DIMENSIONS ARE IN MIL IMETFRS

5-Lead SC70, EIAJ SC-88a, 1.25mm Wide
Package Number MAA05A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
