

Excellent Integrated System Limited

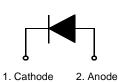
Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor FFPF30U20STU

For any questions, you can email us directly: sales@integrated-circuit.com

FFPF30U20S


Features

- · Ultrafast with soft recovery
- Low forward voltage

Applications

- Power switching circuits
- Output rectifiers
- Freewheeling diodes
- Switching mode power supply

ULTRA FAST RECOVERY POWER RECTIFIER

Absolute Maximum Ratings T_C=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{RRM}	Peak Repetitive Reverse Voltage	200	V
I _{F(AV)}	Average Rectified Forward Current @ T _C = 100°C	30	Α
I _{FSM}	Non-repetitive Peak Surge Current 60Hz Single Half-Sine Wave	300	А
T _{J,} T _{STG}	Operating Junction and StorageTemperature	- 65 to +150	°C

Thermal Characteristics

Symbol		Parameter	Value	Units	
	R _{e.IC}	Maximum Thermal Resistance, Junction to Case	1.7	°C/W	

Electrical Characteristics T_C=25 °C unless otherwise noted

Symbol	Parameter		Min.	Тур.	Max.	Units
V _{FM} *	Maximum Instantaneous Forward Voltage					V
	I _F = 30A	T _C = 25 °C	-	-	1.2	
	I _F = 30A	T _C = 25 °C T _C = 100 °C	-	-	1.0	
RM *	Maximum Instantaneous Reverse Current					μΑ
	@ rated V _R	$T_C = 25 ^{\circ}C$	-	-	30	
		$T_C = 25 ^{\circ}C$ $T_C = 100 ^{\circ}C$	-	-	300	
rr	Maximum Reverse Recovery Time		-	-	40	ns
rr	Maximum Reverse Recovery Current		-	-	4.0	Α
Q _{rr}	Maximum Reverse Recovery Charge		-	-	80	nC
	$(I_F = 30A, di/dt = 200A/\mu s)$					
W _{AVL}	Avalanche Energy		0.5	-	-	mJ

^{*} Pulse Test: Pulse Width=300µs, Duty Cycle=2%

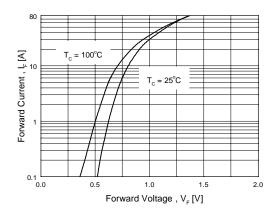


Figure 1. Typical Forward Voltage Drop vs. Forward Current

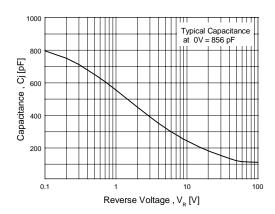


Figure 3. Typical Junction Capacitance

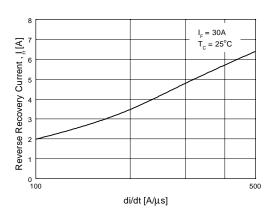


Figure 5. Typical Reverse Recovery Current

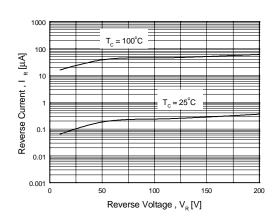


Figure 2. Typical Reverse Current vs. Reverse Voltage

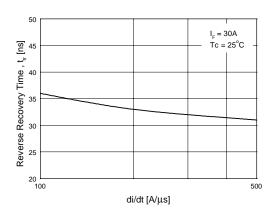
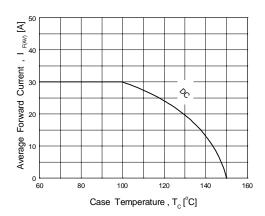
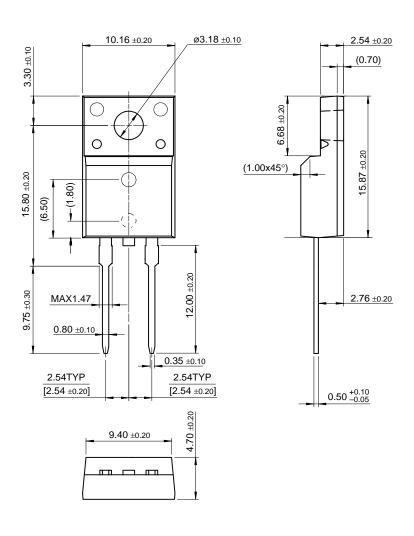


Figure 4. Typical Reverse Recovery Time vs. di/dt




Figure 6. Forward Current Derating Curve

©2000 Fairchild Semiconductor International Rev. F, September 2000

Package Dimensions

TO-220F 2L

Dimensions in Millimeters

©2000 Fairchild Semiconductor International Rev. F, September 2000

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited

Datasheet of FFPF30U20STU - DIODE GEN PURP 200V 30A TO220F

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FASTr™ QFET™ VCX™

Bottomless[™] GlobalOptoisolator[™] QS[™]

CoolFET™ GTO™ QT Optoelectronics™

CROSSVOLT™ HiSeC™ Quiet Series™ ISOPLANAR™ DOME™ SuperSOT™-3 E²CMOSTM MICROWIRE™ SuperSOT™-6 OPTOLOGIC™ EnSigna™ SuperSOT™-8 FACT™ OPTOPLANAR™ SyncFET™ POP™ FACT Quiet Series™ TinyLogic™ PowerTrench® **FAST®** UHC™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. F1