Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Diodes Incorporated BSP75NTA

For any questions, you can email us directly: sales@integrated-circuit.com

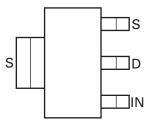
BSP75N 60V self-protected low-side Intellifet™ MOSFET switch

 $0.7A (V_{IN} = 5V)$

Summary

Continuous drain source voltage V_{DS}=60V

On-state resistance 500m Ω


Maximum nominal load current^(a) 1.1A ($V_{IN} = 5V$)

Clamping energy 550mJ

Minimum nominal load current(c)

Self-protected low side MOSFET. Monolithic over temperature, over current, over voltage (active clamp) and ESD protected logic level functionality. Intended as a general purpose switch.

SOT223

Features

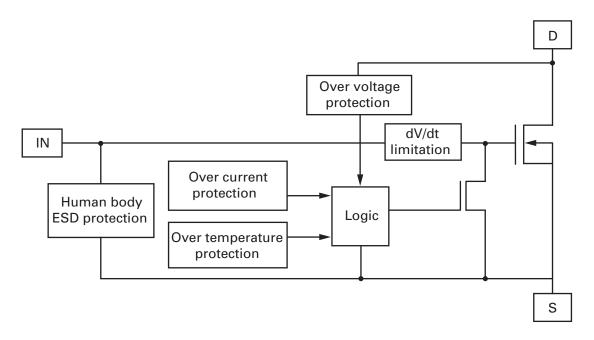
- Short circuit protection with auto restart
- · Over-voltage protection (active clamp)
- · Thermal shutdown with auto restart
- · Over-current protection
- Input protection (ESD)
- · High continuous current rating
- · Load dump protection (actively protects load)
- Logic level input

Ordering information

Device	Reel size (inches)	Tape width (mm)	Quantity per reel	
BSP75NTA	7	12mm embossed	1000	

Device marking

BSP75N


Note:

The tab is connected to the source pin and must be electrically isolated from the drain pin.

Connection of significant copper to the drain pin is recommended for best thermal performance.

Functional block diagram

Applications

- Especially suited for loads with a high in-rush current such as lamps and motors.
- · All types of resistive, inductive and capacitive loads in switching applications.
- μC compatible power switch for 12V and 24V DC applications.
- Automotive rated.
- Replaces electromechanical relays and discrete circuits.

Linear mode capability - the current-limiting protection circuitry is designed to de-activate at low Vds, in order not to compromise the load current during normal operation. The design maximum DC operating current is therefore determined by the thermal capability of the package/board combination, rather than by the protection circuitry. This does not compromise the products ability to self protect itself at low V_{DS}.

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Continuous drain-source voltage	V _{DS}	60	V
Drain-source voltage for short circuit protection $V_{IN} = 5V$	V _{DS(SC)}	36	V
Drain-source voltage for short circuit protection $V_{IN} = 10V$	V _{DS(SC)}	20	V
Continuous input voltage	V _{IN}	-0.2 +10	V
Peak input voltage	V _{IN}	-0.2 +20	V
Operating temperature range	T _j ,	-40 to +150	°C
Storage temperature range	T _{stg}	-55 to +150	°C
Power dissipation at T _A =25°C ^(a)	P _D	1.5	W
Power dissipation at T _A =25°C ^(c)	P_{D}	0.6	W
Continuous drain current @ V _{IN} =10V; T _A =25°C ^(a)	I _D	1.3	Α
Continuous drain current @ V _{IN} =5V; T _A =25°C ^(a)	I _D	1.1	А
Continuous drain current @ V _{IN} =5V; T _A =25°C ^(c)	I _D	0.7	Α
Continuous source current (body diode) (a)	I _S	2.0	Α
Pulsed source current (body diode) (b)	I _S	3.3	Α
Unclamped single pulse inductive energy	E _{AS}	550	mJ
Load dump protection	$V_{LoadDump}$	80	V
Electrostatic discharge (human body model)	V _{ESD}	4000	V
DIN humidity category, DIN 40 040		E	
IEC climatic category, DIN IEC 68-1		40/150/56	

Thermal resistance

Parameter	Symbol	Limit	Unit
Junction to ambient ^(a)	$R_{\Theta JA}$	83	°C/W
Junction to ambient ^(b)	$R_{\Theta JA}$	45	°C/W
Junction to ambient ^(c)	$R_{\Theta JA}$	208	°C/W

NOTES:

⁽a) For a device surface mounted on 25mm x 25mm x 1.6mm FR4 board with a high coverage of single sided 2oz weight copper. Allocation of 6cm² copper 33% to source tab and 66% to drain pin with tab and drain pin electrically isolated. (b) For a device surface mounted on FR4 board as (a) and measured at t<=10s.

⁽c) For a device surface mounted on FR4 board with the minimum copper required for connections.

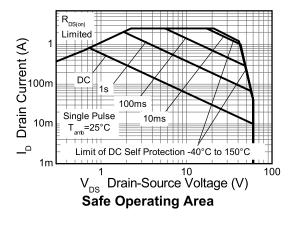
Electrical characteristics (at T_{AMB} = 25°C unless otherwise stated)

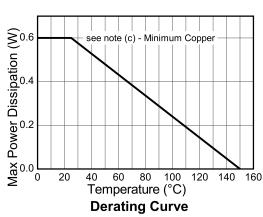
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions		
Static characteristics								
Drain-source clamp voltage	$V_{DS(AZ)}$	60	70	75	V	I _D =10mA		
Off-state drain current	I _{DSS}		0.1	3	μΑ	V _{DS} =12V, V _{IN} =0V		
Off-state drain current	I _{DSS}		3	15	μΑ	V _{DS} =32V, V _{IN} =0V		
Input threshold voltage (*)	V _{IN(th)}	1	2.1		V	V _{DS} =V _{GS} , I _D =1mA		
Input current	I _{IN}		0.7	1.2	mA	V _{IN} =+5V		
Input current	I _{IN}		1.5	2.7	mA	V _{IN} =+7V		
Input current	I _{IN}		4	7	mA	V _{IN} =+10V		
Static drain-source on-state resistance	R _{DS(on)}		520	675	$m\Omega$	V _{IN} =+5V, I _D =0.7A		
Static drain-source on-state resistance	R _{DS(on)}		385	550	$m\Omega$	V _{IN} =+10V, I _D =0.7A		
Current limit (†)	I _{D(LIM)}	0.7	1.0	1.5	Α	$V_{IN}=+5V$, $V_{DS}>5V$		
Current limit ^(†)	I _{D(LIM)}	1.0	1.8	2.3	Α	$V_{IN}=+10V$, $V_{DS}>5V$		
Dynamic characteristics			I.		•			
Turn-on time (V _{IN} to 90% I _D)	t _{on}		3.0	10	μS	$R_L=22\Omega$, $V_{DD}=12V$, $V_{IN}=0$ to +10V		
Turn-off time (V _{IN} to 90% I _D)	t _{off}		13	20	μS	$R_L=22\Omega$, $V_{DD}=12V$, $V_{IN}=+10V$ to $0V$		
Slew rate on (70 to 50% V _{DD})	-dV _{DS} /dt _{on}		8	20	V/μs	R_L =22 Ω , V_{DD} =12V, V_{IN} =0 to +10V		
Slew rate off (50 to 70% V _{DD})	DV _{DS} /dt _{off}		3.2	10	V/μs	$R_L=22\Omega$, $V_{DD}=12V$, $V_{IN}=+10V$ to $0V$		
Protection functions (‡)								
Required input voltage for over temperature protection	V _{PROT}	4.5			V			
Thermal overload trip temperature	T _{JT}	150	175		°C			
Thermal hysteresis			1		°C			
Unclamped single pulse inductive energy T _j =25°C	E _{AS}	550			mJ	I _{D(ISO)} =0.7A, V _{DD} =32V		
Unclamped single pulse inductive energy T _j =150°C		200			mJ	I _{D(ISO)} =0.7A, V _{DD} =32V		
Inverse diode	1		ı	1	1	I.		
Source drain voltage	V_{SD}			1	V	V _{IN} =0V, -I _D =1.4A		

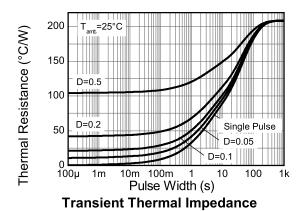
NOTES

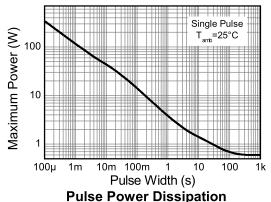
- (*) The drain current is limited to a reduced value when V_{DS} exceeds a safe level.
- (†) Protection features may operate outside spec for V_{IN} <4.5V.
- (‡) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the datasheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous, repetitive operation.

Application information

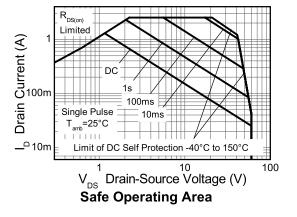

The current-limit protection circuitry is designed to de-activate at low V_{DS} to prevent the load current from being unnecessarily restricted during normal operation. The design max DC operating current is therefore determined by the thermal capability of the package/board combination, rather than by the protection circuitry (see graph on page 7 'Typical Output Characteristic'). This does not compromise the products ability to self protect at low V_{DS} .

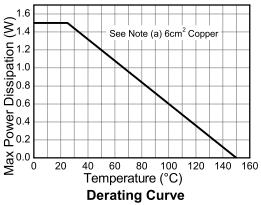

The overtemperature protection circuit trips at a minimum of 150°C. So the available package dissipation reduces as the maximum required ambient temperature increases. This leads to the following maximum recommended continuous operating currents.

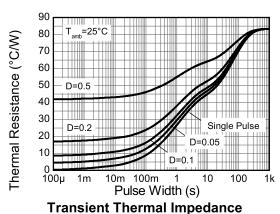

Minimum copper area characteristics

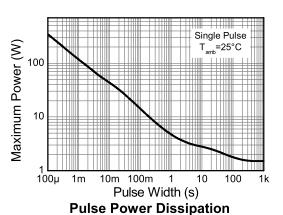

For minimum copper condition as described in note (c)

Max. ambient temperature T _{amb}	Maximum continuous current				
	$V_{IN} = 5V$	V _{IN} = 10V			
25°C @ V _{IN} = 5V	720	840			
70°C @ V _{IN} = 5V	575	670			
85°C @ V _{IN} = 5V	520	605			
125°C @ V _{IN} = 5V	320	375			

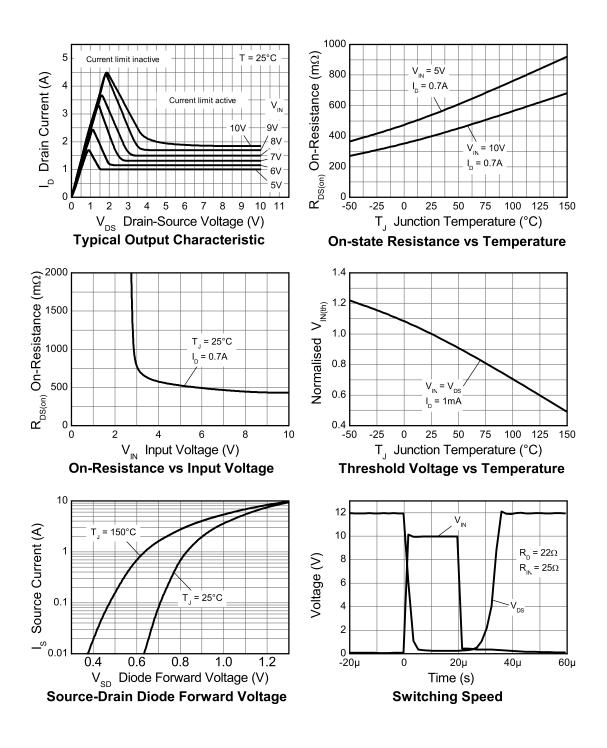

i disc i owei bissipation



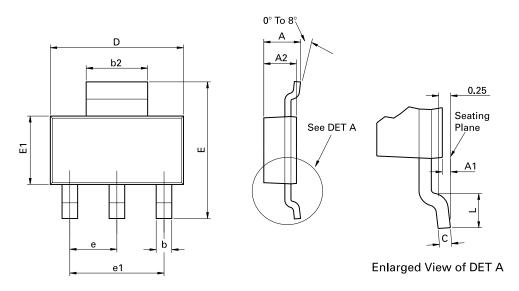

Large copper area characteristics


For large copper area as described in note (a)

Max. ambient temperature T _{amb}	Maximum con	Maximum continuous current			
	V _{IN} = 5V	V _{IN} = 10V			
25°C @ V _{IN} = 5V	1140	1325			
70°C @ V _{IN} = 5V	915	1060			
85°C @ V _{IN} = 5V	825	955			
125°C @ V _{IN} = 5V	510	590			



Issue 4 - September 2006© Zetex Semiconductors plc 2006



Typical characteristics

Package outline - SOT223

Conforms to JEDEC TO-261 AA Issue B

Dim.	Millin	neters	Inc	hes	Dim.	Millimeters		Inches	
	Min.	Max.	Min.	Max.		Min.	Max.	Min.	Max.
Α	-	1.80	-	0.071	е	2.30 BSC		0.0905 BSC	
A1	0.02	0.10	0.0008	0.004	e1	4.60 BSC		0.181 BSC	
b	0.66	0.84	0.026	0.033	E	6.70	7.30	0.264	0.287
b2	2.90	3.10	0.114	0.122	E1	3.30	3.70	0.130	0.146
С	0.23	0.33	0.009	0.013	L	0.90	-	0.355	-
D	6.30	6.70	0.248	0.264	-	-	-	-	-

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Asia Pacific Europe **Americas Corporate Headquarters** Zetex Semiconductors plc Zetex GmbH Zetex Inc Zetex (Asia Ltd) Zetex Technology Park, Chadderton Oldham, OL9 9LL Kustermann-park 700 Veterans Memorial Highway 3701-04 Metroplaza Tower 1 Balanstraße 59 Hauppauge, NY 11788 Hing Fong Road, Kwai Fong D-81541 München Hong Kong United Kingdom Germany Telefon: (49) 89 45 49 49 0 Telephone: (44) 161 622 4444 Telephone: (1) 631 360 2222 Telephone: (852) 26100 611 Fax: (49) 89 45 49 49 49 Fax: (1) 631 360 8222 Fax: (852) 24250 494 Fax: (44) 161 622 4446 europe.sales@zetex.com usa.sales@zetex.com asia.sales@zetex.com hg@zetex.com

For international sales offices visit www.zetex.com/offices

Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork

This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.