

# **Excellent Integrated System Limited**

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

NXP Semiconductors/Freescale Semiconductor, Inc. BT134-600D,127

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>





BT134-600D

4Q Triac 21 November 2013

Product data sheet

### 1. General description

Planar passivated very sensitive gate four quadrant triac in a SOT82 plastic package intended for use in general purpose bidirectional switching and phase control applications where high sensitivity is required in all four quadrants. This "series D" triac is intended to be interfaced directly to microcontrollers, logic integrated circuits and other low power gate trigger circuits.

#### 2. Features and benefits

- Compact package
- Direct interfacing to logic level ICs
- · Direct interfacing to low power gate drive circuits
- High blocking voltage capability
- Low holding current for low current loads and lowest EMI at commutation
- Planar passivated for voltage ruggedness and reliability
- Triggering in all four quadrants
- Very sensitive gate

### 3. Applications

- General purpose low power motor control
- Home appliances
- Industrial process control

### 4. Quick reference data

| Table 1. Qui        | ck reference data                        |                                                                                                 |     |     |     |      |
|---------------------|------------------------------------------|-------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Symbol              | Parameter                                | Conditions                                                                                      | Min | Тур | Max | Unit |
| V <sub>DRM</sub>    | repetitive peak off-<br>state voltage    |                                                                                                 | -   | -   | 600 | V    |
| I <sub>TSM</sub>    | non-repetitive peak on-<br>state current | full sine wave; $T_{j(init)} = 25 \text{ °C};$<br>$t_p = 20 \text{ ms}; \text{ Fig. 4; Fig. 5}$ | -   | -   | 25  | A    |
| I <sub>T(RMS)</sub> | RMS on-state current                     | full sine wave; T <sub>mb</sub> ≤ 107 °C; <u>Fig. 1;</u><br><u>Fig. 2; Fig. 3</u>               | -   | -   | 4   | A    |
| Static charact      | eristics                                 |                                                                                                 |     |     |     |      |
| I <sub>GT</sub>     | gate trigger current                     | V <sub>D</sub> = 12 V; I <sub>T</sub> = 0.1 A; T2+ G+;<br>T <sub>j</sub> = 25 °C; <u>Fig. 7</u> | -   | 2   | 5   | mA   |







## BT134-600D

#### 4Q Triac

| Symbol         | Parameter       | Conditions                                                                                      | Min | Тур | Max | Unit |
|----------------|-----------------|-------------------------------------------------------------------------------------------------|-----|-----|-----|------|
|                |                 | V <sub>D</sub> = 12 V; I <sub>T</sub> = 0.1 A; T2+ G-;<br>T <sub>j</sub> = 25 °C; <u>Fig. 7</u> | -   | 2.5 | 5   | mA   |
|                |                 | V <sub>D</sub> = 12 V; I <sub>T</sub> = 0.1 A; T2- G-;<br>T <sub>j</sub> = 25 °C; <u>Fig. 7</u> | -   | 2.5 | 5   | mA   |
|                |                 | V <sub>D</sub> = 12 V; I <sub>T</sub> = 0.1 A; T2- G+;<br>T <sub>j</sub> = 25 °C; <u>Fig. 7</u> | -   | 5   | 10  | mA   |
| I <sub>H</sub> | holding current | V <sub>D</sub> = 12 V; T <sub>j</sub> = 25 °C; <u>Fig. 9</u>                                    | -   | 1.2 | 10  | mA   |

### 5. Pinning information

| Table 2. | Pinning | information                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
|----------|---------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Pin      | Symbol  | Description                       | Simplified outline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Graphic symbol |
| 1        | T1      | main terminal 1                   | [,]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T2             |
| 2        | T2      | main terminal 2                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sym051         |
| 3        | G       | gate                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| mb       | Τ2      | mounting base; main<br>terminal 2 | () () ()<br>() () ()<br>() () ()<br>() ()<br>() () () () ()<br>() () () () ()<br>() () () () () ()<br>() () () () () () () () () () () () () ( |                |

### 6. Ordering information

| Table 3. Ordering in | formation |                                                 |         |
|----------------------|-----------|-------------------------------------------------|---------|
| Type number          | Package   |                                                 |         |
|                      | Name      | Description                                     | Version |
| BT134-600D           | SIP3      | plastic single-ended package; 3 leads (in-line) | SOT82   |



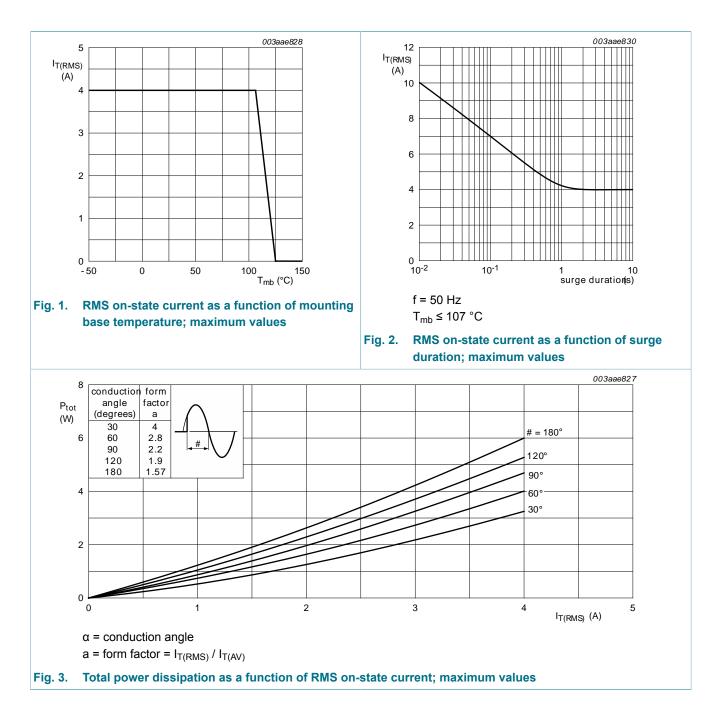
### BT134-600D

4Q Triac

### 7. Limiting values

#### Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


| Symbol              | Parameter                            | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Min | Max | Unit             |
|---------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------------------|
| V <sub>DRM</sub>    | repetitive peak off-state voltage    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -   | 600 | V                |
| I <sub>T(RMS)</sub> | RMS on-state current                 | full sine wave; $T_{mb} \le 107 \text{ °C}$ ; Fig. 1;<br>Fig. 2; Fig. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -   | 4   | A                |
| I <sub>TSM</sub>    | non-repetitive peak on-state current | full sine wave; $T_{j(init)} = 25 \text{ °C};$<br>$t_p = 20 \text{ ms}; \frac{\text{Fig. 4}}{25}; \frac{1}{25}; \frac{1}{2$ | -   | 25  | A                |
|                     |                                      | full sine wave; $T_{j(init)} = 25 \text{ °C};$<br>$t_p = 16.7 \text{ ms}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -   | 27  | A                |
| l <sup>2</sup> t    | I2t for fusing                       | t <sub>p</sub> = 10 ms; SIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | 3.1 | A <sup>2</sup> s |
| dI <sub>T</sub> /dt | rate of rise of on-state current     | $I_T = 6 \text{ A}; I_G = 0.2 \text{ A}; dI_G/dt = 0.2 \text{ A}/\mu\text{s};$<br>T2+ G+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | 50  | A/µs             |
|                     |                                      | $I_T = 6 \text{ A}; I_G = 0.2 \text{ A}; dI_G/dt = 0.2 \text{ A}/\mu\text{s};$<br>T2+ G-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | 50  | A/µs             |
|                     |                                      | $I_T = 6 \text{ A}; I_G = 0.2 \text{ A}; dI_G/dt = 0.2 \text{ A}/\mu\text{s};$<br>T2- G-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | 50  | A/µs             |
|                     |                                      | $I_T = 6 \text{ A}; I_G = 0.2 \text{ A}; dI_G/dt = 0.2 \text{ A}/\mu\text{s};$<br>T2- G+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   | 10  | A/µs             |
| I <sub>GM</sub>     | peak gate current                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -   | 2   | А                |
| P <sub>GM</sub>     | peak gate power                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -   | 5   | W                |
| P <sub>G(AV)</sub>  | average gate power                   | over any 20 ms period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -   | 0.5 | W                |
| T <sub>stg</sub>    | storage temperature                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -40 | 150 | °C               |
| Tj                  | junction temperature                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -   | 125 | °C               |

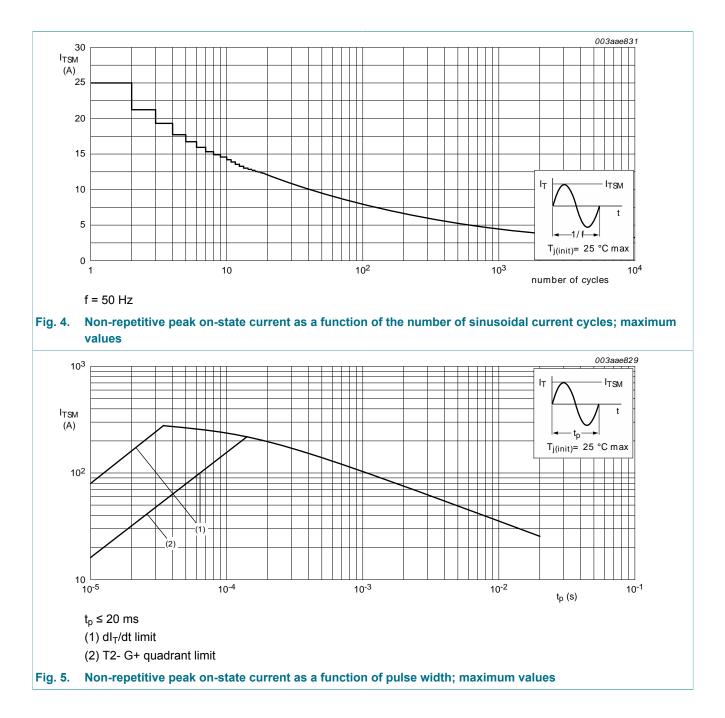


#### **NXP Semiconductors**

BT134-600D

4Q Triac




4/13

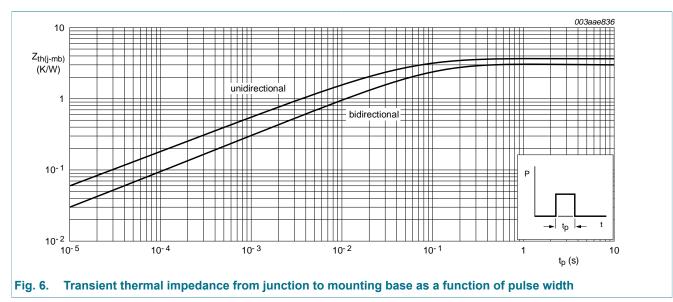


#### **NXP Semiconductors**

BT134-600D

4Q Triac






### BT134-600D

**4Q Triac** 

### 8. Thermal characteristics

| Table 5. The          | ermal characteristics                             |                           |     |     |     |      |
|-----------------------|---------------------------------------------------|---------------------------|-----|-----|-----|------|
| Symbol                | Parameter                                         | Conditions                | Min | Тур | Max | Unit |
| R <sub>th(j-mb)</sub> | thermal resistance                                | half cycle; Fig. 6        | -   | -   | 3.7 | K/W  |
|                       | from junction to<br>mounting base                 | full cycle; <u>Fig. 6</u> | -   | -   | 3   | K/W  |
| R <sub>th(j-a)</sub>  | thermal resistance<br>from junction to<br>ambient | in free air               | -   | 100 | -   | K/W  |



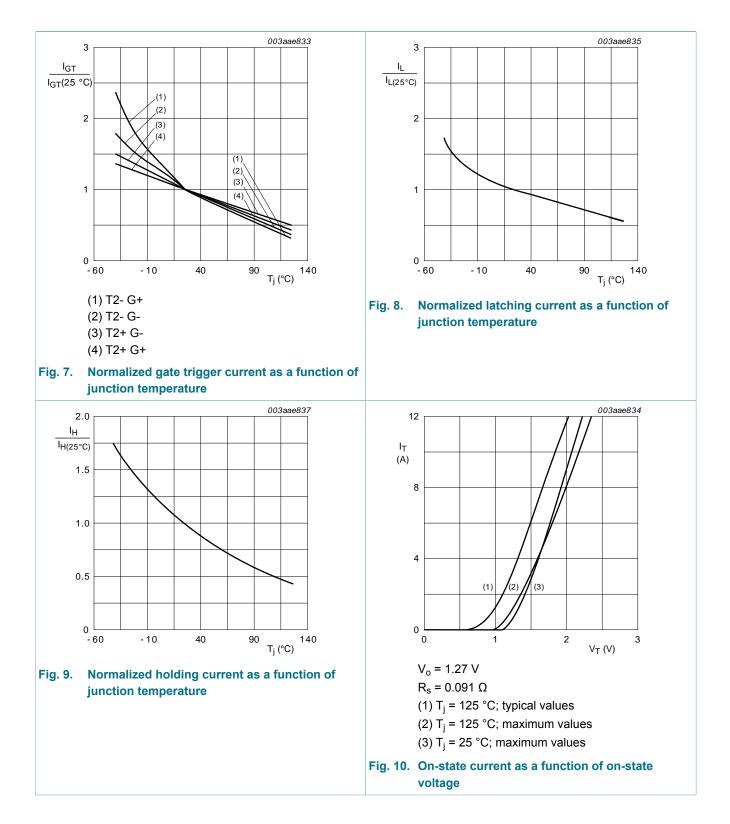


#### **NXP Semiconductors**

### BT134-600D

4Q Triac

### 9. Characteristics

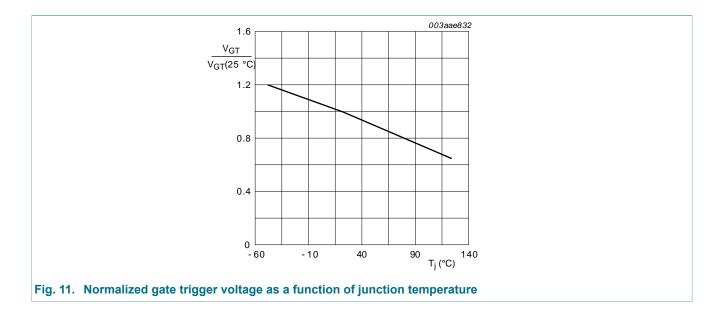

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Symbol              | Parameter            | Conditions                                                   | Min  | Тур | Max | Unit |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|--------------------------------------------------------------|------|-----|-----|------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Static chara        | acteristics          | 1                                                            | I    |     |     |      |
| $ \begin{array}{ c c c c c c } & I_{1} = 25 \ ^{\circ} C; \ \ Fig. 7 \\ \hline V_{D} = 12 \ V; \ I_{T} = 0.1 \ A; \ T2 - G; \\ T_{1} = 25 \ ^{\circ} C; \ \ Fig. 7 \\ \hline V_{D} = 12 \ V; \ I_{T} = 0.1 \ A; \ T2 - G; \\ T_{1} = 25 \ ^{\circ} C; \ \ Fig. 7 \\ \hline V_{D} = 12 \ V; \ I_{G} = 0.1 \ A; \ T2 + G; \\ T_{1} = 25 \ ^{\circ} C; \ \ Fig. 8 \\ \hline V_{D} = 12 \ V; \ I_{G} = 0.1 \ A; \ T2 + G; \\ T_{1} = 25 \ ^{\circ} C; \ \ Fig. 8 \\ \hline V_{D} = 12 \ V; \ I_{G} = 0.1 \ A; \ T2 + G; \\ T_{1} = 25 \ ^{\circ} C; \ \ Fig. 8 \\ \hline V_{D} = 12 \ V; \ I_{G} = 0.1 \ A; \ T2 + G; \\ T_{1} = 25 \ ^{\circ} C; \ \ Fig. 8 \\ \hline V_{D} = 12 \ V; \ I_{G} = 0.1 \ A; \ T2 + G; \\ T_{1} = 25 \ ^{\circ} C; \ \ Fig. 8 \\ \hline V_{D} = 12 \ V; \ I_{G} = 0.1 \ A; \ T2 - G; \\ T_{1} = 25 \ ^{\circ} C; \ \ Fig. 8 \\ \hline V_{D} = 12 \ V; \ I_{G} = 0.1 \ A; \ T2 - G; \\ T_{1} = 25 \ ^{\circ} C; \ \ Fig. 8 \\ \hline V_{D} = 12 \ V; \ I_{G} = 0.1 \ A; \ T2 - G; \\ T_{1} = 25 \ ^{\circ} C; \ \ Fig. 8 \\ \hline V_{D} = 12 \ V; \ I_{G} = 0.1 \ A; \ T2 - G; \\ T_{1} = 25 \ ^{\circ} C; \ \ Fig. 8 \\ \hline V_{D} = 12 \ V; \ I_{G} = 0.1 \ A; \ T2 - G; \\ T_{1} = 25 \ ^{\circ} C; \ \ Fig. 8 \\ \hline V_{D} = 12 \ V; \ I_{G} = 0.1 \ A; \ T2 - G; \\ T_{1} = 25 \ ^{\circ} C; \ \ Fig. 8 \\ \hline V_{D} = 12 \ V; \ I_{G} = 0.1 \ A; \ T2 - G; \\ T_{1} = 25 \ ^{\circ} C; \ \ Fig. 9 \\ \hline V_{D} = 12 \ V; \ I_{G} = 0.1 \ A; \ T_{I} = 25 \ ^{\circ} C; \ \ Fig. 9 \\ \hline V_{T} \qquad on-state \ voltage \qquad I_{T} = 5 \ A; \ T_{I} = 25 \ ^{\circ} C; \ \ Fig. 9 \\ \hline V_{D} = 400 \ V; \ I_{I} = 0.1 \ A; \ T_{I} = 25 \ ^{\circ} C; \\ \ I_{G} = 1 \\ \hline V_{D} = 400 \ V; \ I_{T} = 0.1 \ A; \ T_{I} = 125 \ ^{\circ} C; \\ \ I_{G} = 1 \\ \hline V_{D} = 0 \ A \ A \ A \ A \ A \ A \ A \ A \ A \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I <sub>GT</sub>     | gate trigger current |                                                              | -    | 2   | 5   | mA   |
| $ \begin{array}{ c c c c c c c } I_{j} = 25 \ ^{\circ}{\rm C}; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                      |                                                              | -    | 2.5 | 5   | mA   |
| $ \begin{array}{ c c c c c c } \hline \mbox{T}_{j} = 25 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                      |                                                              | -    | 2.5 | 5   | mA   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                      |                                                              | -    | 5   | 10  | mA   |
| $ \begin{array}{c c c c c c c c c } & T_{j} = 25 \ ^{\circ}\text{C}; \ Fig. 8 & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l                   | latching current     |                                                              | -    | 1.6 | 10  | mA   |
| $ \frac{T_{j} = 25 \ ^{\circ}C; \ Fig. 8}{V_{D} = 12 \ V; \ I_{G} = 0.1 \ A; \ T2 - G+; \ T_{j} = 25 \ ^{\circ}C; \ Fig. 8} \  \  \  \  \  \  \  \  \  \  \  \  \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                      |                                                              | -    | 4.5 | 15  | mA   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                      |                                                              | -    | 1.2 | 10  | mA   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                      |                                                              | -    | 2.2 | 15  | mA   |
| $V_{GT} = \begin{cases} gate trigger voltage \\ P_{D} = 12 V; I_{T} = 0.1 A; T_{j} = 25 °C; \\ Fig. 11 \\ V_{D} = 400 V; I_{T} = 0.1 A; T_{j} = 125 °C; \\ Fig. 11 \\ V_{D} = 400 V; I_{T} = 0.1 A; T_{j} = 125 °C; \\ Fig. 11 \\ V_{D} = 600 V; T_{j} = 125 °C \\ I = 0.1 \\ I = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I <sub>H</sub>      | holding current      | V <sub>D</sub> = 12 V; T <sub>j</sub> = 25 °C; <u>Fig. 9</u> | -    | 1.2 | 10  | mA   |
| $\frac{Fig. 11}{V_{D} = 400 \text{ V}; I_{T} = 0.1 \text{ A}; T_{j} = 125 ^{\circ}\text{C}; \\ Fig. 11} \qquad 0.25 \qquad 0.4 \qquad -$ $\frac{Fig. 11}{V_{D} = 600 \text{ V}; T_{j} = 125 ^{\circ}\text{C}; \\ O.25 \qquad 0.4 \qquad -$ $\frac{O.1}{V_{D} = 600 \text{ V}; T_{j} = 125 ^{\circ}\text{C}; \\ O.25 \qquad 0.4 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad 0.4 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad 0.4 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad 0.5 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad - 0.1 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad - 0.1 \qquad -$ $\frac{O.1}{V_{D} = 0.1 \text{ V}; \\ O.25 \qquad - 0.1 \qquad - $ | V <sub>T</sub>      | on-state voltage     | I <sub>T</sub> = 5 A; T <sub>j</sub> = 25 °C; <u>Fig. 10</u> | -    | 1.4 | 1.7 | V    |
| Fig. 11Fig. 11ImageFig. 11 $I_D$ off-state current $V_D = 600 V; T_j = 125 °C$ -0.10.5Dynamic characteristics $dV_D/dt$ rate of rise of off-state<br>voltage $V_{DM} = 402 V; T_j = 125 °C; R_{GT1} = 1 k\Omega;$<br>$(V_{DM} = 67\% of V_{DRM});$ exponential<br>waveform-5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V <sub>GT</sub>     | gate trigger voltage | ,                                                            | -    | 0.7 | 1   | V    |
| Dynamic characteristics $dV_D/dt$ rate of rise of off-state<br>voltage $V_{DM} = 402 \text{ V}; \text{ T}_j = 125 \text{ °C}; \text{ R}_{GT1} = 1 \text{ k}\Omega;$<br>$(V_{DM} = 67\% \text{ of } V_{DRM}); \text{ exponential}$<br>waveform-5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                      | ,                                                            | 0.25 | 0.4 | -   | V    |
| $\frac{dV_D}{dt}  rate of rise of off-state}_{voltage}  V_{DM} = 402 V; T_j = 125 °C; R_{GT1} = 1 k\Omega; \\ (V_{DM} = 67\% of V_{DRM}); exponential}_{waveform}  - 5  - 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I <sub>D</sub>      | off-state current    | V <sub>D</sub> = 600 V; T <sub>j</sub> = 125 °C              | -    | 0.1 | 0.5 | mA   |
| voltage (V <sub>DM</sub> = 67% of V <sub>DRM</sub> ); exponential waveform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dynamic ch          | aracteristics        | · · · · · · · · · · · · · · · · · · ·                        | I    |     | 1   |      |
| gate-controlled turn-on $I_{TM} = 6 A$ ; $V_D = 600 V$ ; $I_G = 0.1 A$ ; $dI_G/$ - 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dV <sub>D</sub> /dt |                      | $(V_{DM} = 67\% \text{ of } V_{DRM}); \text{ exponential}$   | -    | 5   | -   | V/µs |
| time $dt = 5 A/\mu s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t <sub>gt</sub>     | -                    |                                                              | -    | 2   | -   | μs   |



#### **NXP Semiconductors**

BT134-600D

4Q Triac



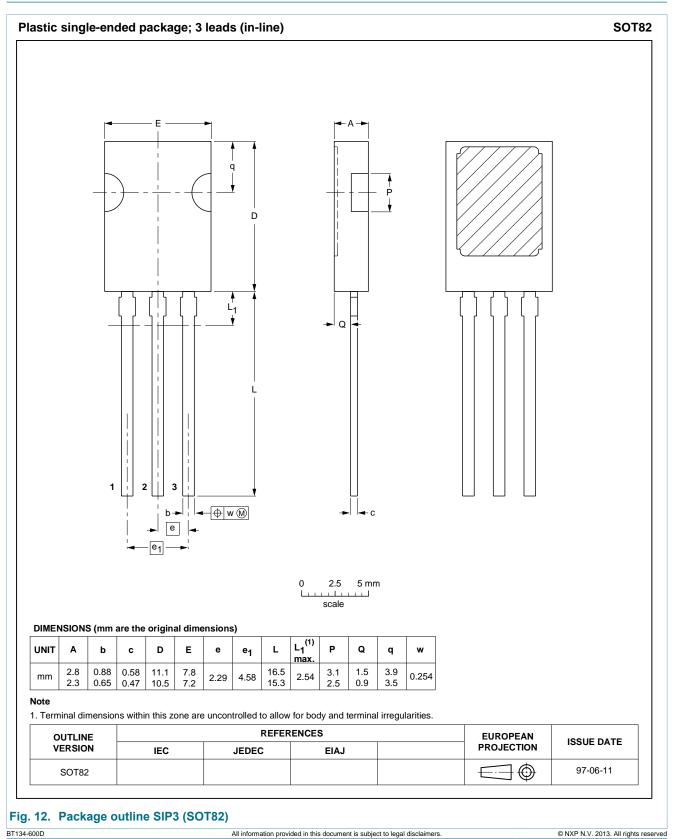



#### **NXP Semiconductors**

### BT134-600D

**4Q Triac** 






#### **NXP Semiconductors**

### **BT134-600D**

**4Q** Triac

### 10. Package outline





#### **NXP Semiconductors**

### **BT134-600D**

**4Q Triac** 

### 11. Legal information

#### **11.1 Data sheet status**

| Document<br>status [1][2]            | Product<br>status [3] | Definition                                                                                  |
|--------------------------------------|-----------------------|---------------------------------------------------------------------------------------------|
| Objective<br>[short] data<br>sheet   | Development           | This document contains data from<br>the objective specification for product<br>development. |
| Preliminary<br>[short] data<br>sheet | Qualification         | This document contains data from the preliminary specification.                             |
| Product<br>[short] data<br>sheet     | Production            | This document contains the product specification.                                           |

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

#### 11.2 Definitions

**Preview** — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### 11.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the

**Product data sheet** 

All information provided in this document is subject to legal disclaimers.

11/13



### BT134-600D

**4Q Triac** 

grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### **11.4 Trademarks**

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I<sup>2</sup>C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

HD Radio and HD Radio logo — are trademarks of iBiquity Digital Corporation.



### BT134-600D

4Q Triac

#### **12. Contents**

| 1                     | General description                                                          | 1             |
|-----------------------|------------------------------------------------------------------------------|---------------|
| 2                     | Features and benefits                                                        | 1             |
| 3                     | Applications                                                                 | 1             |
| 4                     | Quick reference data                                                         | 1             |
| 5                     | Pinning information                                                          | 2             |
| 6                     | Ordering information                                                         | 2             |
| 7                     | Limiting values                                                              | 3             |
| ~                     |                                                                              | •             |
| 8                     | Thermal characteristics                                                      | 6             |
| 8<br>9                | Characteristics                                                              |               |
| -                     |                                                                              | 7             |
| 9                     | Characteristics                                                              | 7<br>10       |
| 9<br>10               | Characteristics<br>Package outline                                           | 7<br>10<br>11 |
| 9<br>10<br>11         | Characteristics<br>Package outline<br>Legal information                      | 7<br>         |
| 9<br>10<br>11<br>11.1 | Characteristics<br>Package outline<br>Legal information<br>Data sheet status | 7<br>         |

#### © NXP N.V. 2013. All rights reserved

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 21 November 2013