

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[Analog Devices Inc.](#)
[ADM6819ARJZ-REEL7](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

FET Drive Simple Sequencers®

ADM6819/ADM6820

FEATURES

- Single chip enables power supply sequencing of two supplies
- On-board charge pump fully enhances N-channel FET
- Adjustable primary supply monitor to 0.618 V
- Delay from primary supply to secondary supply enabled
 - Fixed 300 ms delay (ADM6819)
 - Capacitor adjustable delay (ADM6820)
- Logic/analog driven enable input (ADM6819)
- 40°C to +85°C operating range
- Packaged in small 6-lead SOT-23 package
- Pin-to-pin compatibility with MAX6819/MAX6820

APPLICATIONS

- Multivoltage systems
- Dual voltage microprocessors/FPGAs/ASICs/DSPs
- Network processors
- Telecom and datacom systems
- PC/server applications

GENERAL DESCRIPTION

The ADM6819 and ADM6820 are simple power supply sequencers with FET drive capability for enhancing N-channel MOSFETs. These devices can monitor a primary supply voltage and enable/disable an external N-channel FET for a secondary supply. The ADM6819 has the ability to monitor two supplies. When more than two voltages require sequencing, multiple ADM6819/ADM6820 devices can be cascaded to achieve this. The devices operate over a supply range of 2.95 V to 5.5 V.

An internal comparator monitors the primary supply using the VSET pin. The input to this comparator is externally set via a resistor divider from the primary supply. When the voltage at the VSET pin rises above the comparator threshold, an internal charge pump on the GATE output enhances the secondary supply FET.

FUNCTIONAL BLOCK DIAGRAM

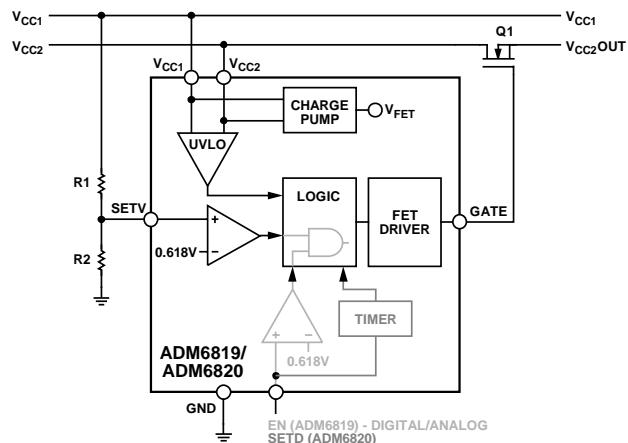


Figure 1.

05133-001

The ADM6819 features an enable (EN) pin that is fed to the input of an additional comparator and reference circuit. This pin can be used as a digital enable or a secondary power good comparator to monitor a second supply and enables the GATE only if both supplies are valid. When both inputs of the internal comparators are above the threshold, a fixed 300 ms timeout occurs before the GATE is driven high and the secondary supply is enabled.

The ADM6820 has only one comparator that is on the SETV pin. It also features a timeout period that is adjustable via a single external capacitor on the SETD pin.

The ADM6819/ADM6820 are packaged in small 6-lead SOT-23 packages.

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADM6819/ADM6820

TABLE OF CONTENTS

Features	1	Pin Configuration and Function Descriptions.....	7
Applications.....	1	Typical Performance Characteristics	8
Functional Block Diagram	1	Theory of Operation	10
General Description	1	SETV Pin	10
Revision History	2	EN Pin.....	10
Specifications.....	3	GATE Pin	10
Timing Diagrams.....	4	SETD Pin	10
Absolute Maximum Ratings.....	6	Outline Dimensions	11
Thermal Characteristics	6	Ordering Guide	11
ESD Caution.....	6		

REVISION HISTORY

7/06—Rev. 0: Initial Version

ADM6819/ADM6820

SPECIFICATIONS

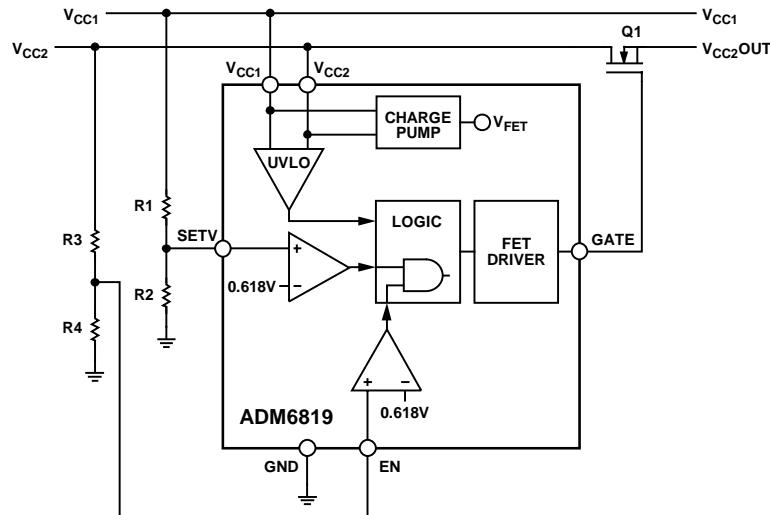
V_{CC1} or $V_{CC2} = 2.95$ V to 5.5 V, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$, unless otherwise noted. Typical values are at $T_A = 25^\circ\text{C}$.¹

Table 1.

Parameter	Min	Typ	Max	Units	Conditions
V_{CC1}, V_{CC2} PINS					
Operating Voltage Range, V_{CC1} or V_{CC2}	0.9		5.5	V	V_{CC1} or V_{CC2} must be > 2.95 V
V_{CC1} or V_{CC2} Supply Current, I_{CC}		350	500	μA	V_{CC1} or V_{CC2} must be > 2.95 V
V_{CC1} or V_{CC2} Disable Mode Current		250		μA	$V_{CC1} = V_{CC2} = 3.3$ V
V_{CC1} or V_{CC2} Slew Rate ²	6			V/s	$V_{CC1} = V_{CC2} = 3.3$ V, EN = GND
		$1.2/t_{\text{DELAY}}$		V/s	ADM6819
Undervoltage Lockout, V_{UVLO}	2.4	2.525	2.65	V	ADM6820 ³
					V_{CC} falling
SETV PIN					
SETV Threshold, V_{TH}	0.602	0.618	0.634	V	V_{SETV} rising, enables GATE
SETV Input Current ²		10	100	nA	
SETV Threshold Hysteresis		−1		%	V_{SETV} falling, disables GATE
SETV to GATE Delay, t_{DELAY}	240	300	350	ms	$V_{SETV} > V_{TH}; V_{EN} > V_{TH}$ (ADM6819)
SETD PIN					ADM6820
SETD Ramp Current, I_{SETD}	300	500	730	nA	
	400	500	600	nA	$T_A = 25^\circ\text{C}$
SETD Voltage, V_{SETD}	1.295	1.326	1.357	V	
GATE PIN					
GATE Turn-On Time, t_{ON}	0.5	1.5	10	ms	$C_{GATE} = 1500$ pF, $V_{CC2} = 3.3$ V, $V_{GATE} = 7.8$ V
GATE Turn-Off Time, t_{OFF}		30		μs	$C_{GATE} = 1500$ pF, $V_{CC2} = 3.3$ V, $V_{GATE} = 0.5$ V
GATE Voltage, V_{GATE}	4.5	5.5	6.0	V	With respect to V_{CCx} , $R_{GATE} > 50$ MΩ to V_{CCx} ⁴
	4.0	5.0	6	V	With respect to V_{CCx} , $R_{GATE} > 5$ MΩ to V_{CCx} ⁴
	8.9	9.4	9.9	V	With respect to V_{CCx} , $R_{GATE} > 50$ MΩ to V_{CCx} ⁵
	8.2	8.6	9.1	V	With respect to V_{CCx} , $R_{GATE} > 5$ MΩ to V_{CCx} ⁵
ENABLE PIN					
EN Input Voltage Low, V_{IL}			0.4	V	V_{CC1} or V_{CC2} must be > 2.95 V
EN Input Voltage High, V_{IH}	2.0			V	V_{CC1} or V_{CC2} must be > 2.95 V

¹ 100% production tested at $T_A = +25^\circ\text{C}$. Specifications over temperature limit are guaranteed by design.

² Guaranteed by design, not production tested.


³ t_{DELAY} (s) = $2.65 \times 10^6 \times C_{\text{SET}}$.

⁴ Highest supply pin is represented by $V_{CC} = 2.95$ V.

⁵ Highest supply pin is represented by $V_{CC} = 5.5$ V.

ADM6819/ADM6820

TIMING DIAGRAMS

05133-014

Figure 2. ADM6819 Solution for Validating Two Supplies Before Sequencing

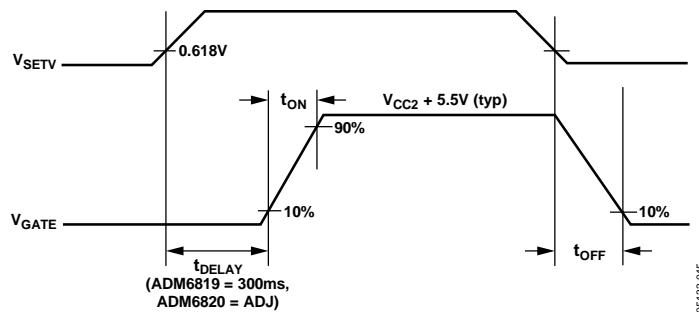


Figure 3. ADM6819/ADM6820 Timing Diagram Using SETV for Sequencing

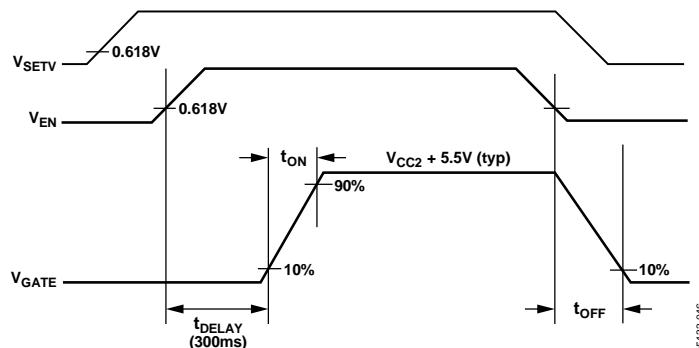


Figure 4. ADM6819 Timing Diagram Using EN and SETV for Sequencing

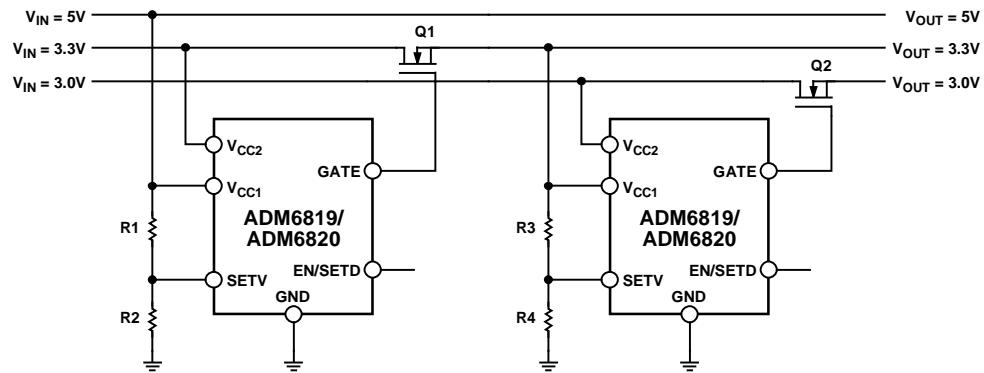

ADM6819/ADM6820

Figure 5. ADM6819/ADM6820 Solution for Sequencing Three Supply Rails

05133-017

ADM6819/ADM6820

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
V _{CC1} , V _{CC2}	-0.3 V to +6.0 V
SETV, SETD, EN	-0.3 V to +30 V
GATE	-0.3 V to (V _{CCx} + 11 V)
Storage Temperature	-65°C to +150°C
Operating Temperature Range	-40°C to +85°C
Lead Temperature (Soldering 10 sec)	300°C
Junction Temperature	150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 3. Thermal Resistance

Package Type	θ_{JA}	Unit
6-Lead SOT-23	169.5	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADM6819/ADM6820

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

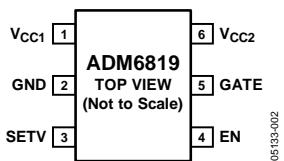
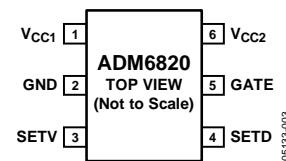


Figure 6. ADM6819 Pin Configuration



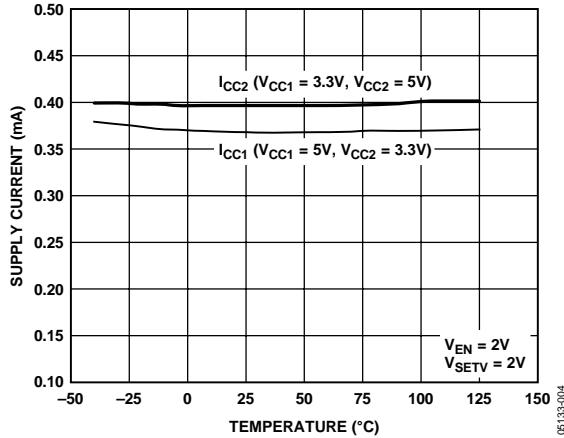
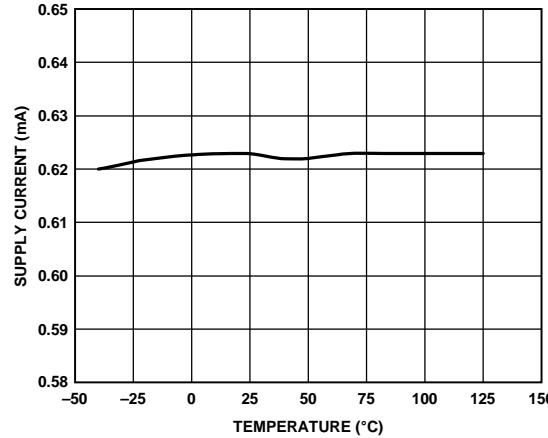
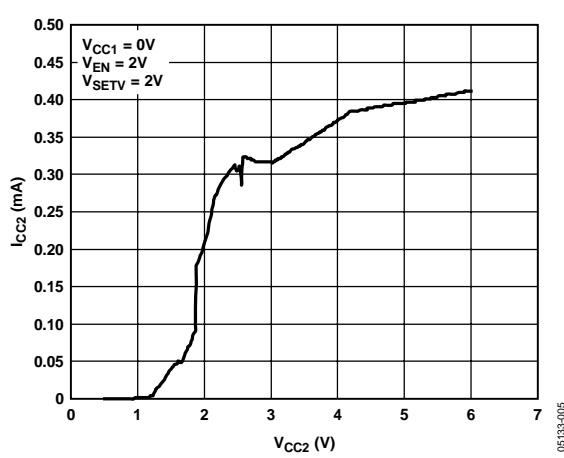
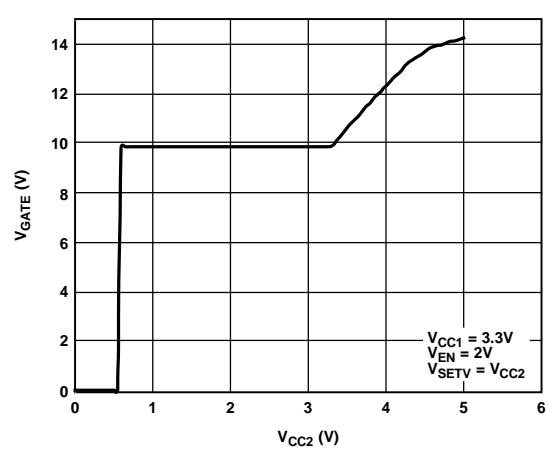

Figure 7. ADM6820 Pin Configuration

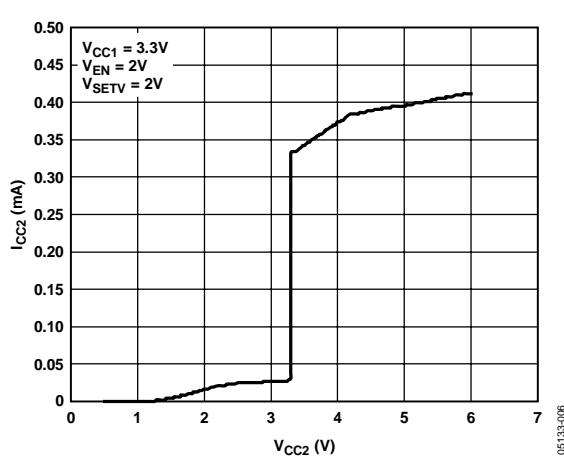
Table 4. Pin Function Descriptions

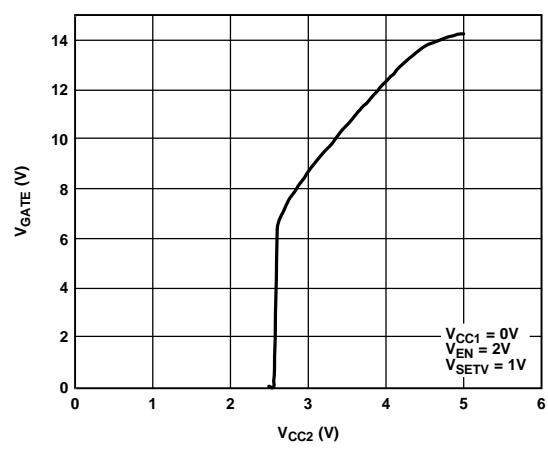

Pin Number		Mnemonic	Description
ADM6819	ADM6820		
1	1	V _{CC1}	Supply Voltage 1. Either V _{CC1} or V _{CC2} must be greater than the UVLO to enable external FET Drive.
2	2	GND	Chip Ground Pin.
3	3	SETV	Sequenced Threshold Set. Connect to an external resistor divider to set the V _{CC1} threshold that enables GATE turn-on. The internal reference is 0.618 V.
4	–	EN	Active-High Enable. GATE drive is enabled t _{DELAY} after EN is driven high. GATE drive is immediately disabled when EN is driven low. Connect this pin to the higher of V _{CC1} or V _{CC2} if not used. EN is internally identical to SETV (0.618 V threshold) and, therefore, can be used as a second supply monitor, enabling two supplies to be validated before sequencing begins.
–	4	SETD	GATE Delay Set Input. Connect an external capacitor from SETD to GND to adjust the delay from SETV > V _{TH} to GATE turn-on. t _{DELAY} (s) = 2.652 × 10 ⁶ × C _{SET} (F).
5	5	GATE	GATE Drive Output. GATE drives an external N-channel FET to connect V _{CC2} to the load. GATE drive enables t _{DELAY} after SETV exceeds V _{TH} and ENABLE is driven high. GATE drive is immediately disabled when SETV drops below V _{TH} or ENABLE is driven low. When enabled, an internal charge pump drives GATE above V _{CCX} to fully enhance the external N-channel FET.
6	6	V _{CC2}	Supply Voltage 2. Either V _{CC1} or V _{CC2} must be greater than the UVLO to enable the external FET Drive.

ADM6819/ADM6820


TYPICAL PERFORMANCE CHARACTERISTICS


05133-004


05133-007


05133-005

05133-008

05133-006

05133-009

ADM6819/ADM6820

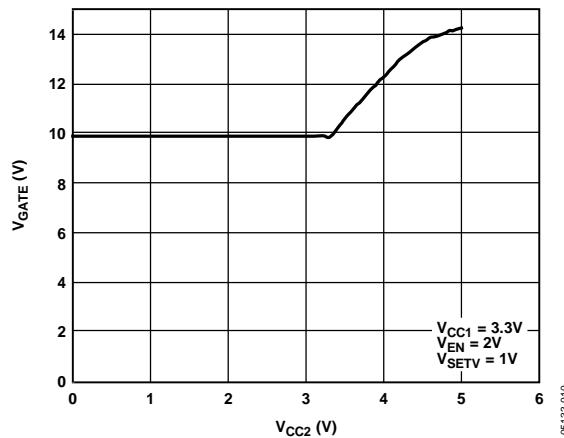


Figure 14. V_{GATE} vs. V_{CC2}

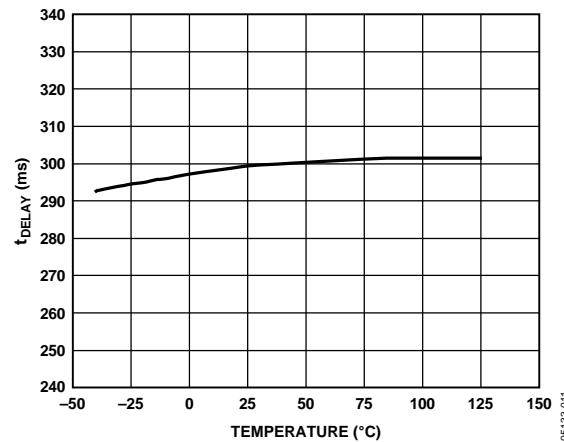


Figure 15. t_{DELAY} vs. Temperature

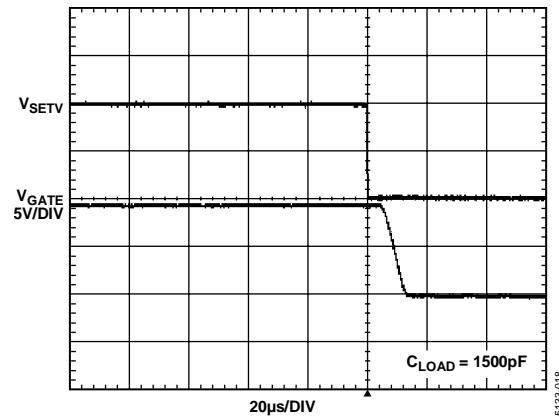


Figure 16. Gate Turn-Off Time

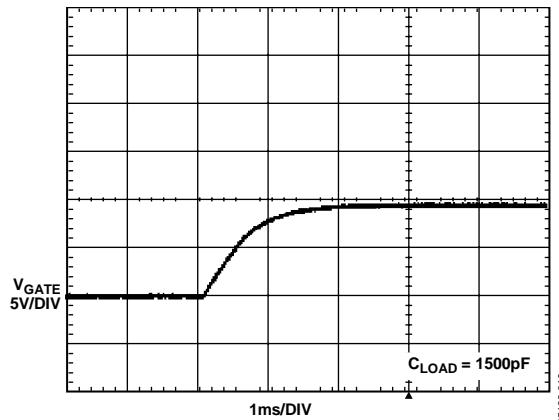


Figure 17. Gate Turn-On Time

ADM6819/ADM6820

THEORY OF OPERATION

The ADM6819/ADM6820 provide local voltage sequencing in multisupply systems. Figure 18 and Figure 19 show typical application diagrams for these devices.

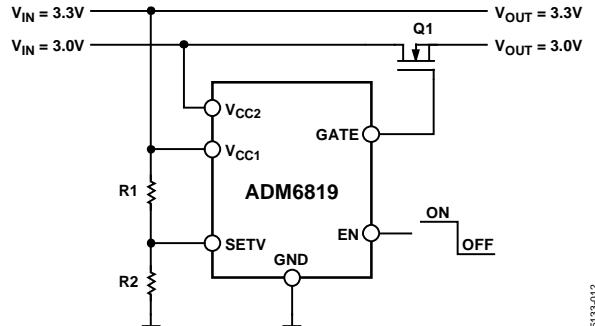


Figure 18. ADM6819 Applications Diagram

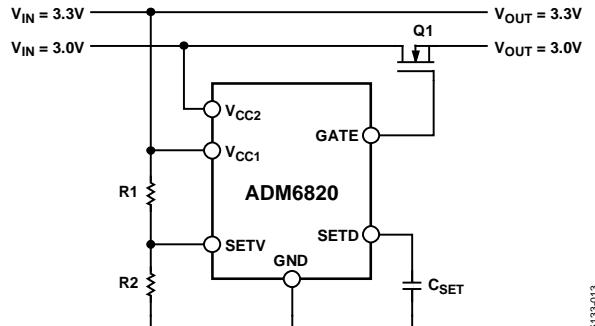


Figure 19. ADM6820 Applications Diagram

When the primary supply is above the desired threshold, the ADM6819/ADM6820 are designed to control the N-channel FET in the secondary power path to enable the secondary supply. The GATE pin is held low while both V_{CC1} and V_{CC2} are below the undervoltage threshold, ensuring that the FET is held off. When V_{CC1} or V_{CC2} is above UVLO and the primary supply is above the desired level dictated by the resistor divider to the VSET pin, the external FET is driven on after the delay has expired. An internal charge pump enhances the external FET. A FET with a low drain-source resistance and low V_{TH} should be chosen to reduce voltage drop across the drain-source when the FET is fully enhanced. Either supply may act as the primary source if V_{CC1} or V_{CC2} is greater than 2.95 V. A decoupling capacitor of typically 100 nF should be used on whichever V_{CC} is the main supply.

SETV PIN

The ADM6819/ADM6820 enable a supply after a monitored supply voltage exceeds a programmed threshold. This threshold is programmed by a $R1/R2$ resistor divider on the SETV pin. Once the voltage on SETV exceeds the 0.618 V threshold, the FET switches on after the delay timer expires. On the ADM6820, this delay is programmable using a capacitor on the SETD pin. On the ADM6819, this delay is fixed at 300 ms and the EN pin must be valid high to begin the timer. The required turn-on voltage is calculated by the following equation:

$$R1 = R2 \left(\frac{VTRIP}{V_{TH}} - 1 \right)$$

where:

$VTRIP$ is the minimum turn-on voltage at the supply being monitored.

V_{TH} = 0.618 V.

High value resistors can be used because the SETV input current is typically 10 nA.

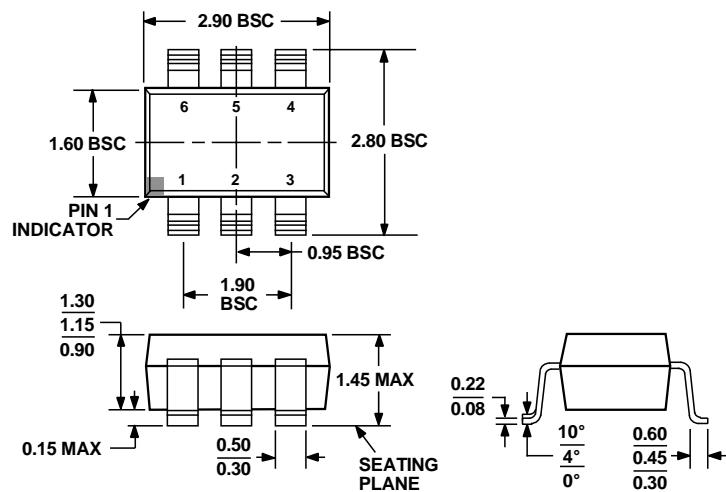
EN PIN

The ADM6819 has an enable (EN) pin connected to the input of a second comparator, which is identical to that on the VSET pin. EN can be used as a digital input provided the signal V_{OL} is below 0.6 V. Alternatively, the enable input can be used to validate a second supply. The fixed 300 ms timer does not begin counting until both SETV and EN are above the threshold. As a result, the output is not enabled until this timer has expired.

GATE PIN

The internal charge pump is capable of driving the gate of an N-channel MOSFET with no external capacitors. This ensures that the MOSFET is enhanced to provide a minimum voltage drop across the MOSFET, thus reducing the voltage drop across the FET. This charge pump is designed to drive the high impedance capacitive load of a MOSFET gate input. The GATE pin should not be resistively loaded because it reduces the gate drive capability. During undervoltage lockout, GATE is held to GND.

SETD PIN


The ADM6820 features a capacitor adjustable sequencing delay. A capacitor connected to the SETD pin determines the length of the sequencing delay. The sequencing delay can be calculated by the following equation:

$$t_{DELAY} (s) = 2.652 \times 10^6 \times CSET$$

The ADM6819 has a fixed 300 ms delay.

ADM6819/ADM6820

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-178-AB

Figure 20. 6-Lead Small Outline Transistor Package [SOT-23]
(RJ-6)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADM6819ARJZ-REEL7 ¹	−40°C to +85°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	M2R
ADM6820ARJZ-REEL7 ¹	−40°C to +85°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	M2S

¹ Z = Pb-free part.

ADM6819/ADM6820

NOTES