

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Texas Instruments TL2575-05IN

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of Texas Instruments: Excellent Integrated System Limited

Datasheet of TL2575-05IN - IC REG BUCK 5V 1A 16DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Technical

Documents

Sample &

Buy

Produc Folder

Texas INSTRUMENTS

TL2575, TL2575HV

SLVS638C -JANUARY 2006-REVISED NOVEMBER 2014

Support &

Community

TL2575, TL2575HV 1-A Simple Step-Down Switching Voltage Regulators

1 **Features**

- Fixed 3.3-V, 5-V, 12-V, and 15-V Options with ±5% Regulation (Max) Over Line, Load, and **Temperature Conditions**
- Adjustable Option With a Range of 1.23 V to 37 V (57 V for HV Version) and ±4% Regulation (Max) Over Line, Load, and Temperature Conditions
- Specified 1-A Output Current
- Wide Input Voltage Range .
 - 4.75 V to 40 V (60 V for HV Version)
- Requires Only Four External Components (Fixed Versions) and Uses Readily Available Standard Inductors
- 52-kHz (Typ) Fixed-Frequency Internal Oscillator
- TTL Shutdown Capability With 50-µA (Typ) Standby Current
- High Efficiency
 - As High as 88% (Typ)
- Thermal Shutdown and Current-Limit Protection with Cycle-by-Cycle Current Limiting

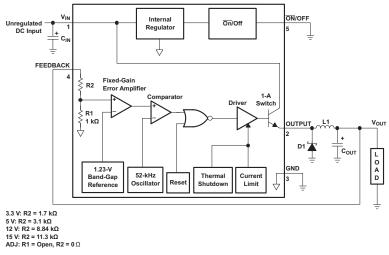
2 Applications

- Simple High-Efficiency Step-Down (Buck) Regulators
- Pre-Regulators for Linear Regulators
- **On-Card Switching Regulators**
- Positive-to-Negative Converters (Buck-Boost)

4 Functional Block Diagram

3 Description

🧷 Tools &


Software

The TL2575 and TL2575HV devices provide all the active functions needed for a step-down (buck) switching regulator in an integrated circuit. They require four to six external components for operation. They accept a wide input-voltage range of up to 60 V (TL2575-HV) and are available in fixed output voltages of 3.3 V, 5 V, 12 V, 15 V, or an adjustableoutput version. The TL2575 and TL2575HV devices have an integrated switch capable of delivering 1 A of load current, with excellent line and load regulation. The device also offers internal frequency compensation, a fixed-frequency oscillator, cycle-bycycle current limiting, and thermal shutdown. In addition, a manual shutdown is available via an external ON/OFF pin.

Device	Inform	hation ⁽¹⁾
--------	--------	-----------------------

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	PDIP (16)	19.31 mm x 6.35 mm
TL2575, TL2575HV	TO-263 (5)	10.16 mm x 8.93 mm
	TO-220 (5)	10.16 mm x 8.82 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Pin numbers are for the KTT (TO-263) package.

SLVS638C – JANUARY 2006 – REVISED NOVEMBER 2014

Table of Contents

1	Feat	tures 1
2	Арр	lications 1
3	Des	cription 1
4	Fun	ctional Block Diagram1
5	Rev	ision History 2
6	Pin	Configuration and Functions
7	Spe	cifications 4
	7.1	Absolute Maximum Ratings 4
	7.2	Handling Ratings 4
	7.3	Recommended Operating Conditions 4
	7.4	Thermal Information 4
	7.5	Electrical Characteristics — TL2575 5
	7.6	Electrical Characteristics — TL2575HV 6
	7.7	Typical Characteristics 7
8	Para	ameter Measurement Information 10
	8.1	Test Circuits 10
9	Deta	ailed Description 11

5 Revision History

Changes from Revision B (January 2007) to Revision C

•	Updated document to new TI data sheet format	. 1
•	Deleted Ordering Information table.	. 1
•	Added Pin Functions table	. 3
•	Added Handling Ratings table.	. 4
•	Changed Thermal Information table	. 4
•	Added Detailed Description section.	11
	Added Application and Implementation section	
•	Added Power Supply Recommendations and Layout sections	20

14

2

Texas Instruments

 9.1
 Overview
 11

 9.2
 Functional Block Diagram
 11

 9.3
 Feature Description
 12

 9.4
 Device Functional Modes
 12

 10
 Application and Implementation
 13

 10.1
 Typical Application
 13

 11
 Power Supply Recommendations
 20

 12
 Layout
 20

 12.1
 Layout Guidelines
 20

 12.2
 Layout Example
 20

 13
 Device and Documentation Support
 21

 13.1
 Related Links
 21

 13.2
 Trademarks
 21

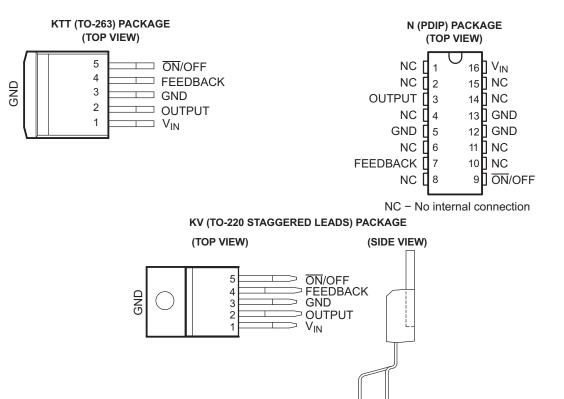
 13.3
 Electrostatic Discharge Caution
 21

 13.4
 Glossary
 21

Mechanical, Packaging, and Orderable

Information 22

www.ti.com


Page

TL2575, TL2575HV

SLVS638C - JANUARY 2006 - REVISED NOVEMBER 2014

6 Pin Configuration and Functions

Pins 1, 3, 5 Pins 2, 4

Pin Functions

PIN							
NAME	КТТ ТО-263	N PDIP	KV TO-220	TYPE	DESCRIPTION		
FEEDBACK	4	7	4	Input	Feedback pin. Connect to V _{OUT} for fixed-voltage TL2575. Connect between two adjustment resistors for adjustable-voltage TL2575.		
		5					
GND 3		12	3	—	Ground		
		13					
		1					
		2					
		4					
		6					
NC	—	8	—	—	No connect		
		10					
		11					
		14					
		15					
ON/OFF	5	9	5	Input	Manual shutdown pin		
OUTPUT	2	3	2	Output	Output pin		
V _{IN}	1	16	1	Input	Supply input pin		

Copyright © 2006–2014, Texas Instruments Incorporated

Texas Instruments

TL2575, TL2575HV

SLVS638C – JANUARY 2006 – REVISED NOVEMBER 2014

www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{IN}	Supply voltage			60	V
	Supply voltage	TL2575		42	v
	ON/OFF input voltage range		-0.3	V_{IN}	V
	Output voltage to GND (steady state)			-1	V
T_{J}	Maximum junction temperature			150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	-65	150	°C	
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	0	2000	M
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	0	1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{IN} Supply voltage	TL2575HV	4.75	60	V	
	Supply voltage	TL2575	4.75	40	v
TJ	Operating virtual junction temperature		-40	125	°C

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾		КТТ	KV	N	
		5 PINS	5 PINS	16 PINS	UNIT
R _{θJA}	Junction-to-ambient thermal resistance	26.5	26.5	67	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	31.8	31.8	57	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	0.38	0.38	—	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of TL2575-05IN - IC REG BUCK 5V 1A 16DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.ti.com

TL2575, TL2575HV

SLVS638C - JANUARY 2006 - REVISED NOVEMBER 2014

7.5 Electrical Characteristics — TL2575

 I_{LOAD} = 200 mA, V_{IN} = 12 V for 3.3-V, 5-V, and adjustable versions, V_{IN} = 25 V for 12-V version, V_{IN} = 30 V for 15-V version (unless otherwise noted) (see Figure 11)

				_	TL2575			
	PARAMETER		TEST CONDITIONS	Tj	MIN	TYP	MAX	UNIT
			V _{IN} = 12 V, I _{LOAD} = 0.2 A	25°C	3.234	3.3	3.366	
		TL2575-33	$4.75 \text{ V} \le \text{V}_{IN} \le 40 \text{ V},$	25°C	3.168	3.3	3.432	
			$0.2 \text{ A} \leq \text{I}_{\text{LOAD}} \leq 1 \text{ A}$	Full range	3.135		3.465	
			V _{IN} = 12 V, I _{LOAD} = 0.2 A	25°C	4.9	5	5.1	
		TL2575-05	8 V ≤ V _{IN} ≤ 40 V,	25°C	4.8	5	5.2	
	Outrast scalte as		$0.2 \text{ A} \leq I_{\text{LOAD}} \leq 1 \text{ A}$	Full range	4.75		5.25	V
V _{OUT}	Output voltage		V _{IN} = 25 V, I _{LOAD} = 0.2 A	25°C	11.76	12	12.24	V
		TL2575-12	15 V ≤ V _{IN} ≤ 40 V,	25°C	11.52	12	12.48	
			$0.2 \text{ A} \leq I_{\text{LOAD}} \leq 1 \text{ A}$	Full range	11.4		12.6	
			$V_{IN} = 30 \text{ V}, \text{ I}_{LOAD} = 0.2 \text{ A}$	25°C	14.7	15	15.3	
		TL2575-15	18 V ≤ V _{IN} ≤ 40 V,	25°C	14.4	15	15.6	
		$0.2 \text{ A} \le I_{\text{LOAD}} \le 1 \text{ A}$	Full range	14.25	15	15.75		
			$V_{\text{IN}} = 12 \text{ V}, V_{\text{OUT}} = 5 \text{ V},$ $I_{\text{LOAD}} = 0.2 \text{ A}$	25°C	1.217	1.23	1.243	
	Feedback voltage	TL2575-ADJ	8 V \leq V _{IN} \leq 40 V, V _{OUT} = 5 V, 0.2 A \leq I _{LOAD} \leq 1 A	25°C	1.193	1.23	1.267	V
				Full range	1.18		1.28	
		TL2575-33	$V_{IN} = 12 \text{ V}, \text{ I}_{LOAD} = 1 \text{ A}$	25°C		75%		
		TL2575-05	$V_{IN} = 12 \text{ V}, \text{ I}_{LOAD} = 1 \text{ A}$			77%		
η	Efficiency	TL2575-12	$V_{IN} = 15 \text{ V}, \text{ I}_{LOAD} = 1 \text{ A}$			88%		
.1		TL2575-15	$V_{IN} = 18 \text{ V}, \text{ I}_{LOAD} = 1 \text{ A}$			88%		
		TL2575-ADJ	$V_{IN} = 12 \text{ V}, V_{OUT} = 5 \text{ V},$ $I_{LOAD} = 1 \text{ A}$			77%		
I _{IB}	Feedback bias curre	ont	V _{OUT} = 5 V (ADJ version only)	25°C		50	100	nA
чв	Teeuback blas cuit	ent		Full range			500	
f _o	Oscillator frequency	,(1)		25°C	47	52	58	kHz
'0	Oscillator frequency			Full range	42		63	KI IZ
V _{SAT}	Saturation voltage		$I_{OUT} = 1 A^{(2)}$	25°C		0.9	1.2	V
V SAT	Saturation voltage			Full range			1.4	v
	Maximum duty cycle	e ⁽³⁾		25°C	93%	98%		
	Switch peak current	+(1)(2)		25°C	1.7	2.8	3.6	А
I _{CL}	Switch peak current	. ,		Full range	1.3		4	A
L	Output leakage curr	rent	$V_{IN} = 40^{(4)}$, Output = 0 V	25°C			2	mA
IL		ent	$V_{IN} = 40^{(4)}$, Output = -1 V	20 0		7.5	30	ША
l _Q	Quiescent current ⁽⁴)		25°C		5	10	mA
I _{STBY}	Standby quiescent	current	OFF ($\overline{ON}/OFF = 5 V$)	25°C		50	200	μA

(1) In the event of an output short or an overload condition, self-protection features lower the oscillator frequency to ≈18 kHz and the minimum duty cycle from 5% to ≈2%. The resulting output voltage drops to ≈40% of its nominal value, causing the average power dissipated by the IC to lower.

(2) Output is not connected to diode, inductor, or capacitor. Output is sourcing current.

(3) FEEDBACK is disconnected from output and connected to 0 V.

(4) To force the output transistor off, FEEDBACK is disconnected from output and connected to 12 V for the adjustable, 3.3-V, and 5-V versions and to 25 V for the 12-V and 15-V versions.

SLVS638C – JANUARY 2006 – REVISED NOVEMBER 2014

www.ti.com

Electrical Characteristics — TL2575 (continued)

 I_{LOAD} = 200 mA, V_{IN} = 12 V for 3.3-V, 5-V, and adjustable versions, V_{IN} = 25 V for 12-V version, V_{IN} = 30 V for 15-V version (unless otherwise noted) (see Figure 11)

PARAMETER		TEST CONDITIONS	-	٦	UNIT			
	PARAMETER	TEST CONDITIONS	TJ	MIN	TYP	MAX		
V	V _{IH} ON/OFF high-level logic input voltage		25°C	2.2	1.4		V	
۷H		OFF (V _{OUT} = 0 V)	Full range	2.4			V	
V	ON/OFF low-level logic		25°C		1.2	1	V	
VII	input voltage	ON (V _{OUT} = nominal voltage)	Full range			0.8	V	
$I_{\rm IH}$	ON/OFF high-level input current	OFF $(\overline{ON}/OFF = 5 V)$	25°C		12	30	μA	
$I_{\rm IL}$	ON/OFF low-level input current	ON $(\overline{ON}/OFF = 0 V)$	25°C		0	10	μA	

7.6 Electrical Characteristics — TL2575HV

 I_{LOAD} = 200 mA, V_{IN} = 12 V for 3.3-V, 5-V, and adjustable versions, V_{IN} = 25 V for 12-V version, V_{IN} = 30 V for 15-V version (unless otherwise noted) (see Figure 11)

	PARAMETER			-	TL2575HV			UNIT
	PARAMETER	C	TEST CONDITIONS	Tj	MIN	TYP	MAX	UNIT
			V _{IN} = 12 V, I _{LOAD} = 0.2 A	25°C	3.234	3.3	3.366	
		TL2575HV-33	4.75 V ≤ V _{IN} ≤ 60 V,	25°C	3.168	3.3	3.450	
			$0.2 \text{ A} \leq \text{I}_{\text{LOAD}} \leq 1 \text{ A}$	Full range	3.135		3.482	
			V _{IN} = 12 V, I _{LOAD} = 0.2 A	25°C	4.9	5	5.1	
		TL2575HV-05	8 V ≤ V _{IN} ≤ 60 V,	25°C	4.8	5	5.225	
V			$0.2 \text{ A} \leq I_{\text{LOAD}} \leq 1 \text{ A}$	Full range	4.75		5.275	V
V _{OUT}	Output voltage		$V_{IN} = 25 \text{ V}, \text{ I}_{LOAD} = 0.2 \text{ A}$	25°C	11.76	12	12.24	v
		TL2575HV-12	15 V ≤ V _{IN} ≤ 60 V,	25°C	11.52	12	12.54	
			$0.2 \text{ A} \leq \text{I}_{\text{LOAD}} \leq 1 \text{ A}$	Full range	11.4		12.66	
			$V_{IN} = 30 \text{ V}, \text{ I}_{LOAD} = 0.2 \text{ A}$	25°C	14.7	15	15.3	
	TL2575HV-15	$18 \text{ V} \leq \text{V}_{\text{IN}} \leq 60 \text{ V},$ $0.2 \text{ A} \leq \text{I}_{\text{LOAD}} \leq 1 \text{ A}$	25°C	14.4	15	15.68		
			Full range	14.25	15	15.83		
			$V_{IN} = 12 \text{ V}, V_{OUT} = 5 \text{ V},$ $I_{LOAD} = 0.2 \text{ A}$	25°C	1.217	1.23	1.243	
	Feedback voltage	TL2575HV-ADJ	$8 \text{ V} \le \text{V}_{\text{IN}} \le 60 \text{ V}, \text{ V}_{\text{OUT}} = 5 \text{ V},$	25°C	1.193	1.23	1.273	V
			$0.2 \text{ A} \leq I_{\text{LOAD}} \leq 1 \text{ A}$	Full range	1.180		1.286	
		TL2575HV-33	V _{IN} = 12 V, I _{LOAD} = 1 A			75%		
		TL2575HV-05	$V_{IN} = 12 \text{ V}, \text{ I}_{LOAD} = 1 \text{ A}$			77%		
η	Efficiency	TL2575HV-12	$V_{IN} = 15 \text{ V}, \text{ I}_{LOAD} = 1 \text{ A}$	25°C		88%		
'1	Emoleney	TL2575HV-15	V _{IN} = 18 V, I _{LOAD} = 1 A	200		88%		
		TL2575HV-ADJ	$V_{IN} = 12 \text{ V}, V_{OUT} = 5 \text{ V},$ $I_{LOAD} = 1 \text{ A}$			77%		
	Foodbook biog over			25°C		50	100	nA
I _{IB}	Feedback bias current		$V_{OUT} = 5 V (ADJ version only)$	Full range			500	nA
4		.(1)		25°C	47	52	58	kHz
f _o Oscillator frequency ⁽¹⁾			Full range	42		63	KITZ	
V			$I_{OUT} = 1 A^{(2)}$	25°C		0.9	1.2	V
V _{SAT}	Saturation voltage		IOUT = I A' '	Full range			1.4	v
	Maximum duty cycl	ə ⁽³⁾		25°C	93%	98%		

(1) In the event of an output short or an overload condition, self-protection features lower the oscillator frequency to ≈18 kHz and the minimum duty cycle from 5% to ≈2%. The resulting output voltage drops to ≈40% of its nominal value, causing the average power dissipated by the IC to lower.

(2) Output is not connected to diode, inductor, or capacitor. Output is sourcing current.

(3) FEEDBACK is disconnected from output and connected to 0 V.

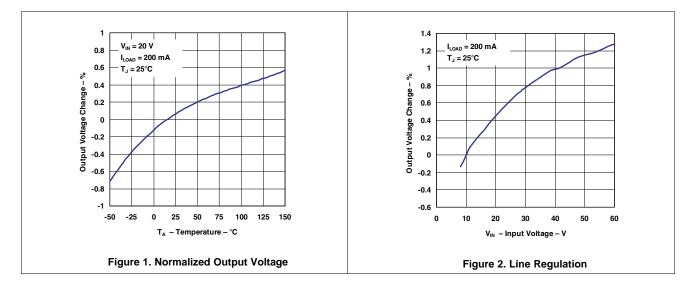
6 Submit Documentation Feedback

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of TL2575-05IN - IC REG BUCK 5V 1A 16DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.ti.com

TL2575, TL2575HV

SLVS638C - JANUARY 2006-REVISED NOVEMBER 2014


Electrical Characteristics — TL2575HV (continued)

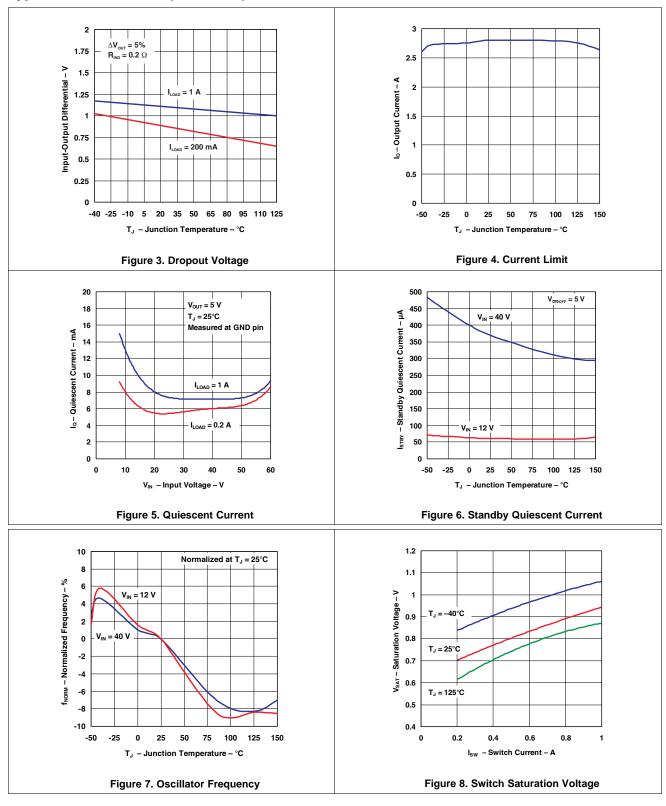
 I_{LOAD} = 200 mA, V_{IN} = 12 V for 3.3-V, 5-V, and adjustable versions, V_{IN} = 25 V for 12-V version, V_{IN} = 30 V for 15-V version (unless otherwise noted) (see Figure 11)

			-	TL	.2575HV		UNIT	
	PARAMETER	TEST CONDITIONS	Tj	MIN	TYP	MAX	UNIT	
	Switch peak current ⁽¹⁾ ⁽²⁾		25°C	1.7	2.8	3.6	А	
ICL	Switch peak current () ()		Full range	1.3		4	~	
		$V_{IN} = 60^{(4)}$, Output = 0 V	25°C			2		
L	Output leakage current	$V_{IN} = 60^{(4)}$, Output = -1 V	25'0		7.5	30	mA	
I _Q	Quiescent current ⁽⁴⁾		25°C		5	10	mA	
I _{STBY}	Standby quiescent current	OFF ($\overline{ON}/OFF = 5 V$)	25°C		50	200	μA	
V	ON/OFF high-level logic		25°C	2.2	1.4		V	
VIH	input voltage	OFF (V _{OUT} = 0 V)	Full range	2.4			v	
N/			25°C		1.2	1		
V _{IL} ON/OFF low-level logic input voltage		ON (V _{OUT} = nominal voltage)	Full range		0.8		V	
I _{IH}	ON/OFF high-level input current	OFF $(\overline{ON}/OFF = 5 V)$	25%		12	30	μA	
IIL	ON/OFF low-level input current	$ON (\overline{ON}/OFF = 0 V)$	25°C		0	10	μA	

(4) To force the output transistor off, FEEDBACK is disconnected from output and connected to 12 V for the adjustable, 3.3-V, and 5-V versions and to 25 V for the 12-V and 15-V versions.

7.7 Typical Characteristics

7



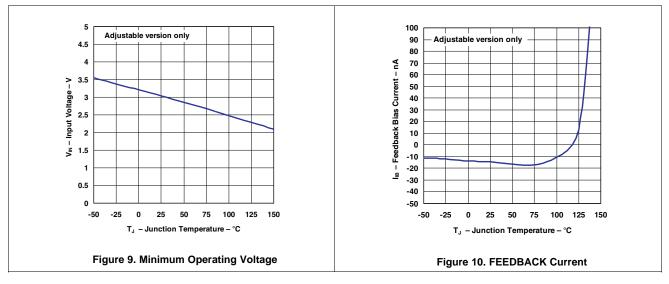
SLVS638C – JANUARY 2006 – REVISED NOVEMBER 2014

www.ti.com

Typical Characteristics (continued)

Copyright © 2006–2014, Texas Instruments Incorporated

8


Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of TL2575-05IN - IC REG BUCK 5V 1A 16DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

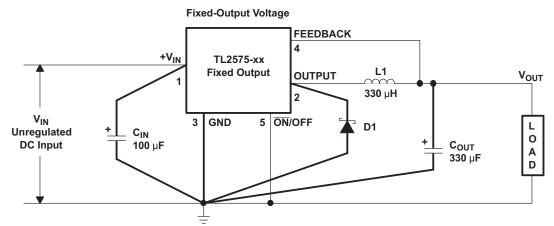
www.ti.com

TL2575, TL2575HV

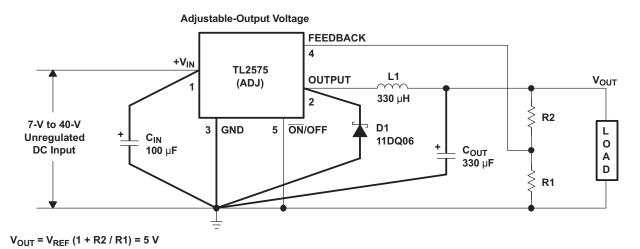
SLVS638C - JANUARY 2006 - REVISED NOVEMBER 2014

Typical Characteristics (continued)

9


SLVS638C-JANUARY 2006-REVISED NOVEMBER 2014

Texas Instruments


www.ti.com

8 Parameter Measurement Information

8.1 Test Circuits

 $\begin{array}{l} C_{IN} = 100 \ \mu\text{F}, Aluminum \ Electrolytic \\ C_{OUT} = 330 \ \mu\text{F}, Aluminum \ Electrolytic \\ D1 = Schottky \\ L1 = 330 \ \mu\text{H} \ (for \ 5\text{-V} \ V_{IN} \ with \ 3.3\text{-V} \ V_{OUT}, \ use \ 100 \ \mu\text{H}) \end{array}$

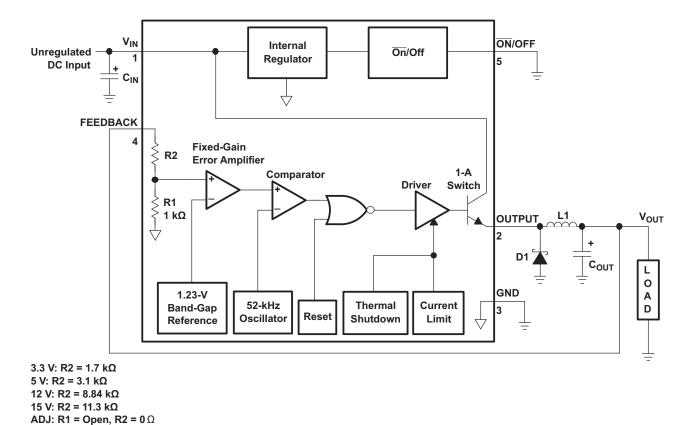
V_{REF} = 1.23 V R1 = 2 kΩ

R2 = $6.12 \text{ k}\Omega$

Pin numbers are for the KTT (TO-263) package.

Figure 11. Test Circuits and Layout Guidelines

TL2575, TL2575HV SLVS638C – JANUARY 2006 – REVISED NOVEMBER 2014


9 Detailed Description

9.1 Overview

The TL2575 and TL2575HV devices greatly simplify the design of switching power supplies by conveniently providing all the active functions needed for a step-down (buck) switching regulator in an integrated circuit. Accepting a wide input-voltage range of up to 60 V (TL2575-HV) and available in fixed output voltages of 3.3 V, 5 V, 12 V, 15 V, or an adjustable-output version, the TL2575 and TL2575HV devices have an integrated switch capable of delivering 1 A of load current, with excellent line and load regulation. The device also offers internal frequency compensation, a fixed-frequency oscillator, cycle-by-cycle current limiting, and thermal shutdown. In addition, a manual shutdown is available via an external ON/OFF pin.

The TL2575 and TL2575HV devices represent superior alternatives to popular three-terminal linear regulators. Due to their high efficiency, the devices significantly reduce the size of the heatsink and, in many cases, no heatsink is required. Optimized for use with standard series of inductors available from several different manufacturers, the TL2575 and TL2575HV greatly simplify the design of switch-mode power supplies by requiring a minimal addition of only four to six external components for operation.

The TL2575 and TL2575HV devices are characterized for operation over the virtual junction temperature range of -40°C to 125°C.

9.2 Functional Block Diagram

Copyright © 2006–2014, Texas Instruments Incorporated

Pin numbers are for the KTT (TO-263) package.

SLVS638C – JANUARY 2006 – REVISED NOVEMBER 2014

www.ti.com

9.3 Feature Description

9.3.1 Feedback Connection

For fixed-voltage options, FEEDBACK must be wired to V_{OUT} . For the adjustable version, FEEDBACK must be connected between the two programming resistors. Again, both of these resistors should be in close proximity to the regulator, and each should be less than 100 k Ω to minimize noise pickup.

9.3.2 ON/OFF Input

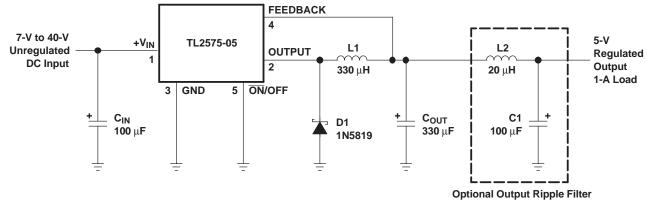
 \overline{ON}/OFF should be grounded or be a low-level TTL voltage (typically < 1.6 V) for normal operation. To shut down the TL2575 or TL2575HV devices and place in standby mode, a high-level TTL or CMOS voltage should be supplied to this pin. \overline{ON}/OFF should not be left open and safely can be pulled up to V_{IN} with or without a pullup resistor.

9.4 Device Functional Modes

9.4.1 Standby Mode

When a high-level TTL or CMOS voltage is applied to the \overline{ON}/OFF pin, the device enters standby mode, drawing a typical quiescent current of 50 μ A.

TL2575, TL2575HV


SLVS638C-JANUARY 2006-REVISED NOVEMBER 2014

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Typical Application

Pin numbers are for the KTT (TO-263) package.

10.1.1 Design Requirements

- Input capacitor for stability
- Output capacitor for loop stability and ripple filtering
- Catch diode to filter noise
- Output inductor depending on the mode of operation

10.1.2 Detailed Design Procedure

10.1.2.1 Input Capacitor (C_{IN})

For stability concerns, an input bypass capacitor (electrolytic, $C_{IN} \ge 47 \mu F$) needs to be located as close as possible to the regulator. For operating temperatures below $-25^{\circ}C$, C_{IN} may need to be larger in value. In addition, since most electrolytic capacitors have decreasing capacitances and increasing ESR as temperature drops, adding a ceramic or solid tantalum capacitor in parallel increases the stability in cold temperatures.

To extend the capacitor operating lifetime, the capacitor RMS ripple current rating should be calculated as shown in Equation 1.

 $I_{C,RMS} > 1.2 (t_{on} / T) I_{LOAD}$

where

t_{on}/T = V_{OUT}/V_{IN} {buck regulator}

• $t_{on}/T = |V_{OUT}|/(|V_{OUT}| + V_{IN})$ {buck-boost regulator}

10.1.2.2 Output Capacitor (C_{OUT})

For both loop stability and filtering of ripple voltage, an output capacitor is required, again in close proximity to the regulator. For best performance, low-ESR aluminum electrolytics are recommended, although standard aluminum electrolytics may be adequate for some applications as shown in Equation 2.

Output ripple voltage = (ESR of C_{OUT}) × (inductor ripple current)

Copyright © 2006–2014, Texas Instruments Incorporated

(1)

SLVS638C – JANUARY 2006 – REVISED NOVEMBER 2014

www.ti.com

Typical Application (continued)

Output ripple of 50 mV to 150 mV typically can be achieved with capacitor values of 220 μ F to 680 μ F. Larger C_{OUT} can reduce the ripple 20 mV to 50 mV peak to peak. To improve further on output ripple, paralleling of standard electrolytic capacitors may be used. Alternatively, higher-grade capacitors such as high frequency, low inductance, or low ESR can be used.

The following should be taken into account when selecting C_{OUT}:

- At cold temperatures, the ESR of the electrolytic capacitors can rise dramatically (typically 3x nominal value at -25°C). Because solid-tantalum capacitors have significantly better ESR specifications at cold temperatures, they should be used at operating temperature lower than -25°C. As an alternative, tantalums can also be paralleled to aluminum electrolytics and should contribute 10% to 20% to the total capacitance.
- Low ESR for C_{OUT} is desirable for low output ripple. However, the ESR should be greater than 0.05 Ω to avoid the possibility of regulator instability. Hence, a sole tantalum capacitor used for C_{OUT} is most susceptible to this occurrence.
- The ripple current rating of the capacitor, 52 kHz, should be at least 50% higher than the peak-to-peak inductor ripple current.

10.1.2.3 Catch Diode

As with other external components, the catch diode should be placed close to the output to minimize unwanted noise. Schottky diodes have fast switching speeds and low forward voltage drops and, thus, offer the best performance, especially for switching regulators with low output voltages ($V_{OUT} < 5$ V). If a high-efficiency, fast-recovery, or ultra-fast-recovery diode is used in place of a Schottky, it should have a soft recovery (versus abrupt turn-off characteristics) to avoid the chance of causing instability and EMI. Standard 50- to 60-Hz diodes, such as the 1N4001 or 1N5400 series, are not suitable.

10.1.2.4 Inductor

Proper inductor selection is key to the performance-switching power-supply designs. One important factor to consider is whether the regulator is used in continuous mode (inductor current flows continuously and never drops to zero) or in discontinuous mode (inductor current goes to zero during the normal switching cycle). Each mode has distinctively different operating characteristics and, therefore, can affect the regulator performance and requirements. In many applications, the continuous mode is the preferred mode of operation, since it offers greater output power with lower peak currents, and also can result in lower output ripple voltage. The advantages of continuous mode of operation come at the expense of a larger inductor required to keep inductor current continuous, especially at low output currents and/or high input voltages.

The TL2575 and TL2575HV devices can operate in either continuous or discontinuous mode. With heavy load currents, the inductor current flows continuously and the regulator operates in continuous mode. Under light load, the inductor fully discharges and the regulator is forced into the discontinuous mode of operation. For light loads (approximately 200 mA or less), this discontinuous mode of operation is perfectly acceptable and may be desirable solely to keep the inductor value and size small. Any buck regulator eventually operates in discontinuous mode when the load current is light enough.

The type of inductor chosen can have advantages and disadvantages. If high performance or high quality is a concern, then more-expensive toroid core inductors are the best choice, as the magnetic flux is contained completely within the core, resulting in less EMI and noise in nearby sensitive circuits. Inexpensive bobbin core inductors, however, generate more EMI as the open core does not confine the flux within the core. Multiple switching regulators located in proximity to each other are particularly susceptible to mutual coupling of magnetic fluxes from each other's open cores. In these situations, closed magnetic structures (such as a toroid, pot core, or E-core) are more appropriate.

Regardless of the type and value of inductor used, the inductor never should carry more than its rated current. Doing so may cause the inductor to saturate, in which case the inductance quickly drops, and the inductor looks like a low-value resistor (from the dc resistance of the windings). As a result, switching current rises dramatically (until limited by the current-by-current limiting feature of the TL2575 and TL2575HV devices) and can result in overheating of the inductor and the IC itself.

NOTE Different types of inductors have different saturation characteristics.

TL2575, TL2575HV

SLVS638C - JANUARY 2006 - REVISED NOVEMBER 2014

Typical Application (continued)

10.1.2.5 Output Voltage Ripple and Transients

As with any switching power supply, the output of the TL2575 and TL2575HV devices have a sawtooth ripple voltage at the switching frequency. Typically about 1% of the output voltage, this ripple is due mainly to the inductor sawtooth ripple current and the ESR of the output capacitor (see Output Capacitor (C_{OUT})). Furthermore, the output also may contain small voltage spikes at the peaks of the sawtooth waveform. This is due to the fast switching of the output switch and the parasitic inductance of C_{OUT} . These voltage spikes can be minimized through the use of low-inductance capacitors.

There are several ways to reduce the output ripple voltage: a larger inductor, a larger C_{OUT} , or both. Another method is to use a small LC filter (20 μ H and 100 μ F) at the output. This filter can reduce the output ripple voltage by a factor of 10 (see Figure 11).

10.1.2.6 Grounding

The power and ground connections of the TL2575 and TL2575HV devices must be low impedance to help maintain output stability. For the 5-pin packages, both pin 3 and tab are ground, and either connection can be used as they are both part of the same lead frame. With the 16-pin package, all the ground pins (including signal and power grounds) should be soldered directly to wide PCB copper traces to ensure low-inductance connections and good thermal dissipation.

10.1.2.7 Reverse Current Considerations

There is an internal diode from the output to VIN. Therefore, the device does not protect against reverse current and care must be taken to limit current in this scenario.

10.1.2.8	Buck	Regulator	Desian	Procedure
10.1.2.0	Duon	negulator	Design	1100000010

PROCEDURE (Fixed Output)	EXAMPLE (Fixed Output)				
Known:	Known:				
V _{OUT} = 3.3 V, 5 V, 12 V, or 15 V	V _{OUT} = 5 V				
V _{IN(Max)} = Maximum input voltage	V _{IN(Max)} = 20 V				
I _{LOAD(Max)} = Maximum load current	I _{LOAD(Max)} = 1 A				
1. Inductor Selection (L1)	1. Inductor Selection (L1)				
A. From Figure 13 through Figure 16, select the appropriate inductor code based on the intersection of $V_{\rm IN(Max)}$ and $I_{\rm LOAD(Max)}.$	A. From Figure 14 (TL2575-05), the intersection of 20-V line and 1-A line gives an inductor code of L330.				
B. The inductor chosen should be rated for operation at 52-kHz and	B. L330 → L1 = 330 µH				
have a current rating of at least $1.15 \times I_{LOAD(Max)}$ to allow for the	Choose from:				
ripple current. The actual peak current in L1 (in normal operation) can be calculated as follows:	34042 (Schott)				
$I_{L1(pk)} = I_{LOAD(Max)} + (V_{IN} - V_{OUT}) \times t_{on} / 2L1$	PE-52627 (Pulse Engineering)				
Where $t_{on} = V_{OUT} / V_{IN} \times (1 / f_{osc})$	RL1952 (Renco)				
2. Output Capacitor Selection (C _{OUT})	2. Output Capacitor Selection (C _{OUT})				
A. The TL2575 control loop has a two-pole two-zero frequency response. The dominant pole-zero pair is established by C _{OUT} and L1. To meet stability requirements while maintaining an acceptable output ripple voltage (V _{ripple} \neq 0.01 × V _{OUT}), the recommended range for a standard aluminum electrolytic C _{OUT} is between 100 µF and 470 µF.	A. $C_{OUT} = 100-\mu F$ to 470- μF , standard aluminum electrolytic				
B. C_{OUT} should have a voltage rating of at least 1.5 x V _{OUT} . But if a low output ripple voltage is desired, choose capacitors with a higher-voltage ratings than the minimum required, due to their typically lower ESRs.	B. Although a C _{OUT} rated at 8 V is sufficient for V _{OUT} = 5 V, a higher-voltage capacitor is chosen for its typically lower ESR (and hence lower output ripple voltage) \rightarrow Capacitor voltage rating = 20 V.				
3. Catch Diode Selection (D1) (see Table 1)	3. Catch Diode Selection (D1) (see Table 1)				

SLVS638C – JANUARY 2006 – REVISED NOVEMBER 2014

www.ti.com

Typical Application (continued)

PROCEDURE (Fixed Output)	EXAMPLE (Fixed Output)
A. In normal operation, the catch diode requires a current rating of at least 1.2 × $I_{LOAD(Max)}$. For the most robust design, D1 should be rated to handle a current equal to the TL2575 maximum switch peak current; this represents the worst-case scenario of a continuous short at V _{OUT} .	°
B. The diode requires a reverse voltage rating of at least 1.25 × $V_{IN(Max)}$.	B. Pick 30-V rated Schottky diode (1N5821, MBR330, 31QD03, or SR303) or 100-V rated Fast Recovery diode (31DF1, MURD310, or HER302).
4. Input Capacitor (C _{IN})	4. Input Capacitor (C _{IN})
An aluminum electrolytic or tantalum capacitor is needed for input bypassing. Locate $C_{\rm IN}$ as close to the $V_{\rm IN}$ and GND pins as possible.	C_{IN} = 100 µF, 25 V, aluminum electrolytic

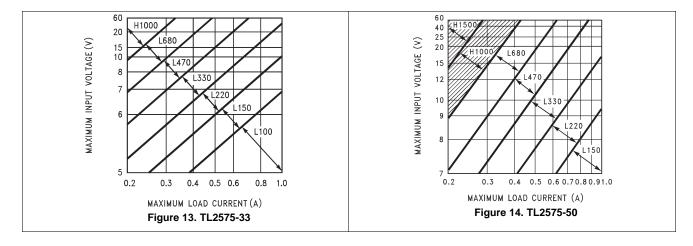
PROCEDURE (Adjustable Output)	EXAMPLE (Adjustable Output)
	Known: $V_{OUT} = 10 V$ $V_{IN(Max)} = 25 V$ $I_{LOAD(Max)} = 1 A$ 1. Programming Output Voltage (Selecting R1 and R2) Select R1 = 1 k Ω R2 = 1 (10 / 1.23 - 1) = 7.13 k Ω Select R2 = 7.15 k Ω (closest 1% value)
2. Inductor Selection (L1)	2. Inductor Selection (L1)
A. Calculate the "set" volts-second (E × T) across L1: $E \times T = (V_{IN} - V_{OUT}) \times t_{on}$ $E \times T = (V_{IN} - V_{OUT}) \times (V_{OUT} / V_{IN}) \times \{1000 / f_{osc}(in kHz)\} [V \times \mu s]$ NOTE: Along with I _{LOAD} , the "set" volts-second (E × T) constant establishes the minimum energy storage requirement for the inductor.	A. Calculate the "set" volts-second (E × T) across L1: E × T = (25 – 10) × (10 / 25) × (1000 / 52) [V × μs] E × T = 115 V × μs
B. Using Figure 17, select the appropriate inductor code based on the intersection of E x T value and $I_{LOAD(Max)}$.	B. Using Figure 17, the intersection of 115 V \cdot µs and 1 A corresponds to an inductor code of H470.
C. The inductor chosen should be rated for operation at 52-kHz and have a current rating of at least 1.15 x $I_{LOAD(Max)}$ to allow for the ripple current. The actual peak current in L1 (in normal operation) can be calculated as follows: $I_{L1(pk)} = I_{LOAD(Max)} + (V_{IN} - V_{OUT}) \times t_{on} / 2L1$ Where $t_{on} = V_{OUT} / V_{IN} \times (1 / f_{osc})$	C. H470 \rightarrow L1 = 470 µH Choose from: 34048 (Schott) PE-53118 (Pulse Engineering) RL1961 (Renco)
3. Output Capacitor Selection (C _{OUT})	3. Output Capacitor Selection (C _{OUT})
A. The TL2575 control loop has a two-pole two-zero frequency response. The dominant pole-zero pair is established by C _{OUT} and L1. To meet stability requirements, C _{OUT} must meet the following requirement: $C_{ouT} \ge 7758 \frac{V_{IN(Max)}}{V_{ouT} \bullet L1(\mu H)} (\mu F)$ However, C _{OUT} may need to be several times larger than the calculated value above in order to achieve an acceptable output ripple voltage of ~0.01 × V _{OUT} .	A. $C_{OUT} \ge 7785 \times 25 / (10 \times 470) [\mu F]$ $C_{OUT} \ge 41.4 \ \mu F$ To obtain an acceptable output voltage ripple → $C_{OUT} = 220 \ \mu F$ electrolytic

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of TL2575-05IN - IC REG BUCK 5V 1A 16DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.ti.com

TL2575, TL2575HV

SLVS638C - JANUARY 2006 - REVISED NOVEMBER 2014

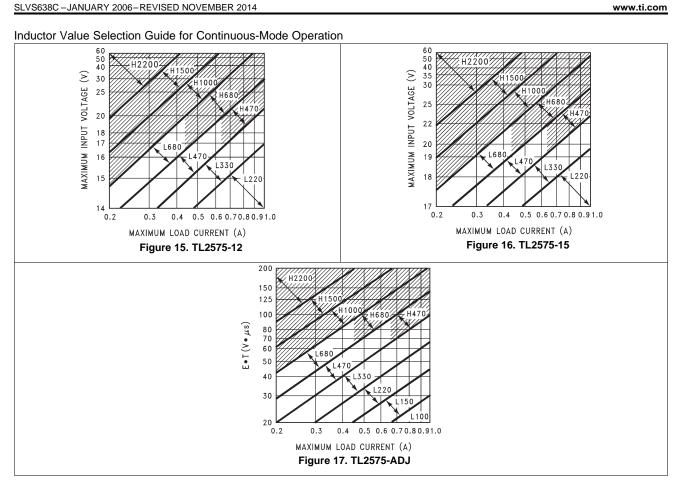

PROCEDURE (Adjustable Output)	EXAMPLE (Adjustable Output)
B. C_{OUT} should have a voltage rating of at least 1.5 x V _{OUT} . But if a low output ripple voltage is desired, choose capacitors with a higher voltage ratings than the minimum required due to their typically lower ESRs.	
4. Catch Diode Selection (D1) (see Table 1)	4. Catch Diode Selection (D1) (see Table 1)
A. In normal operation, the catch diode requires a current rating of at least 1.2 × $I_{LOAD(Max)}$. For the most robust design, D1 should be rated for a current equal to the TL2575 maximum switch peak current; this represents the worst-case scenario of a continuous short at V_{OUT} .	A. Pick a diode with a 3-A rating.
B. The diode requires a reverse voltage rating of at least 1.25 × $V_{\text{IN}(\text{Max})}$.	B. Pick a 40-V rated Schottky diode (1N5822, MBR340, 31QD04, or SR304) or 100-V rated Fast Recovery diode (31DF1, MURD310, or HER302)
5. Input Capacitor (C _{IN})	5. Input Capacitor (C _{IN})
An aluminum electrolytic or tantalum capacitor is needed for input bypassing. Locate $C_{\rm IN}$ as close to $V_{\rm IN}$ and GND pins as possible.	C_{IN} = 100 µF, 35 V, aluminum electrolytic

	10	ible 1. Diode Selec					
V	SCHO	тткү	FAST RE	COVERY			
V _R	^v R 1A 3A	3A	1A	3A			
20 V	1N5817 MBR120P SR102	1N5820 MBR320 SR302					
30 V	1N5818 MBR130P 11DQ03 SR103	1N5821 MBR330 31DQ03 SR303	The following diodes	The following diodes			
40 V	1N5819 MBR140P 11DQ04 SR104	IN5822 MBR340 31DQ04 SR304	are all rated to 100 V: 11DF1 MUR110 HER102	are all rated to 100 V: 31DF1 MURD310 HER302			
50 V	MBR150 11DQ05 SR105	MBR350 31DQ05 SR305					
60 V	MBR160 11DQ06 SR106	MBR360 31DQ06 SR306					

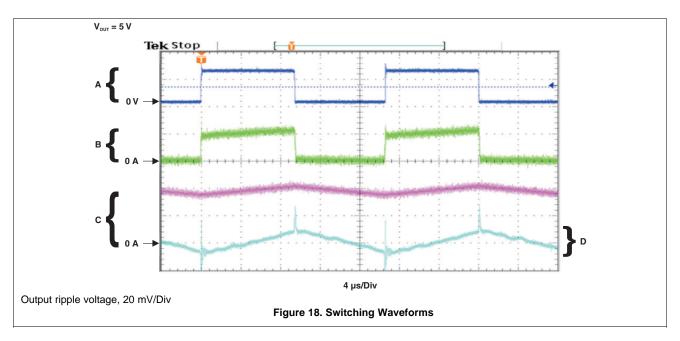
Table 1. Diode Selection Guide

10.1.2.9 Inductor Selection Guide

Inductor Value Selection Guide for Continuous-Mode Operation



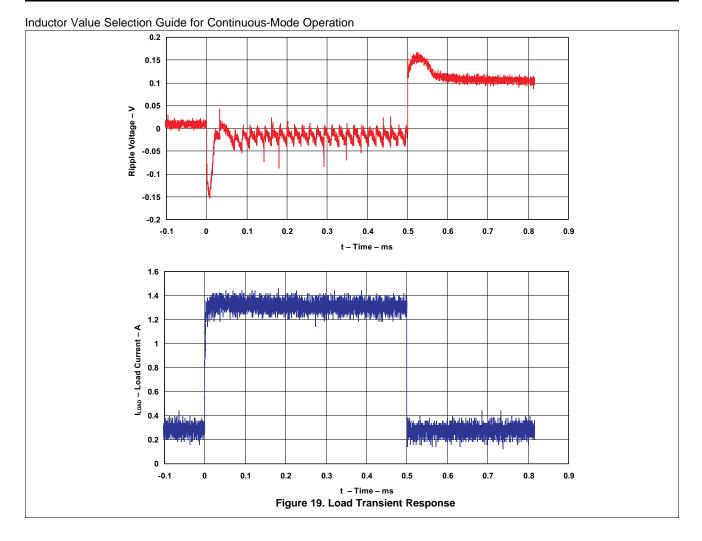
Copyright © 2006–2014, Texas Instruments Incorporated



Texas Instruments

SLVS638C-JANUARY 2006-REVISED NOVEMBER 2014

10.1.3 Application Curves



Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of TL2575-05IN - IC REG BUCK 5V 1A 16DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.ti.com

TL2575, TL2575HV

SLVS638C-JANUARY 2006-REVISED NOVEMBER 2014

SLVS638C-JANUARY 2006-REVISED NOVEMBER 2014

www.ti.com

11 Power Supply Recommendations

This device operates with a power supply range of 4.75 V to 40 V (60 V for the TL2575-HV). A 100- μ F decoupling capacitor is recommended on the input to filter noise.

12 Layout

12.1 Layout Guidelines

With any switching regulator, circuit layout plays an important role in circuit performance. Wiring and parasitic inductances, as well as stray capacitances, are subjected to rapidly switching currents, which can result in unwanted voltage transients. To minimize inductance and ground loops, the length of the leads indicated by heavy lines should be minimized. Optimal results can be achieved by single-point grounding (see Figure 11) or by ground-plane construction. For the same reasons, the two programming resistors used in the adjustable version should be located as close as possible to the regulator to keep the sensitive feedback wiring short.

12.2 Layout Example

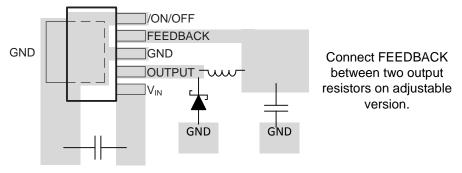


Figure 20. Layout Diagram (KV Package)

TL2575, TL2575HV

SLVS638C – JANUARY 2006 – REVISED NOVEMBER 2014

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TL2575	Click here	Click here	Click here	Click here	Click here
TL2575HV	Click here	Click here	Click here	Click here	Click here

Table 2. Related Links

13.2 Trademarks

All trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

SLVS638C - JANUARY 2006 - REVISED NOVEMBER 2014

www.ti.com

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

1-Jan-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TL2575-05IKTTR	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-3-245C-168 HR	-40 to 125	TL2575-05I	Samples
TL2575-05IKTTRG3	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-3-245C-168 HR	-40 to 125	TL2575-05I	Samples
TL2575-05IKV	ACTIVE	TO-220	KV	5	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 125	TL2575-05I	Samples
TL2575-05IN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TL2575-05IN	Samples
TL2575-12IKTTR	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-3-245C-168 HR	-40 to 125	TL2575-12I	Samples
TL2575-12IKV	ACTIVE	TO-220	KV	5	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 125	TL2575-12I	Samples
TL2575-12IN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TL2575-12IN	Samples
TL2575-15IKTTR	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-3-245C-168 HR	-40 to 125	TL2575-15I	Samples
TL2575-15IKV	ACTIVE	TO-220	KV	5	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 125	TL2575-15I	Samples
TL2575-15IN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TL2575-15IN	Samples
TL2575-33IKTTR	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-3-245C-168 HR	-40 to 125	TL2575-33I	Samples
TL2575-33IKV	ACTIVE	TO-220	KV	5	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 125	TL2575-33I	Samples
TL2575-33IN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TL2575-33IN	Sample
TL2575-ADJIKTTR	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-3-245C-168 HR	-40 to 125	TL2575ADJI	Samples
TL2575-ADJIKTTRG3	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-3-245C-168 HR	-40 to 125	TL2575ADJI	Samples
TL2575-ADJIKV	ACTIVE	TO-220	KV	5	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 125	TL2575ADJI	Samples
TL2575-ADJIN	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TL2575-ADJIN	Samples

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of TL2575-05IN - IC REG BUCK 5V 1A 16DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM

1-Jan-2016

www.ti.com

Eco Plan Device Marking Orderable Device Lead/Ball Finish MSL Peak Temp Samples Status Package Type Package Pins Package Op Temp (°C) Drawing Qty (1) (2) (6) (3) (4/5) TL2575-ADJINE4 ACTIVE PDIP Ν 25 Pb-Free CU NIPDAU N / A for Pkg Type -40 to 125 TL2575-ADJIN 16 Samples (RoHS) TL2575HV-05IKTTR ACTIVE DDPAK/ КТТ 5 500 Green (RoHS CU SN Level-3-245C-168 HR -40 to 125 2BHV-05I Samples TO-263 & no Sb/Br) TL2575HV-05IKTTRG3 ACTIVE DDPAK/ KTT 5 500 Green (RoHS CU SN Level-3-245C-168 HR -40 to 125 2BHV-05I Samples TO-263 & no Sb/Br) TL2575HV-05IKV ACTIVE TO-220 ΚV 5 50 Pb-Free CU SN N / A for Pkg Type -40 to 125 TL2575HV-05I Samples (RoHS) TL2575HV-05IN TL2575HV-05IN ACTIVE PDIP Ν 16 25 Pb-Free CU NIPDAU N / A for Pkg Type -40 to 125 Samples (RoHS) TL2575HV-12IKTTR DDPAK/ CU SN Level-3-245C-168 HR 2BHV-12I ACTIVE KTT 5 500 Green (RoHS -40 to 125 Samples TO-263 & no Sb/Br) TL2575HV-12IKTTRG3 ACTIVE DDPAK/ KTT Green (RoHS CU SN Level-3-245C-168 HR 2BHV-12I 5 500 -40 to 125 Samples TO-263 & no Sb/Br) TL2575HV-12IKV ACTIVE CU SN N / A for Pkg Type TL2575HV-12I TO-220 ΚV 5 50 Pb-Free -40 to 125 Samples (RoHS) TL2575HV-12IN ACTIVE PDIP Ν 16 25 Pb-Free CU NIPDAU N / A for Pkg Type TL2575HV-12IN -40 to 125 Samples (RoHS) TL2575HV-15IKTTR ACTIVE DDPAK/ KTT 5 500 Green (RoHS CU SN Level-3-245C-168 HR -40 to 125 2BHV-15I Samples TO-263 & no Sb/Br) TL2575HV-15IKV CU SN TL2575HV-15I ACTIVE TO-220 K٧ 5 50 Pb-Free N / A for Pkg Type -40 to 125 Samples (RoHS) TL2575HV-15IN ACTIVE PDIP 25 CU NIPDAU N / A for Pkg Type TL2575HV-15IN Ν 16 Pb-Free -40 to 125 Samples (RoHS) TL2575HV-33IKTTR ACTIVE DDPAK/ КТТ 5 500 Green (RoHS CU SN Level-3-245C-168 HR -40 to 125 2BHV-33I Samples TO-263 & no Sb/Br) TL2575HV-33IKV ACTIVE TO-220 K٧ 5 50 Pb-Free CU SN N / A for Pkg Type -40 to 125 TL2575HV-33I Samples (RoHS) TL2575HV-33IN ACTIVE PDIP Ν 16 25 Pb-Free CU NIPDAU N / A for Pkg Type -40 to 125 TL2575HV-33IN Samples (RoHS) DDPAK/ TL2575HV-ADJIKTTR ACTIVE KTT 5 500 Green (RoHS CU SN Level-3-245C-168 HR -40 to 125 2BHV-ADJI Samples TO-263 & no Sb/Br) TL2575HV-ADJIKV ACTIVE TO-220 K٧ 5 50 Pb-Free CU SN N / A for Pkg Type -40 to 125 TL2575HVADJI Samples (RoHS) CU NIPDAU TL2575HV-ADJIN TL2575HV-ADJIN ACTIVE PDIP Ν 16 25 Pb-Free N / A for Pkg Type -40 to 125 Samples (RoHS)

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of TL2575-05IN - IC REG BUCK 5V 1A 16DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM

1-Jan-2016

⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs.

Instant and the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/(Free conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based file-objes older bumps used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package, or 2) lead-based die adhesive used between the die and package. the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a *-* will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer. The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

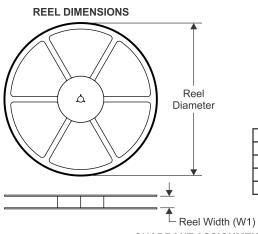
OTHER QUALIFIED VERSIONS OF TL2575HV-05, TL2575HV-33 :

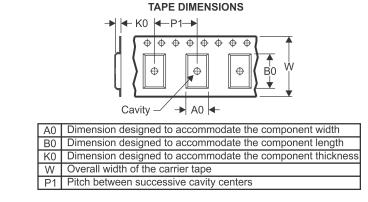
Automotive: TL2575HV-05-Q1, TL2575HV-33-Q1

1-Jan-2016

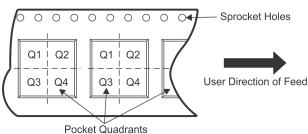
NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects





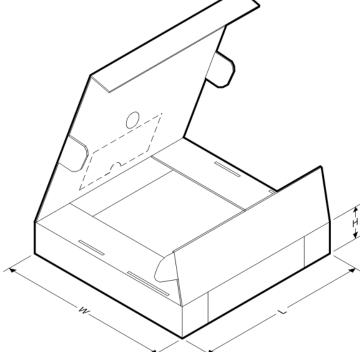
PACKAGE MATERIALS INFORMATION


21-Jul-2016

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL2575-05IKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2
TL2575-05IKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.1	4.9	16.0	24.0	Q2
TL2575-12IKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2
TL2575-15IKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2
TL2575-33IKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2
TL2575-33IKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.1	4.9	16.0	24.0	Q2
TL2575-ADJIKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.1	4.9	16.0	24.0	Q2
TL2575-ADJIKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2
TL2575HV-05IKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.1	4.9	16.0	24.0	Q2
TL2575HV-05IKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2
TL2575HV-12IKTTR	DDPAK/	KTT	5	500	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2


PACKAGE MATERIALS INFORMATION

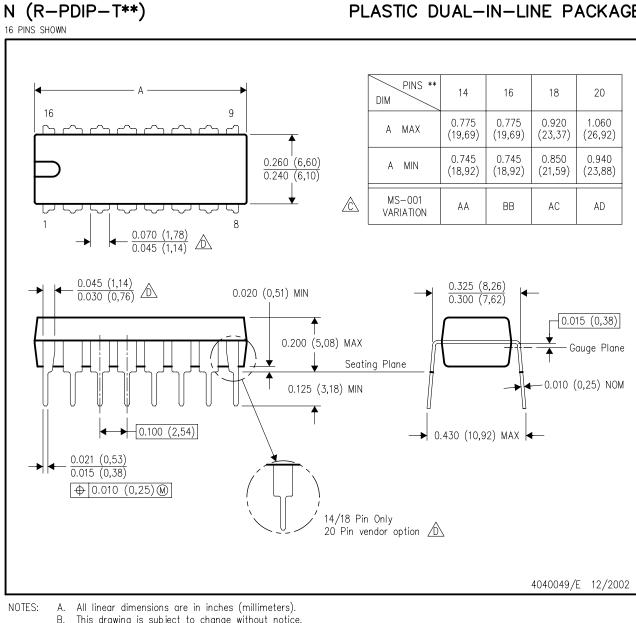
www.ti.com

21-Jul-2016

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	TO-263											
TL2575HV-15IKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2
TL2575HV-33IKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2
TL2575HV-33IKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.1	4.9	16.0	24.0	Q2
TL2575HV-ADJIKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.1	4.9	16.0	24.0	Q2
TL2575HV-ADJIKTTR	DDPAK/ TO-263	КТТ	5	500	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL2575-05IKTTR	DDPAK/TO-263	КТТ	5	500	340.0	340.0	38.0
TL2575-05IKTTR	DDPAK/TO-263	КТТ	5	500	350.0	334.0	47.0
TL2575-12IKTTR	DDPAK/TO-263	КТТ	5	500	340.0	340.0	38.0
TL2575-15IKTTR	DDPAK/TO-263	КТТ	5	500	340.0	340.0	38.0
TL2575-33IKTTR	DDPAK/TO-263	КТТ	5	500	340.0	340.0	38.0
TL2575-33IKTTR	DDPAK/TO-263	КТТ	5	500	350.0	334.0	47.0
TL2575-ADJIKTTR	DDPAK/TO-263	КТТ	5	500	350.0	334.0	47.0


PACKAGE MATERIALS INFORMATION

21-Jul-2016

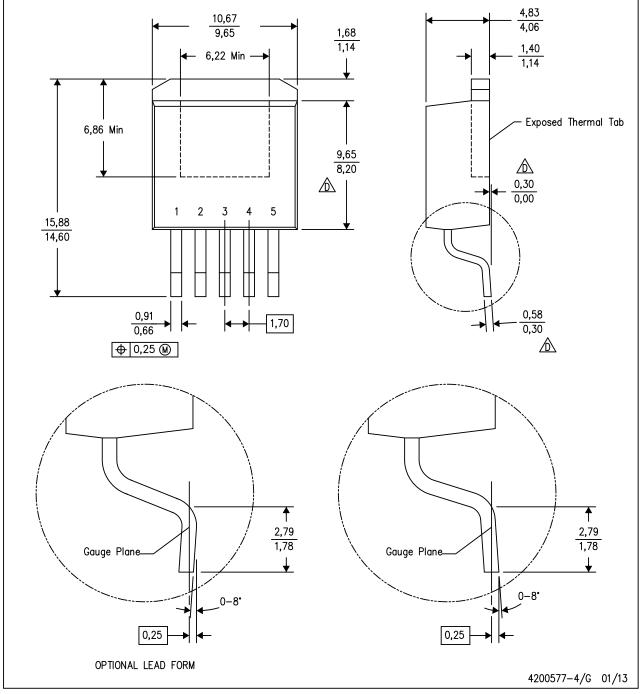
	-				-		
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL2575-ADJIKTTR	DDPAK/TO-263	КТТ	5	500	340.0	340.0	38.0
TL2575HV-05IKTTR	DDPAK/TO-263	КТТ	5	500	350.0	334.0	47.0
TL2575HV-05IKTTR	DDPAK/TO-263	КТТ	5	500	340.0	340.0	38.0
TL2575HV-12IKTTR	DDPAK/TO-263	КТТ	5	500	340.0	340.0	38.0
TL2575HV-15IKTTR	DDPAK/TO-263	КТТ	5	500	340.0	340.0	38.0
TL2575HV-33IKTTR	DDPAK/TO-263	КТТ	5	500	340.0	340.0	38.0
TL2575HV-33IKTTR	DDPAK/TO-263	КТТ	5	500	350.0	334.0	47.0
TL2575HV-ADJIKTTR	DDPAK/TO-263	КТТ	5	500	350.0	334.0	47.0
TL2575HV-ADJIKTTR	DDPAK/TO-263	КТТ	5	500	340.0	340.0	38.0

MECHANICAL DATA

PLASTIC DUAL-IN-LINE PACKAGE

This drawing is subject to change without notice.

🖄 Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). The 20 pin end lead shoulder width is a vendor option, either half or full width.

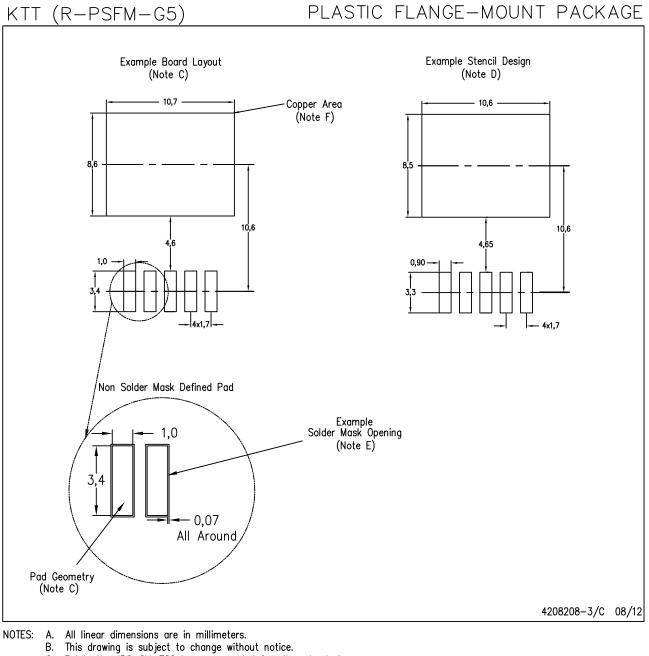


MECHANICAL DATA

KTT (R-PSFM-G5)

PLASTIC FLANGE-MOUNT PACKAGE

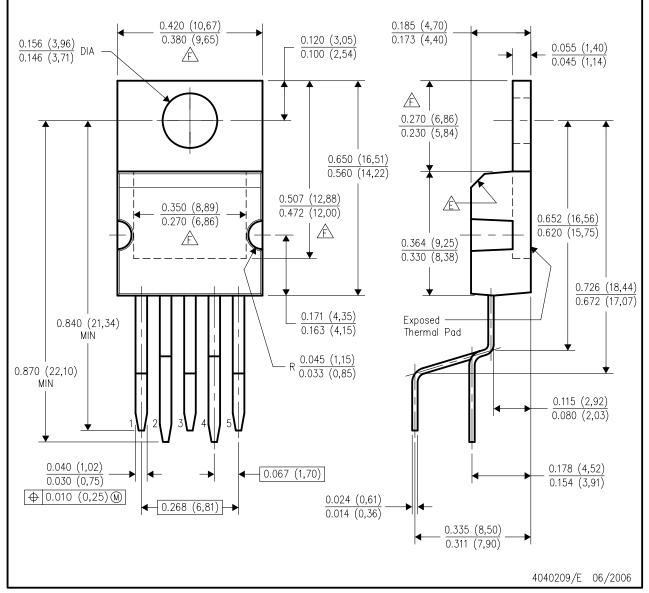
NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion. Mold flash or protrusion not to exceed 0.005 (0,13) per side.
 A Falls within JEDEC T0-263 variation BA, except minimum lead thickness, maximum seating height, and minimum body length.

LAND PATTERN DATA

- C. Publication IPC-SM-782 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release.
- Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525. E. Customers should contact their board fabrication site for solder mask tolerances between and around
- signal pads.
 F. This package is designed to be soldered to a thermal pad on the board. Refer to the Product Datasheet for specific thermal information, via requirements, and recommended thermal pad size. For thermal pad sizes larger than shown a solder mask defined pad is recommended in order to maintain the solderable pad geometry while increasing copper area.



MECHANICAL DATA

KV (R-PZFM-T5)

PLASTIC FLANGE-MOUNT PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.C. All lead dimensions apply before solder dip.
- D. The center lead is in electrical contact with the mounting tab.
- E The chamfer is optional.
- 1 Thermal pad contour optional within these dimensions.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated