Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor 2N4401RLRM

For any questions, you can email us directly: sales@integrated-circuit.com

Distributor of ON Semiconductor: Excellent Integrated System Limited

Datasheet of 2N4401RLRM - TRANS NPN 40V 0.6A TO-92

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

2N4401

Preferred Device

General Purpose Transistors

NPN Silicon

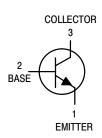
Features

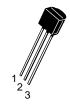
Pb–Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V_{CEO}	40	Vdc
Collector – Base Voltage	V _{CBO}	60	Vdc
Emitter – Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	IC	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W


Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

ON Semiconductor®

http://onsemi.com

TO-92 CASE 29 STYLE 1

MARKING DIAGRAM

2N4401 = Device Code A = Assembly Location

Y = Year WW = Work Week ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Distributor of ON Semiconductor: Excellent Integrated System Limited Datasheet of 2N4401RLRM - TRANS NPN 40V 0.6A TO-92

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

2N4401

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS		- '			
Collector-Emitter Breakdo (I _C = 1.0 mAdc, I _B = 0)	V _{(BR)CEO}	40	_	Vdc	
Collector-Base Breakdow (I _C = 0.1 mAdc, I _E = 0)	V _{(BR)CBO}	60	_	Vdc	
Emitter-Base Breakdown ($I_E = 0.1 \text{ mAdc}, I_C = 0$)	(21)250		6.0	_	Vdc
Base Cutoff Current (V _{CE} = 35 Vdc, V _{EB} = 0.4	DEV		-	0.1	μAdc
Collector Cutoff Current (V _{CE} = 35 Vdc, V _{EB} = 0.	I _{CEX} –		0.1	μAdc	
ON CHARACTERISTICS (Note 1)			•	•
DC Current Gain $ \begin{aligned} &(I_C = 0.1 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 1.0 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 10 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 150 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 500 \text{ mAdc, } V_{CE} = 2.0 \text{ Vdc}) \end{aligned} $		h _{FE}	20 40 80 100 40	- - - 300	_
Collector–Emitter Saturation Voltage (I_C = 150 mAdc, I_B = 15 mAdc) (I_C = 500 mAdc, I_B = 50 mAdc)		V _{CE(sat)}	-	0.4 0.75	Vdc
Base-Emitter Saturation V	Emitter Saturation Voltage (I_C = 150 mAdc, I_B = 15 mAdc) $V_{BE(sat)}$ $V_{BE(sat)}$		0.75 -	0.95 1.2	Vdc
SMALL-SIGNAL CHARAC	CTERISTICS			•	
Current-Gain - Bandwidth	Product (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	f _T	250	-	MHz
Collector-Base Capacitano	C _{cb}	_	6.5	pF	
Emitter-Base Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		Capacitance ($V_{EB} = 0.5 \text{ Vdc}$, $I_{C} = 0$, $f = 1.0 \text{ MHz}$)		30	pF
Input Impedance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{ie}	1.0	15	kΩ
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{re}	0.1	8.0	X 10 ⁻⁴
Small–Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{fe}	40	500	-
Output Admittance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		ince (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz) h _{oe}		30	μmhos
SWITCHING CHARACTER	EISTICS				
Delay Time $(V_{CC} = 30 \text{ Vdc}, V_{BE} = 2.0 \text{ Vdc},$		t _d	_	15	ns
Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc)	t _r	_	20	ns
Storage Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc},$		t _s	_	225	ns
Fall Time $I_{B1} = I_{B2} = 15 \text{ mAdc}$		t _f	_	30	ns

^{1.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

2N4401

ORDERING INFORMATION

Device	Package	Shipping [†]
2N4401	TO-92	5,000 Units / Box
2N4401G	TO-92 (Pb-Free)	5,000 Units / Box
2N4401RLRA	TO-92	2000 / Tape & Reel
2N4401RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N4401RLRM	TO-92	2000 / Ammo Pack
2N4401RLRMG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N4401RLRP	TO-92	2000 / Ammo Pack
2N4401RLRPG	TO-92 (Pb-Free)	2000 / Ammo Pack

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

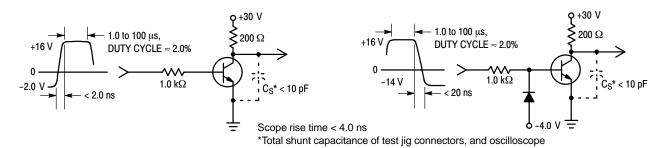


Figure 1. Turn-On Time

Figure 2. Turn-Off Time

TRANSIENT CHARACTERISTICS

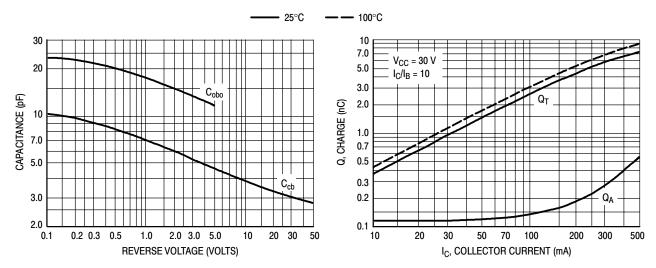


Figure 3. Capacitances

Figure 4. Charge Data

2N4401

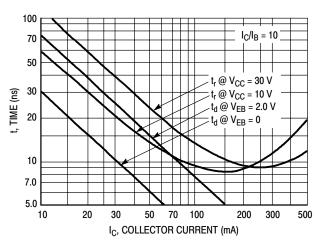


Figure 5. Turn-On Time

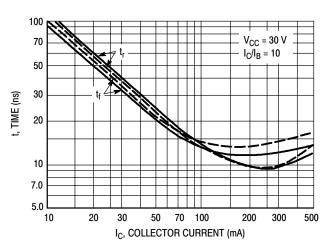


Figure 6. Rise and Fall Times

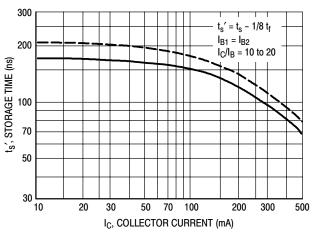


Figure 7. Storage Time

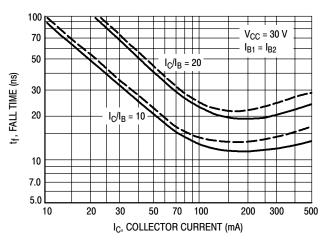


Figure 8. Fall Time

SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE

 $V_{CE} = 10 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$; Bandwidth = 1.0 Hz

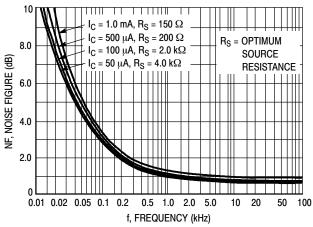


Figure 9. Frequency Effects

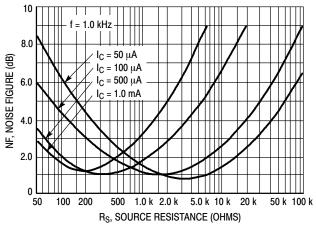


Figure 10. Source Resistance Effects

Distributor of ON Semiconductor: Excellent Integrated System Limited

Datasheet of 2N4401RLRM - TRANS NPN 40V 0.6A TO-92

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

2N4401

h PARAMETERS

 $V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C}$

This group of graphs illustrates the relationship between h_{fe} and other "h" parameters for this series of transistors. To obtain these curves, a high–gain and a low–gain unit were

selected from the 2N4401 lines, and the same units were used to develop the correspondingly numbered curves on each graph.

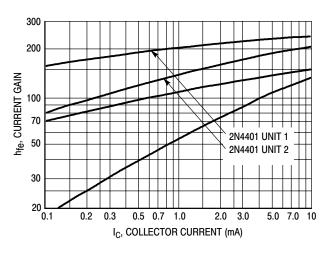


Figure 11. Current Gain

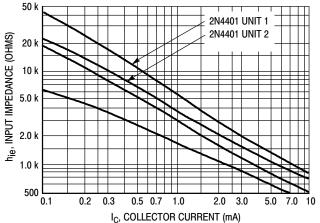


Figure 12. Input Impedance

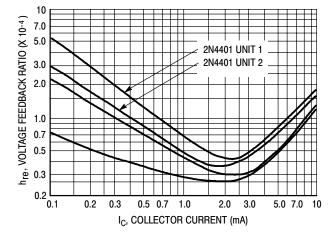


Figure 13. Voltage Feedback Ratio

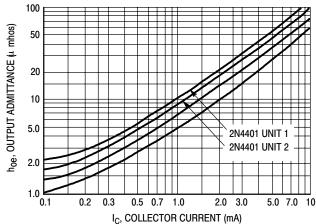


Figure 14. Output Admittance

2N4401

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

STATIC CHARACTERISTICS

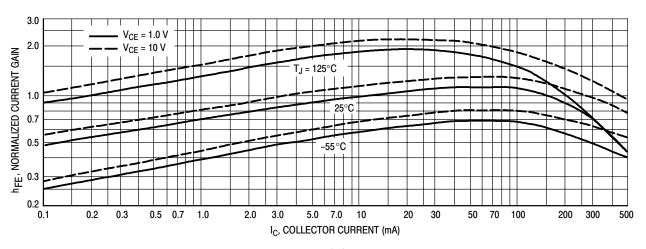


Figure 15. DC Current Gain

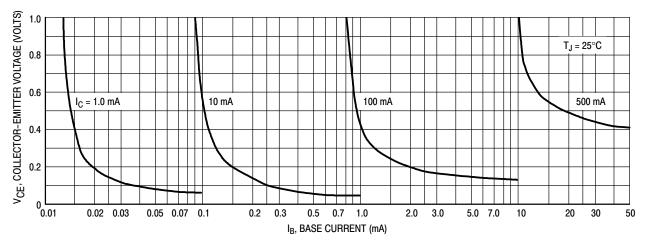


Figure 16. Collector Saturation Region

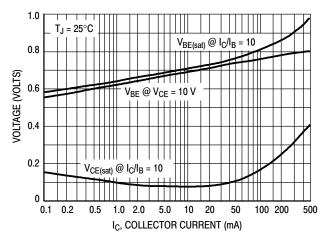
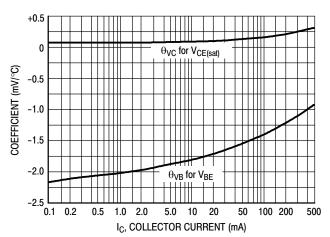
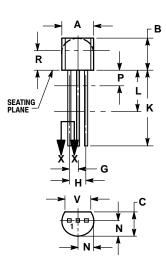
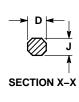



Figure 17. "On" Voltages

Figure 18. Temperature Coefficients

Distributor of ON Semiconductor: Excellent Integrated System Limited


Datasheet of 2N4401RLRM - TRANS NPN 40V 0.6A TO-92


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

2N4401

PACKAGE DIMENSIONS

TO-92 **TO-226AA** CASE 29-11 **ISSUE AL**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- DIMENSIONING AND TOLEHANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.115		2.93	
v	0.135		3 //3	

PIN 1. EMITTER

BASE

3. COLLECTOR

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized applications in engineer tengaring the design or manufacture of the part. personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082–1312 USA
Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 **Phone**: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative