Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor 2N6338

For any questions, you can email us directly: sales@integrated-circuit.com

2N6338, 2N6341

High-Power NPN Silicon Transistors

... designed for use in industrial-military power amplifier and switching circuit applications.

• High Collector-Emitter Sustaining Voltage -

$$V_{CEO(sus)} = 100 \text{ Vdc (Min)} - 2N6338$$

= 150 Vdc (Min) - 2N6341

• High DC Current Gain -

$$h_{FE} = 30 - 120 @ I_C = 10 Adc$$

= 12 (Min) @ $I_C = 25 Adc$

• Low Collector-Emitter Saturation Voltage -

$$V_{CE(sat)} = 1.0 \text{ Vdc (Max)} @ I_C = 10 \text{ Adc}$$

• Fast Switching Times @ I_C = 10 Adc

 $t_r = 0.3 \text{ ms (Max)}$

 $t_s = 1.0 \text{ ms (Max)}$

 $t_f = 0.25 \text{ ms (Max)}$

• Pb-Free Packages are Available

*MAXIMUM RATINGS

Rating	Symbol	2N6338	2N6341	Unit	
Collector-Base Voltage	V _{CB}	CB 120 180		Vdc	
Collector-Emitter Voltage	V _{CEO}	100 150		Vdc	
Emitter-Base Voltage	V _{EB}	6.0		Vdc	
Collector Current Continuous Peak	I _C	25 50		Adc	
Base Current	I _B	10		Adc	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	200 1.14		W W/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	θ_{JC}	0.875	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. *Indicates JEDEC Registered Data.

ON Semiconductor®

http://onsemi.com

25 AMPERE **POWER TRANSISTORS NPN SILICON**

TO-204AA **CASE 1-07**

ORDERING INFORMATION

Device	Package	Shipping
2N6338	TO-204AA	100 Units / Tray
2N6338G	TO-204AA (Pb-Free)	100 Units / Tray
2N6341	TO-204AA	100 Units / Tray
2N6341G	TO-204AA (Pb-Free)	100 Units / Tray

Datasheet of 2N6338 - TRANS NPN 100V 25A TO-3

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

2N6338, 2N6341

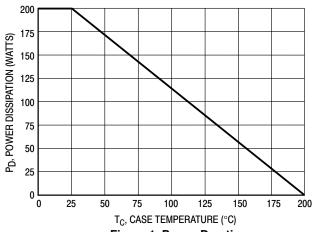
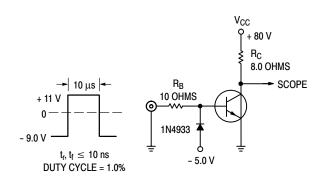


Figure 1. Power Derating

*ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (1) 2N6338 $(I_C = 50 \text{ mAdc}, I_B = 0)$ 2N6341	OLO(sus)	100 150		Vdc	
		- -	50 50	μAdc	
Collector Cutoff Current $(V_{CE} = Rated \ V_{CEO}, \ V_{EB(off)} = 1.5 \ Vdc)$ $(V_{CE} = Rated \ V_{CEO}, \ V_{EB(off)} = 1.5 \ Vdc, \ T_{C} = 150^{\circ}C)$	I _{CEX}	- -	10 1.0	μAdc mAdc	
Collector Cutoff Current (V _{CB} = Rated V _{CB} , I _E = 0)	I _{CBO}	-	10	μAdc	
Emitter Cutoff Current (V _{BE} = 6.0 Vdc, I _C = 0)	I _{EBO}	-	100	μAdc	
ON CHARACTERISTICS (1)				•	
DC Current Gain) $ \begin{aligned} &(I_C=0.5 \text{ Adc, } V_{CE}=2.0 \text{ Vdc}) \\ &(I_C=10 \text{ Adc, } V_{CE}=2.0 \text{ Vdc}) \\ &(I_C=25 \text{ Adc, } V_{CE}=2.0 \text{ Vdc}) \end{aligned} $	h _{FE}	50 30 12	- 120 -	-	
Collector Emitter Saturation Voltage (I _C = 10 Adc, I _B = 1.0 Adc) (I _C = 25 Adc, I _B = 2.5 Adc)	V _{CE(sat)}		1.0 1.8	Vdc	
Base–Emitter Saturation Voltage (I _C = 10 Adc, I _B = 1.0 Adc) (I _C = 25 Adc, I _B = 2.5 Adc)	V _{BE(sat)}	_ _	1.8 2.5	Vdc	
Base–Emitter On Voltage (I _C = 10 Adc, V _{CE} = 2.0 Vdc)	V _{BE(on)}	-	1.8	Vdc	
DYNAMIC CHARACTERISTICS					
Current-Gain - Bandwidth Product (2) (I _C = 1.0 Adc, V _{CE} = 10 Vdc, f _{test} = 10 MHz)	f _T	40	_	MHz	
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz)	C _{ob}	-	300	pF	
SWITCHING CHARACTERISTICS					
Rise Time ($V_{CC} \approx 80 \text{ Vdc}$, $I_C = 10 \text{Adc}$, $I_{B1} = 1.0 \text{ Adc}$, $V_{BE(off)} = 6.0 \text{ Vdc}$)	t _r	-	0.3	μs	
Storage Time ($V_{CC} \approx 80$ Vdc, $I_C = 10$ Adc, $I_{B1} = I_{B2} = 1.0$ Adc)	t _s	-	1.0	μs	
Fall Time ($V_{CC} \approx 80$ Vdc, $I_C = 10$ Adc, $I_{B1} = I_{B2} = 1.0$ Adc)	t _f	-	0.25	μs	


^{*}Indicates JEDEC Registered Data.
(1) Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

⁽²⁾ $f_T = |h_{fe}| \bullet f_{test}$.

Datasheet of 2N6338 - TRANS NPN 100V 25A TO-3

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

2N6338, 2N6341

NOTE: For information on Figures 3 and 6, R_B and R_C were varied to obtain desired test conditions.

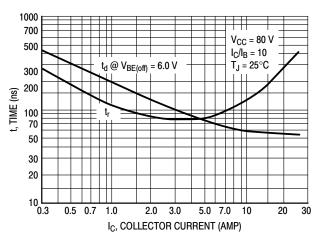
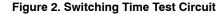



Figure 3. Turn-On Time

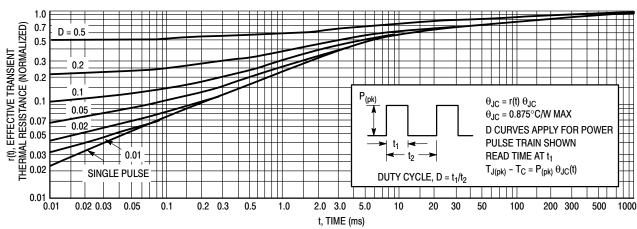


Figure 4. Thermal Response

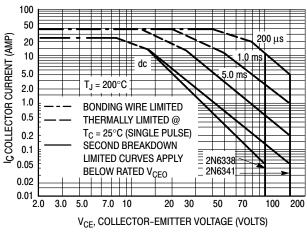


Figure 5. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_{C} – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 200^{\circ}C$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 200^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Datasheet of 2N6338 - TRANS NPN 100V 25A TO-3

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

2N6338, 2N6341

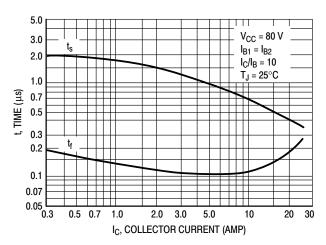


Figure 6. Turn-Off Time

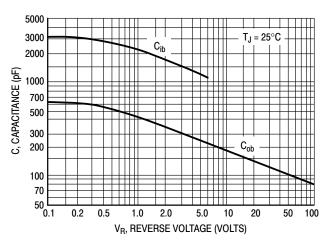
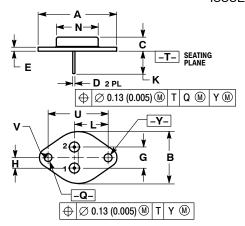


Figure 7. Capacitance


Datasheet of 2N6338 - TRANS NPN 100V 25A TO-3

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

2N6338, 2N6341

PACKAGE DIMENSIONS

TO-204AA (TO-3 CASE 1-07 ISSUE Z

NOTES.

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M. 1982.
- 2. CONTROLLING DIMENSION: INCH
- 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		CHES MILLIMET		
DIM	MIN	MAX	MIN	MAX	
Α	1.550 REF		39.37	REF	
В		1.050		26.67	
С	0.250	0.335	6.35	8.51	
D	0.038	0.043	0.97	1.09	
E	0.055	0.070	1.40	1.77	
G	0.430 BSC		10.92 BSC		
Н	0.215 BSC		5.46 BSC		
K	0.440	0.480	11.18	12.19	
L	0.665 BSC		16.89 BSC		
N		0.830		21.08	
Q	0.151	0.165	3.84	4.19	
U	1.187 BSC		30.15 BSC		
٧	0.131	0.188	3.33	4.77	

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5773–3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative