

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor BD809G

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of ON Semiconductor: Excellent Integrated System Limited Datasheet of BD809G - TRANS NPN 80V 10A TO-220AB Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

BD809 (NPN), BD810 (PNP)

Plastic High Power Silicon Transistors

These devices are designed for use in high power audio amplifiers utilizing complementary or quasi complementary circuits.

Features

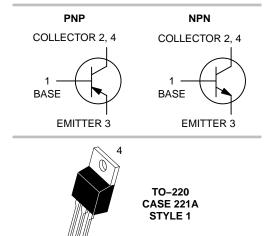
- High DC Current Gain
- These Devices are Pb-Free and are RoHS Compliant*

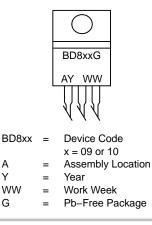
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	80	Vdc
Collector-Base Voltage	V _{CBO}	80	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current	۱ _C	10	Adc
Base Current	Ι _Β	6.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	90 0.72	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	R_{\thetaJC}	1.39	°C/W


ON Semiconductor®

www.onsemi.com

10 AMPERE POWER TRANSISTORS 80 VOLTS 90 WATTS

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
BD809G	TO-220 (Pb-Free)	50 Units/Rail
BD810G	TO–220 (Pb–Free)	50 Units/Rail

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

BD809 (NPN), BD810 (PNP)

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit	
Collector–Emitter Sustaining Voltage (Note 1) $(I_C = 0.1 \text{ Adc}, I_B = 0)$	BV _{CEO}	80	_	Vdc	
Collector Cutoff Current ($V_{CB} = 80$ Vdc, $I_E = 0$)	I _{CBO}	_	1.0	mAdc	
Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	-	2.0	mAdc	
DC Current Gain ($I_C = 2.0 \text{ A}, V_{CE} = 2.0 \text{ V}$) ($I_C = 4.0 \text{ A}, V_{CE} = 2.0 \text{ V}$)	h _{FE}	30 15		-	
Collector–Emitter Saturation Voltage (Note 1) ($I_C = 3.0 \text{ Adc}$, $I_B = 0.3 \text{ Adc}$)	V _{CE(sat)}	-	1.1	Vdc	
Base–Emitter On Voltage (Note 1) (I _C = 4.0 Adc, V _{CE} = 2.0 Vdc)	V _{BE(on)}	-	1.6	Vdc	
Current–Gain Bandwidth Product ($I_C = 1.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ MHz}$)	f _T	1.5	-	MHz	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

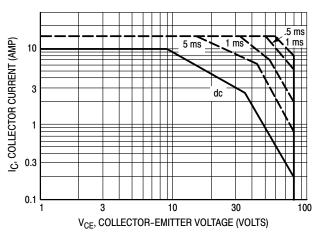


Figure 1. Active Region DC Safe Operating Area (see Note on page 3)

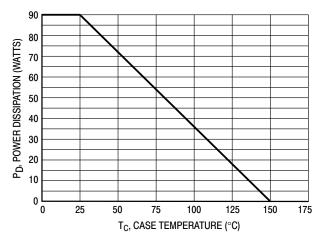


Figure 2. Power–Temperature Derating Curve

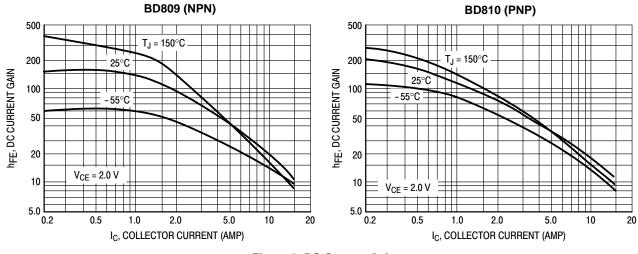
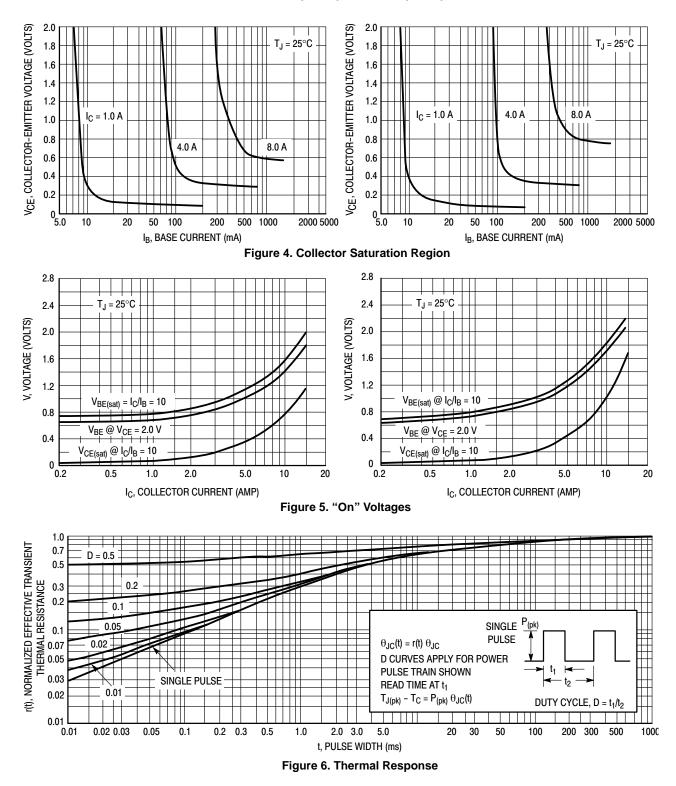



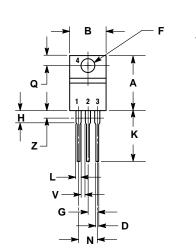
Figure 3. DC Current Gain

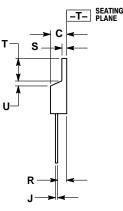
Distributor of ON Semiconductor: Excellent Integrated System Limited Datasheet of BD809G - TRANS NPN 80V 10A TO-220AB Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

BD809 (NPN), BD810 (PNP)

Note:

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.


The data of Figure 1 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.



BD809 (NPN), BD810 (PNP)

PACKAGE DIMENSIONS

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL

BODY AND LEAD IRREGULARITIES ARE

	INCHES MIN MAX		MILLIM	MILLIMETERS MIN MAX	
DIM			MIN		
Α	0.570	0.620	14.48	15.75	
В	0.380	0.415	9.66	10.53	
С	0.160	0.190	4.07	4.83	
D	0.025	0.038	0.64	0.96	
F	0.142	0.161	3.61	4.09	
G	0.095	0.105	2.42	2.66	
Η	0.110	0.161	2.80	4.10	
ſ	0.014	0.024	0.36	0.61	
К	0.500	0.562	12.70	14.27	
Г	0.045	0.060	1.15	1.52	
Ν	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
۷	0.045		1.15		
Z		0.080		2.04	

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER COLLECTOR

ON Semiconductor and the
mark of patents, trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed
at www.onsemi.com/site/dfl/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each
customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product solud create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even i copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

BD809/D