

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor NTR4502PT1

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of ON Semiconductor: Excellent Integrated System Limited Datasheet of NTR4502PT1 - MOSFET P-CH 30V 1.13A SOT-23 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTR4502P, NVTR4502P

Power MOSFET

-30 V, -1.95 A, Single, P-Channel, SOT-23

Features

- Leading Planar Technology for Low Gate Charge / Fast Switching
- Low R_{DS(ON)} for Low Conduction Losses
- SOT-23 Surface Mount for Small Footprint (3 X 3 mm)
- AEC Q101 Qualified NVTR4502P
- These Devices are Pb-Free and are RoHS Compliant

Applications

- DC to DC Conversion
- Load/Power Switch for Portables and Computing
- Motherboard, Notebooks, Camcorders, Digital Camera's, etc.
- Battery Charging Circuits

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parame	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	-30	V		
Gate-to-Source Voltage	V _{GS}	±20	V		
Drain Current (Note 1)	ain Current (Note 1) $\label{eq:tau} t < 10 \ s \ \frac{T_A = 25^\circ C}{T_A = 70^\circ C}$		I _D	-1.95	А
				-1.56	
Power Dissipation (Note 1)	t < 10 s		PD	1.25	W
Continuous Drain Current	Steady State	$T_A = 25^{\circ}C$	۱ _D	-1.13	А
(Note 1)		$T_A = 70^{\circ}C$		-0.90	
Power Dissipation (Note 1)	Stead	ly State	P _D	0.4	W
Pulsed Drain Current	I _{DM}	-6.8	А		
Operating Junction and Sto	T _J , T _{STG}	–55 to 150	°C		
Source Current (Body Diod	۱ _S	-1.25	А		
Lead Temperature for Sold (1/8 in from case for 10 s)	ΤL	260	°C		

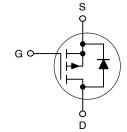
THERMAL RESISTANCE RATINGS

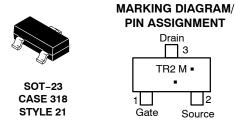
Parameter	Symbol	Мах	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	300	°C/W
Junction-to-Ambient $- t = 10 s$ (Note 1)	$R_{\theta JA}$	100	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using 1 in sq. pad size

(Cu area = 1.127 in sq. [1 oz] including traces).




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D Max (Note 1)	
–30 V	155 m Ω @ –10 V		
	240 mΩ @ -4.5 V	–1.95 A	

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

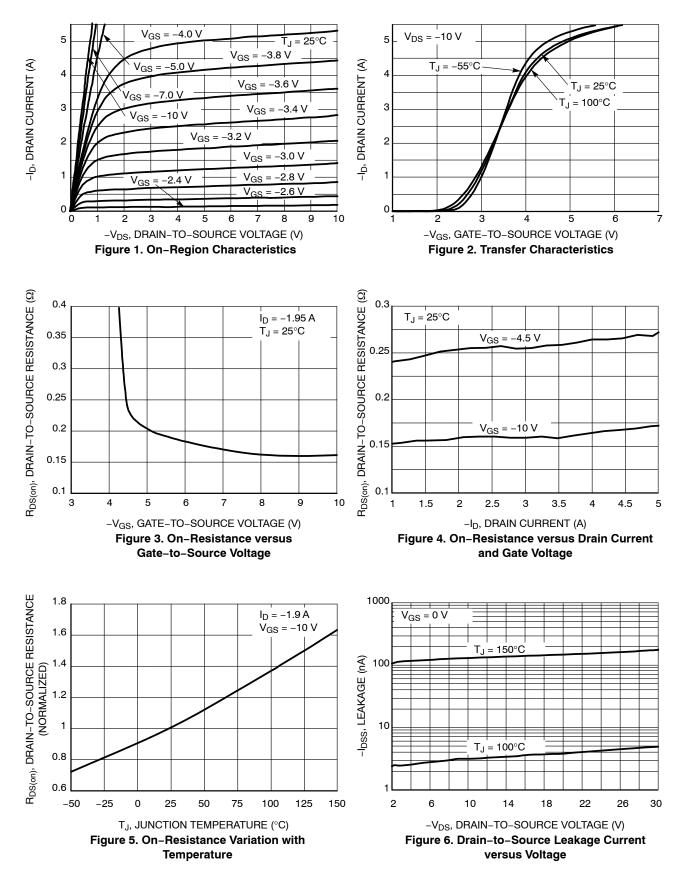
ORDERING INFORMATION

Device	Package	Shipping†
NTR4502PT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
NVTR4502PT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

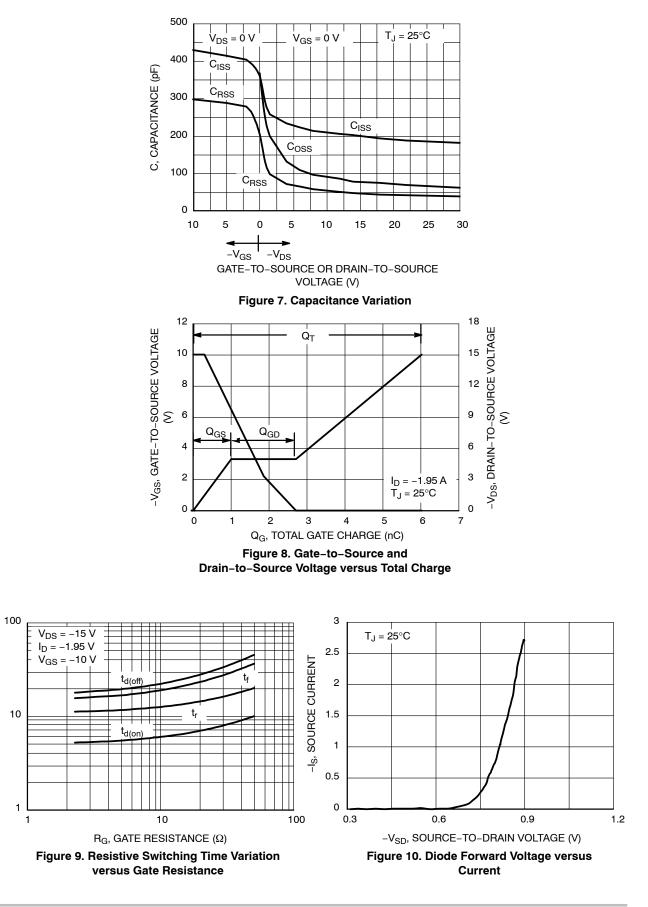
NTR4502P, NVTR4502P

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = -250 µ	μA	-30			V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V, V_{DS} = -30 V$	$T_J = 25^{\circ}C$			-1	μΑ
			$T_J = 55^{\circ}C$			-10	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±20 V				±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = -250$	μA	-1.0		-3.0	V
Drain-to-Source On Resistance	R _{DS(on)}	$\frac{R_{DS(on)}}{V_{GS} = -10 \text{ V}, \text{ I}_{D} = -1.95 \text{ A}}$ $\frac{V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -1.5 \text{ A}}{V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -1.5 \text{ A}}$			155	200	mΩ
					240	350	
Forward Transconductance	9 FS	V _{DS} = -10 V, I _D =-1.25 A			3		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = –15 V			200		pF
Output Capacitance	C _{OSS}				80		
Reverse Transfer Capacitance	C _{RSS}				50		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = -10 V, V_{DS} = -15 V; I_{D} = -1.95 A			6	10	nC
Threshold Gate Charge	Q _{G(TH)}				0.3		
Gate-to-Source Charge	Q _{GS}				1		
Gate-to-Drain Charge	Q _{GD}				1.7		
SWITCHING CHARACTERISTICS (Note	4)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} =–10 V, V_{DD} = –15 V, I_{D} = –1.95 A, R_{G} = 6 Ω			5.2	10	ns
Rise Time	t _r				12	20	
Turn-Off Delay Time	t _{d(OFF)}				19	35	1
Fall Time	t _f				17.5	30	1
DRAIN-SOURCE DIODE CHARACTERIS	STICS (Note 3)			-	-	-	
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = -1.25$	A		-0.8	-1.2	V
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dI_{SD}/d_t = 100 A/µs, I_S = -1.25 A			23		ns


al Ohawaatawiatiaa (T ... · • •

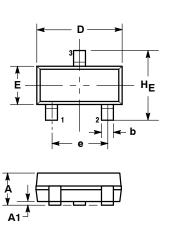
2. Surface-mounted on FR4 board using 1 in sq. pad size (Cu area = 1.127 in sq. [1 oz] including traces). 3. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%. 4. Switching characteristics are independent of operating junction temperatures.

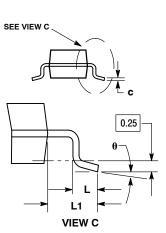
Distributor of ON Semiconductor: Excellent Integrated System Limited Datasheet of NTR4502PT1 - MOSFET P-CH 30V 1.13A SOT-23 Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


NTR4502P, NVTR4502P

t, TIME (ns)

NTR4502P, NVTR4502P

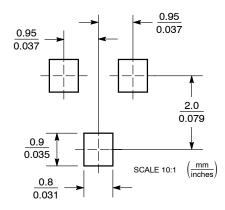




NTR4502P, NVTR4502P

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AP**


NOTES:

3 DRAIN

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
- 2. 3.
- THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. 4.

	MILLIMETERS			INCHES				
DIM	MIN	NOM	MAX	MIN	NOM	MAX		
Α	0.89	1.00	1.11	0.035	0.040	0.044		
A1	0.01	0.06	0.10	0.001	0.002	0.004		
b	0.37	0.44	0.50	0.015	0.018	0.020		
с	0.09	0.13	0.18	0.003	0.005	0.007		
D	2.80	2.90	3.04	0.110	0.114	0.120		
Е	1.20	1.30	1.40	0.047	0.051	0.055		
е	1.78	1.90	2.04	0.070	0.075	0.081		
L	0.10	0.20	0.30	0.004	0.008	0.012		
L1	0.35	0.54	0.69	0.014	0.021	0.029		
ΗE	2.10	2.40	2.64	0.083	0.094	0.104		
θ	0°		10°	0°		10°		
STYLE 21: PIN 1. GATE 2. SOURCE								

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications can and do vary in different applications and actual performance may vary over time. All one the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NTR4502P/D