

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Texas Instruments</u> <u>SN74LV393ATPWRQ1</u>

For any questions, you can email us directly: sales@integrated-circuit.com

Datasheet of SN74LV393ATPWRQ1 - IC DUAL 4-BIT BINARY CTR 14TSSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN74LV393A-Q1 DUAL 4-BIT BINARY COUNTER

SCLS515C - JULY 2003 - REVISED FEBRUARY 2008

Qualified for Automotive Applications

- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- 2-V to 5.5-V V_{CC} Operation
- Max t_{pd} of 9.5 ns at 5 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2.3 V at V_{CC} = 3.3 V, T_A = 25°C
- I_{off} Supports Partial-Power-Down-Mode Operation
- Dual 4-Bit Binary Counters With Individual Clocks
- Direct Clear for Each 4-Bit Counter
- Can Significantly Improve System
 Densities by Reducing Counter Package
 Count by 50 Percent

PW PACKAGE

description/ordering information

The SN74LV393A contains eight flip-flops and additional gating to implement two individual 4-bit counters in a single package. This device is designed for 2-V to 5.5-V V_{CC} operation.

This device comprises two independent 4-bit binary counters, each having a clear (CLR) and a clock (CLK) input. The device changes state on the negative-going transition of the CLK pulse. N-bit binary counters can be implemented with each package, providing the capability of divide by 256. The SN74LV393A has parallel outputs from each counter stage so that any submultiple of the input count frequency is available for system timing signals.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION†

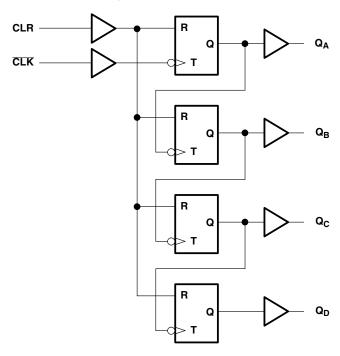
T _A	PACK	AGE‡	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 105°C	TSSOP - PW	Tape and reel	SN74LV393ATPWRQ1	LV393AT

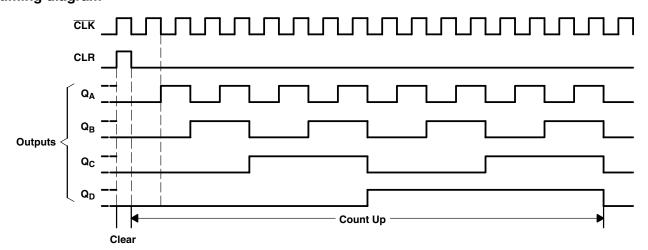
[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

FUNCTION TABLE

INP	UTS	FUNCTION
CLK	CLR	FUNCTION
↑	L	No change
\downarrow	L	Advance to next stage
Χ	Н	All outputs L

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


[‡] Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.


SN74LV393A-Q1 DUAL 4-BIT BINARY COUNTER

SCLS515C - JULY 2003 - REVISED FEBRUARY 2008

logic diagram, each counter (positive logic)

timing diagram

Datasheet of SN74LV393ATPWRQ1 - IC DUAL 4-BIT BINARY CTR 14TSSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN74LV393A-Q1 **DUAL 4-BIT BINARY COUNTER**

SCLS515C - JULY 2003 - REVISED FEBRUARY 2008

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	–0.5 V to 7 V
Output voltage range applied in high or low state, VO (see Notes 1 and 2)	–0.5 V to V _{CC} + 0.5 V
Output voltage range applied in power-off state, V _O (see Note 1)	–0.5 V to 7 V
Input clamp current, I _{IK} (V _I < 0)	–20 mA
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ _{JA} (see Note 3)	113°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. This value is limited to 7 V maximum.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
V_{CC}	Supply voltage		2	5.5	V	
		V _{CC} = 2 V	1.5			
.,	TRUE IN ALCOHOLOGICA	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	$V_{CC} \times 0.7$.,	
V_{IH}	High-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	$V_{CC} \times 0.7$		V	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	$V_{CC} \times 0.7$			
		V _{CC} = 2 V		0.5		
.,	Landa de la Caración de la companya	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		$V_{CC} \times 0.3$.,	
V_{IL}	Low-level input voltage	V _{CC} = 3 V to 3.6 V		$V_{CC} \times 0.3$	V	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		$V_{CC} \times 0.3$		
VI	Input voltage		0	5.5	V	
Vo	Output voltage		0	V _{CC}	V	
		V _{CC} = 2 V		-50	μΑ	
	TRUE In order to the consti	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-2		
l _{OH}	High-level output current	V _{CC} = 3 V to 3.6 V		-6	mA	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-12		
		V _{CC} = 2 V		50	μΑ	
	The decided to the second	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2		
l _{OL}	Low-level output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		6	mA	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		12		
		V _{CC} = 2.3 V to 2.7 V		200		
$\Delta t/\Delta v$	Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V		100	ns/V	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		20		
T _A	Operating free-air temperature	•	-40	105	°C	

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Distributor of Texas Instruments: Excellent Integrated System LimitedDatasheet of SN74LV393ATPWRQ1 - IC DUAL 4-BIT BINARY CTR 14TSSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN74LV393A-Q1 DUAL 4-BIT BINARY COUNTER

SCLS515C - JULY 2003 - REVISED FEBRUARY 2008

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V _{CC}	MIN	TYP	MAX	UNIT			
	$I_{OH} = -50 \mu A$		2 V to 5.5 V	V _{CC} -0.1						
.,	$I_{OH} = -2 \text{ mA}$		2.3 V	2			v			
V _{OH}	$I_{OH} = -6 \text{ mA}$		3 V	2.48			v			
	$I_{OH} = -12 \text{ mA}$		4.5 V	3.8						
	$I_{OL} = 50 \mu A$		2 V to 5.5 V			0.1				
,,	I _{OL} = 2 mA		2.3 V			0.4	,,			
V _{OL}	I _{OL} = 6 mA		3 V			0.44	V			
	I _{OL} = 12 mA		4.5 V			0.55				
lį	V _I = 5.5 V or GND		0 to 5.5 V			±1	μΑ			
I _{CC}	$V_I = V_{CC}$ or GND,	I _O = 0	5.5 V			20	μΑ			
I _{off}	V_I or $V_O = 0$ to 5.5 V		0			5	μΑ			
C _i	$V_I = V_{CC}$ or GND		3.3 V		1.8		pF			

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

			T _A = 25°C MIN MAX		MAIN	MAY	LINUT
					MIN	MAX	UNIT
	t Pulse duration	CLK high or low	5		5		
τ _w		CLR high	5		5		ns
t _{su}	Setup time	CLR inactive before CLK↓	6		6		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

			T _A = 2	25°C	MIN MAX		
		M				MAX	UNIT
	t _w Pulse duration	CLK high or low	5		5		
τ _W		CLR high	5		5		ns
t _{su}	Setup time	CLR inactive before CLK↓	5		5		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			T _A = 2	25°C		MINI MAY	
			MIN	MAX	MIN	MAX	UNIT
	t Pulse duration	CLK high or low	5		5		
τ _w		CLR high	5		5		ns
t _{su}	Setup time	CLR inactive before CLK↓	4		4		ns

SN74LV393A-Q1 DUAL 4-BIT BINARY COUNTER

SCLS515C - JULY 2003 - REVISED FEBRUARY 2008

switching characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	LOAD	T,	T _A = 25°C	;	BAINI	MAY	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
f _{max}			C _L = 50 pF	30	70		25		MHz
	5 1.17	Q_{A}			9.3	21.3	1	24.5	
		Q _B			10.9	23.9	1	27.5	
t _{pd}	CLK	Q _C	C _L = 50 pF		12.3	26.1	1	30	ns
		Q_{D}			13.4	27.8	1	32	
t _{PHL}	CLR	Q_n			9.1	17.4	1	20	

switching characteristics over recommended operation free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM (INPUT)	TO (OUTPUT)	LOAD	T _A = 25°C			NAIN!	MAY	LIMIT
PARAMETER			CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
f _{max}			C _L = 50 pF	45	105		35		MHz
		Q_A	C _L = 50 pF		6.7	16.7	1	19	
		Q_{B}			7.8	19.3	1	22	
^T pd	CLK	Q_{C}			8.7	21.5	1	24.5	ns
		Q_{D}			9.5	23.2	1	26.5	
t _{PHL}	CLR	Q _n]		6.8	15.8	1	18	

switching characteristics over recommended operating free-air temperature range V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

	•	, ,	• ,						
DADAMETED	FROM (INPUT)	то	LOAD	T _A = 25°C				MAY	
PARAMETER		(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
f _{max}			$C_{L} = 50 \text{ pF}$	85	150		75		MHz
		Q_A			4.9	10.5	1	12	ns
	5 17	Q _B			5.6	11.8	1	13.5	
t _{pd}	CLK	Q _C	C _L = 50 pF		6.2	13.2	1	15	
		Q _D]		6.6	14.5	1	16.5	
t _{PHL}	CLR	Q _n	1		5.2	10.1	1	11.5	

Datasheet of SN74LV393ATPWRQ1 - IC DUAL 4-BIT BINARY CTR 14TSSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN74LV393A-Q1 DUAL 4-BIT BINARY COUNTER

SCLS515C - JULY 2003 - REVISED FEBRUARY 2008

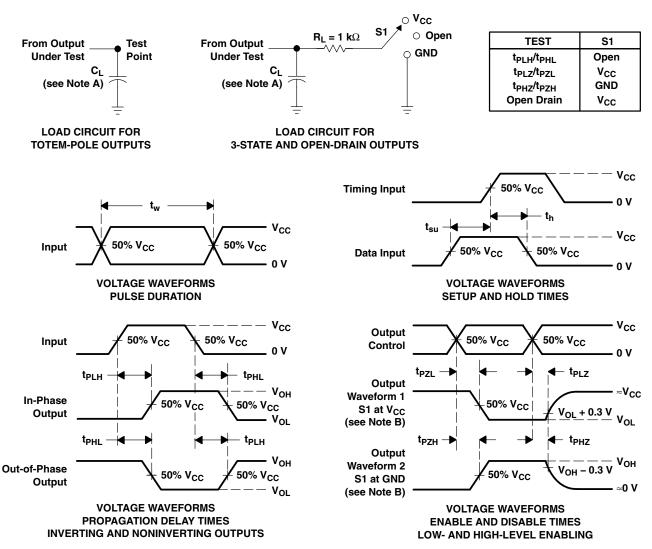
noise characteristics, V_{CC} = 3.3 V, C_L = 50 pF, T_A = 25°C (see Note 5)

	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.3	0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.2	-0.8	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		2.8		V
V _{IH(D)}	High-level dynamic input voltage	2.31			V
$V_{IL(D)}$	Low-level dynamic input voltage			0.99	V

NOTE 5: Characteristics are for surface-mount packages only.

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CO	V _{CC}	TYP	UNIT	
C _{pd}	Davies dissination constitues	0 50 5	f = 10 MHz	3.3 V	15.2	pF
	Power dissipation capacitance	$C_L = 50 \text{ pF},$	I = IU MINZ	5 V	17.3	pΓ



SN74LV393A-Q1 **DUAL 4-BIT BINARY COUNTER**

SCLS515C - JULY 2003 - REVISED FEBRUARY 2008

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_{O} = 50 \Omega$, $t_{r} \leq$ 3 ns, $t_{f} \leq$ 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PHL} and t_{PLH} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

Datasheet of SN74LV393ATPWRQ1 - IC DUAL 4-BIT BINARY CTR 14TSSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
SN74LV393ATPWRG4Q1	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	LV393AT	Samples
SN74LV393ATPWRQ1	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	LV393AT	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LV393A-Q1:

Datasheet of SN74LV393ATPWRQ1 - IC DUAL 4-BIT BINARY CTR 14TSSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

11-Apr-2013

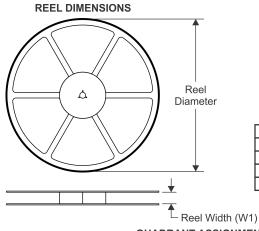
• (Jata	ılog:	SN	/4L	V393A	
-----	------	-------	----	-----	-------	--

● Enhanced Product: SN74LV393A-EP

NOTE: Qualified Version Definitions:

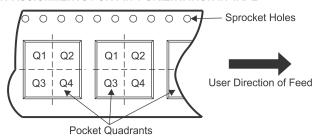
- Catalog TI's standard catalog product
- $_{\bullet}$ Enhanced Product Supports Defense, Aerospace and Medical Applications

Addendum-Page 2


Datasheet of SN74LV393ATPWRQ1 - IC DUAL 4-BIT BINARY CTR 14TSSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Mar-2013

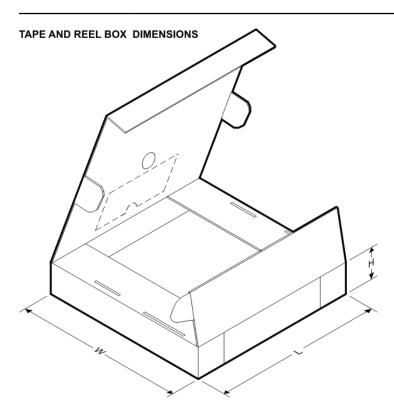

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity AO

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV393ATPWRG4Q1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV393ATPWRQ1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

Datasheet of SN74LV393ATPWRQ1 - IC DUAL 4-BIT BINARY CTR 14TSSOP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Mar-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV393ATPWRG4Q1	TSSOP	PW	14	2000	367.0	367.0	35.0
SN74LV393ATPWRQ1	TSSOP	PW	14	2000	367.0	367.0	35.0

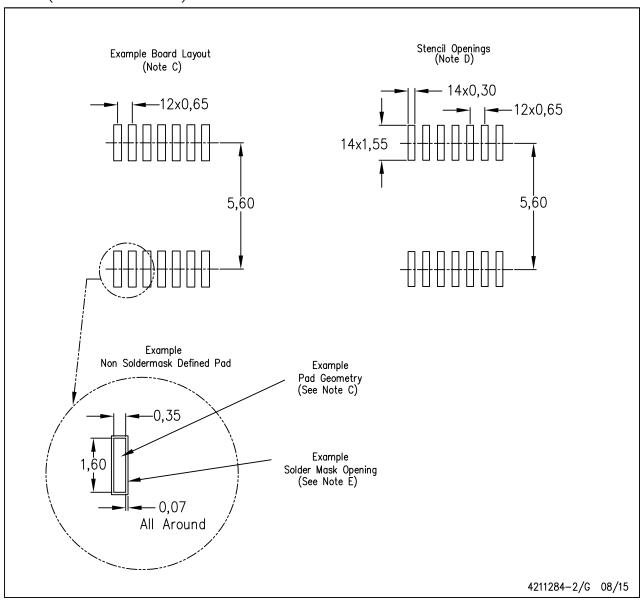
MECHANICAL DATA

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153



LAND PATTERN DATA

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

Distributor of Texas Instruments: Excellent Integrated System LimitedDatasheet of SN74LV393ATPWRQ1 - IC DUAL 4-BIT BINARY CTR 14TSSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical

Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense

Security

www.ti.com/security

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

Products

Logic

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

logic.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated