

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

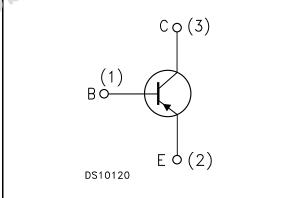
STMicroelectronics 2STR2215

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Low voltage fast-switching PNP power transistor

Features

- Very low collector-emitter saturation voltage
- High current gain characteristic
- Fast switching speed
- Miniature SOT-23 plastic package for surface mounting circuits


Applications

- LED
- Battery charger
- Motor and relay driver
- Voltage regulation

Description

The 2STR2215 is a PNP transistor manufactured using new "PB-HCD" (power bipolar high current density) technology. The resulting transistor shows exceptional high gath performances coupled with very low saturation voltage. The complementar (NPN) is the 2STR1215.

Table 1.Device summary

Order code	Marking	Package	Packaging
2STR2215	215	SOT-23	Tape and reel

1/9

Electrical ratings

2STR2215

Electrical ratings 1

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-base voltage (I _E = 0)	-15	V
V _{CEO}	Collector-emitter voltage (I _B = 0)	-15	V
V _{EBO}	Emitter-base voltage (I _C = 0)	-5	V
Ι _C	Collector current	-1.5	Α
I _{CM}	Collector peak current (t _P < 5 ms)	-3	A
P _{tot}	Total dissipation at T _{amb} = 25 °C	0.5	W
T _{stg}	Storage temperature	- 35 '0 150	°C
TJ	Max. operating junction temperature	150	°C
	201		
Table 3.	Thermal data		
		No.1	

Table 3. Thermal data

Symbol	Parameter	Value	Unit	
$R_{thj-amb}^{(1)}$	Thermal resistance junction-amb	max	250	°C/W

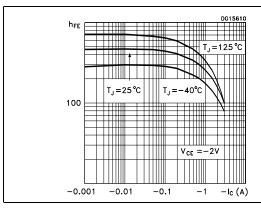
Lite productions 1. Device mounted on PCB area of 1cm²

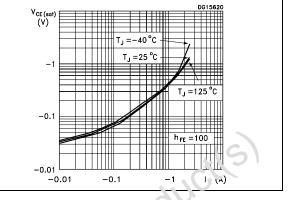
2 Electrical characteristics

 $(T_{case} = 25 \ ^{\circ}C \text{ unless otherwise specified})$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{СВО}	Collector cut-off current (I _E =0)	V _{CB} = -15 V			-0.1	μA
I _{EBO}	Emitter cut-off current (I _C =0)	V _{EB} = -4 V			-0.1	μA
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C = -100 μΑ	-15	40		v
V _{(BR)CEO} ⁽¹⁾	Collector-emitter breakdown voltage (I _B = 0)	I _C = -10 mA	-\5			V
V _{(BR)EBO}	Emitter-base breakdown voltage ($I_{\rm C} = 0$)	l _E = -100 μA	-5			V
V _{CE(sat)} ⁽¹⁾	Collector-emitter saturation voltage	$I_{C} = -100 \text{ mA}$ $I_{B} = -1 \text{ mA}$ $I_{C} = -1 \text{ A}$ $I_{B} = -100 \text{ mA}$ $I_{C} = -2 \text{ A}$ $I_{B} = -200 \text{ mA}$		-0.25 -0.40	-0.15 -0.50 -0.85	> > >
V _{BE(sat)} ⁽¹⁾	Base-emitter saturation voltage	I _C = -1 A I _B = -100 mA		-0.90	-1.25	V
h _{FE} (1)	DC current gain	$\begin{array}{ll} I_{C} = -50 \text{ mA} & V_{CE} = -2 \text{ V} \\ I_{C} = -500 \text{ mA} & V_{CE} = -2 \text{ V} \\ I_{C} = -1 \text{ A} & V_{CE} = -2 \text{ V} \\ I_{C} = -2 \text{ A} & V_{CE} = -2 \text{ V} \end{array}$	200 200 130 80	280	560	
C _{CBO}	Collector-base capacitance (I _E = 0)	V _{CB} = -10 V f = 1 MHz		20		pF
t _{on} t _{off}	Resistive load Turn-on time Turn-off time	$I_{C} = -1.5 \text{ A}$ $V_{CC} = -10 \text{ V}$ $I_{B1} = -I_{B2} = -150 \text{ mA}$		60 220		ns ns

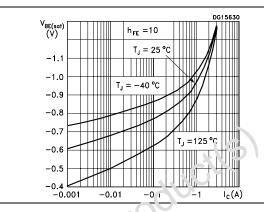
1. Pulsed duration = 300 μ s, duty cycle \leq 1.5%

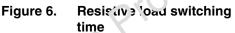

Figure 3.


Electrical characteristics

2STR2215

2.1 Electrical characteristics (curves)


Figure 2. DC current gain



Collector-emitter saturation voltage

Figure 4. Base-emitter saturation voltage

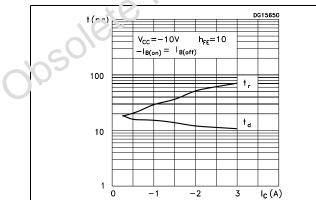


Figure 5. Resistive load switching time

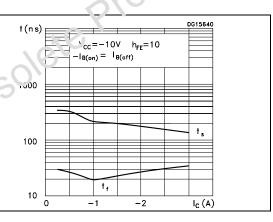
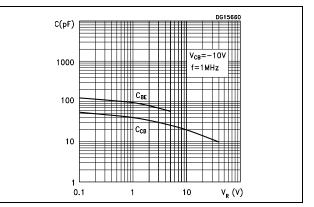
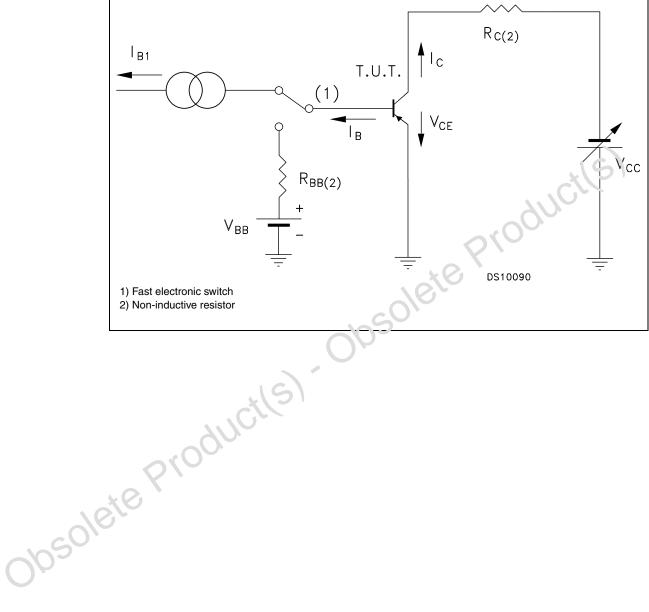



Figure 7. Capacitance



57

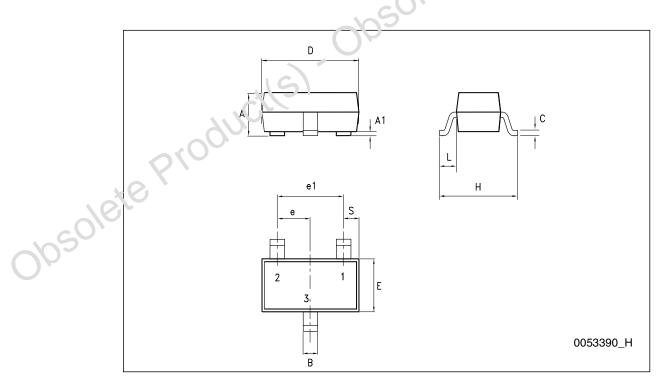
2.2 Test circuit

Package mechanical data

2STR2215

3 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.



57

Package mechanical data

	SOT-23 mechanical data				
DIM.		mm.			
DIM.	min.	typ	max.		
А	0.89		1.4		
A1	0		0.1		
В	0.3		0.51		
С	0.085		0.18		
D	2.75		3.04		
е	0.85		1.05		
e1	1.7		21		
E	1.2		1.6		
Н	2.1	0	2.75		
L		0.6			
S	0.35	161	0.65		

Revision history

2STR2215

4 Revision history

Table 5. Document revision history

Date	Revision	Changes
09-Feb-2006	1	Initial release.
20-Jul-2006	2	New template.
08-Sep-2008	3	Updated the SOT-23 mechanical data.
08-Jan-2009	4	Updated <i>Figure 1: Internal schematic diagram</i> Updated statement ECOPACK [®]
etepro	ductl	Updated statement ECOPACK®

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its s los dicaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be docened a cense grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/CA SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZEL OF WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN 19 ADJUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY CALLY 3E USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale (f S⁻ products with provisions different from the statements and/or technical features set forth in this document shall immediately void any car anty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any ability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

