

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay/Siliconix SI1555DL-T1-E3

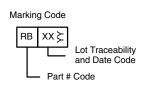
For any questions, you can email us directly: sales@integrated-circuit.com

Si1555DL

Vishay Siliconix

Complementary Low-Threshold MOSFET Pair

PRODUCT SUMMARY						
	V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)			
N-Channel	20	0.385 at V _{GS} = 4.5 V	0.70			
		0.630 at V _{GS} = 2.5 V	0.54			
		0.600 at V _{GS} = - 4.5 V	- 0.60			
P-Channel	- 8	0.850 at V _{GS} = - 2.5 V	- 0.50			
		1.200 at V _{GS} = - 1.8 V	- 0.42			


FEATURES

- TrenchFET® Power MOSFET
- Material categorization:
 For definitions of compliance please see www.vishay.com/doc?99912

ROHS COMPLIANT HALOGEN FREE

Ordering Information: Si1555DL-T1-GE3 (Lead (Pb)-free and Halogen-free)

ABSOLUTE MAXIMUM RATIN	GS (T _A = 25	°C, unless	otherwise	noted)			
Parameter		Symbol	N-Channel		P-Channel		
			5 s	Steady State	5 s	Steady State	Unit
Drain-Source Voltage		V_{DS}	20		- 8		.,
Gate-Source Voltage		V _{GS}	± 12		± 8		V
O	T _A = 25 °C	I _D	± 0.70	± 0.66	- 0.60	- 0.57	
Continuous Drain Current (T _J = 150 °C) ^a	T _A = 85 °C		± 0.50	± 0.48	- 0.43	- 0.41	
Pulsed Drain Current		I _{DM}	± 1				A
Continuous Source Current (Diode Conduction	on) ^a	I _S	0.25	0.23	- 0.25	- 0.23	
	T _A = 25 °C	P _D	0.30	0.27	0.30	0.27	W
Maximum Power Dissipation ^a	T _A = 85 °C		0.16	0.14	0.16	0.14	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150				°C

THERMAL RESISTANCE RATINGS							
Parameter		Symbol	Typical	Maximum	Unit		
M	t ≤ 5 s	R _{thJA}	360	415			
Maximum Junction-to-Ambient ^a	Steady State	' 'thJA	400	460	°C/W		
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	300	350			

Note:

a. Surface mounted on 1" x 1" FR4 board.

Document Number: 71079 S13-0631-Rev. F, 25-Mar-13

Distributor of Vishay/Siliconix: Excellent Integrated System Limited

Datasheet of SI1555DL-T1-E3 - MOSFET N/P-CH 20V/8V SC70-6

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Si1555DL

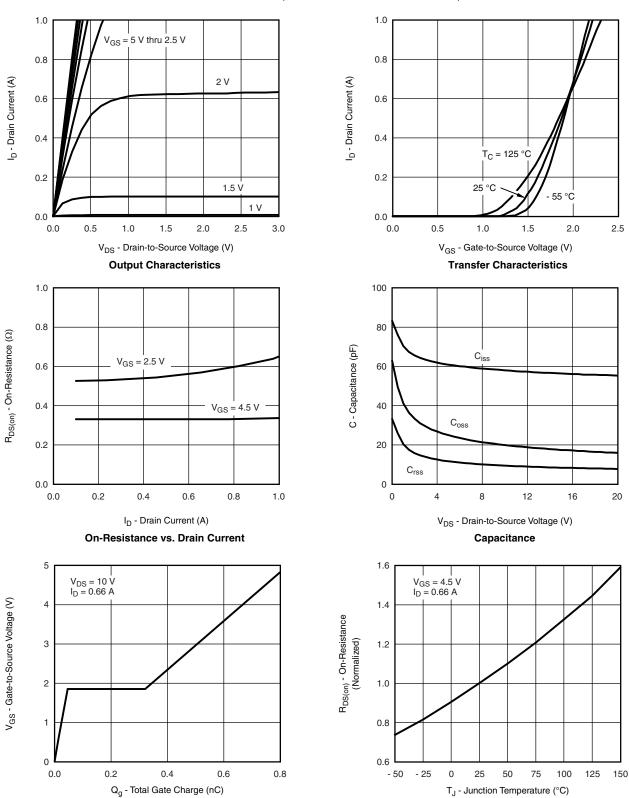
Vishay Siliconix

SPECIFICATIONS $(T_J = 25)$	°C, unles	s otherwise noted)						
Parameter	Symbol	Test Conditions		Min.	Тур.	Max.	Unit	
Static		·						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	N-Ch	0.6		1.4	٧	
		$V_{DS} = V_{GS}, I_D = -250 \mu A$	P-Ch	- 0.45		- 1		
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$	N-Ch			± 100	nA	
		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$	P-Ch			± 100	IIA	
		V _{DS} = 20 V, V _{GS} = 0 V	N-Ch			1	- μΑ	
		V _{DS} = -8 V, V _{GS} = 0 V	P-Ch			- 1		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 20 V, V _{GS} = 0 V, T _J = 85 °C	N-Ch			5		
		V _{DS} = - 8 V, V _{GS} = 0 V, T _J = 85 °C	P-Ch			- 5		
		$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	N-Ch	1			А	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	P-Ch	- 1				
		V _{GS} = 4.5 V, I _D = 0.66 A	N-Ch	N-Ch 0.32		0.385		
		V _{GS} = - 4.5 V, I _D = - 0.57 A	P-Ch		0.510	0.600		
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = 2.5 V, I _D = 0.40 A	N-Ch		0.560	0.630	Ω	
	26(61.)	V _{GS} = - 2.5 V, I _D = - 0.48 A	P-Ch		0.720	0.850		
		V _{GS} = - 1.8 V, I _D = - 0.20 A	P-Ch		1.000	1.200		
	9 _{fs}	V _{DS} = 10 V, I _D = 0.66 A	N-Ch		1.5		S	
Forward Transconductance ^a		V _{DS} = - 4 V, I _D = - 0.57 A	P-Ch		1.2			
	V _{SD}	I _S = 0.23 A, V _{GS} = 0 V	N-Ch		0.8	1.2	.,	
Diode Forward Voltage ^a		I _S = - 0.23 A, V _{GS} = 0 V	P-Ch		- 0.8	- 1.2	V	
Dynamic ^b						l		
Total Cata Charge	0		N-Ch		0.8	1.2		
Total Gate Charge	Q_g	N-Channel $V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 0.66 \text{ A}$	P-Ch		1.5	2.3		
Gate-Source Charge	Q _{gs}	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 0.00 \text{ A}$			0.06		nC	
		P-Channel	P-Ch		0.17			
Gate-Drain Charge	Q _{gd}	$V_{DS} = -4 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -0.57 \text{ A}$	N-Ch		0.30			
			P-Ch N-Ch		0.16 10	20	 	
Turn-On Delay Time	t _{d(on)}	N-Channel	P-Ch		6	12		
Rise Time	t _r	$V_{DD} = 10 \text{ V}, R_L = 20 \Omega$	N-Ch		16	30		
		$I_D \cong 0.5 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 6 \Omega$	P-Ch		25	50		
Turn-Off Delay Time	t _{d(off)}	P-Channel	N-Ch		10	20		
		$V_{DD} = -4 \text{ V}, R_L = 8 \Omega$	P-Ch		10	20	ns	
Fall Time	t _f	$I_D \cong$ - 0.5 A, V_{GEN} = - 4.5 V, R_g = 6 Ω	N-Ch		10	20		
	'	1 000 1 11/11 100 1/	P-Ch		10	20		
Source-Drain Reverse Recovery Time	t _{rr}	I _F = 0.23 A, dl/dt = 100 A/μs	N-Ch		20	40		
	"	I _F = - 0.23 A, dI/dt = 100 A/μs	P-Ch		20	40		

Notes:

- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



Si1555DL

Vishay Siliconix

N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

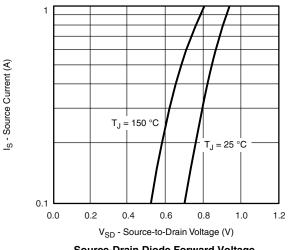
Document Number: 71079 S13-0631-Rev. F, 25-Mar-13 **Gate Charge**

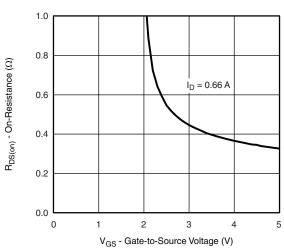
For technical questions, contact: pmostechsupport@vishay.com

www.vishay.com

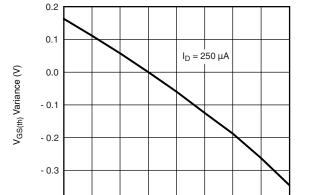
On-Resistance vs. Junction Temperature

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

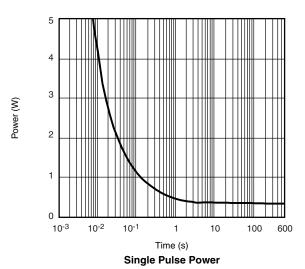

Datasheet of SI1555DL-T1-E3 - MOSFET N/P-CH 20V/8V SC70-6


Si1555DL

Vishay Siliconix



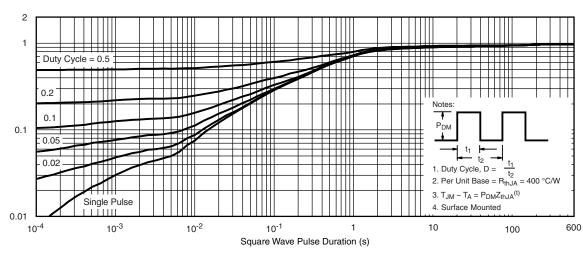
N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



Source-Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

T_J - Junction Temperature (°C) **Threshold Voltage**


50

75

100

125

150

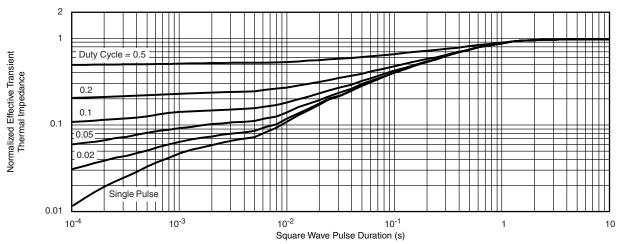
Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Effective Transient Thermal Impedance - 0.4 - 50

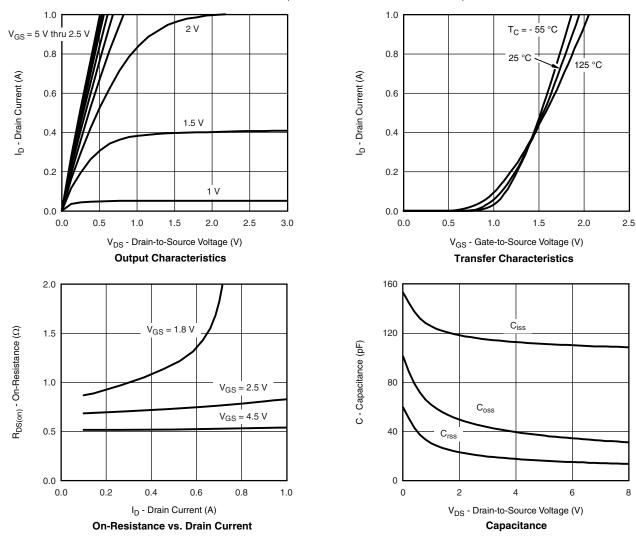
- 25

0

25



Si1555DL


Vishay Siliconix

N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

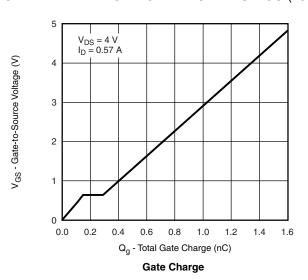
Normalized Thermal Transient Impedance, Junction-to-Foot

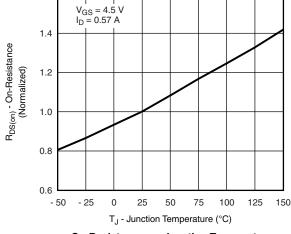
P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Document Number: 71079 S13-0631-Rev. F, 25-Mar-13 For technical questions, contact: pmostechsupport@vishay.com

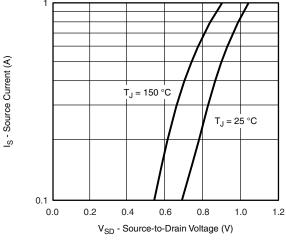
www.vishay.com

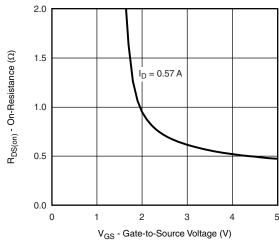
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

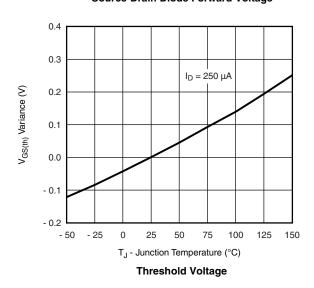

Datasheet of SI1555DL-T1-E3 - MOSFET N/P-CH 20V/8V SC70-6

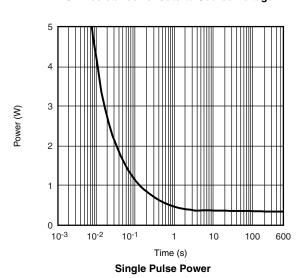

Si1555DL

Vishay Siliconix




P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


On-Resistance vs. Junction Temperature



Source-Drain Diode Forward Voltage

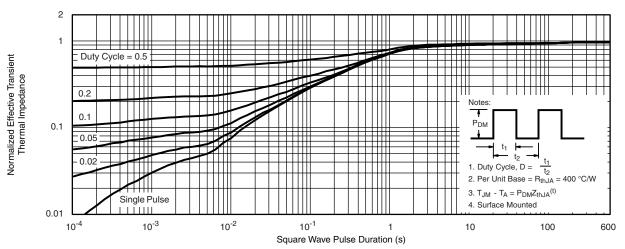
www.vishay.com

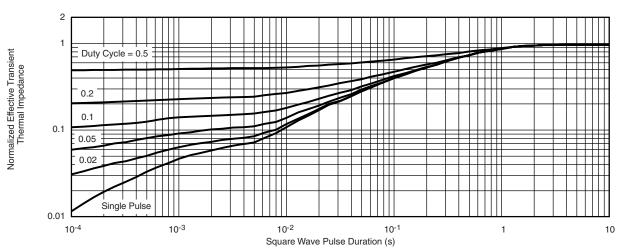
For technical questions, contact: pmostechsupport@vishay.com

Document Number: 71079 S13-0631-Rev. F, 25-Mar-13

Distributor of Vishay/Siliconix: Excellent Integrated System Limited

Datasheet of SI1555DL-T1-E3 - MOSFET N/P-CH 20V/8V SC70-6


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


Si1555DL

Vishay Siliconix

P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71079.

Document Number: 71079 S13-0631-Rev. F, 25-Mar-13

Distributor of Vishay/Siliconix: Excellent Integrated System Limited

Datasheet of SI1555DL-T1-E3 - MOSFET N/P-CH 20V/8V SC70-6

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Legal Disclaimer Notice

Vishav

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000