TOSHIBA BiCD Digital Integrated Circuit Silicon Monolithic

TB62756FUG

Step-up Type DC/DC Converter for White LEDs

The TB62756FUG is a high efficiency step-up type DC/DC converter that is designed especially for use as a constant current driver of white LEDs.
It is possible to drive 2 to 6 white LEDs connected in series using a lithium-ion battery.

This IC incorporates an N-ch-MOS FET required for switching of an external inductor.

The forward current of the LEDs can be controlled by an external resistor.

This IC is best suited for use as a driver of white LED back lighting in color LCDs in PDAs, cellular phones and handy

Weight: 0.016 g (typ.) terminal devices.

The suffix (G) appended to the part number represents a Lead (Pb)-Free product.

Features

- Can drive 2 to 6 white LEDs connected series
- Variable LED current IF is set with a external resistor: 20 mA (typ.) @RSENS = 16Ω
- Output power: Available for 400 mW LED loading
- High efficiency: 87% @Maximum
- IC package: SSOP6-P-0.95 (SOT23-6)
- Switching frequency: 1.1 MHz (typ.)

Block Diagram

Pin Assignment (top view)

Note 1: The IC may break if mounted 180 degrees in reverse. Ensure the device is correctly orientated before assembley.

Pin Functions

No.	Symbol	
1	$\overline{\text { SHDN }}$	Input pin for IC ON/OFF control. SHDN $=\mathrm{H} \rightarrow$ Operation Mode, SHDN $=\mathrm{L} \rightarrow$ Shutdown Mode (IC shutdown) Please do not open this terminal.
2	NC	No connection or connected to GND.
3	VIN	Supply voltage pin. Supply voltage range: 2.8 V to 5.5 V
4	SW	DC-DC converter switching pin - switch incorporates N-ch MOSFET.
5	GND	Ground pin.
6	FB	Connected to the cathode of LED.

Note 2: The NC terminal is not connected to the internal circuit.

I/O Equivalent Pin Circuits

1. $\overline{\text { SHDN }}$ Pin

2. SW Pin

2. NC Pin

NC 2

The NC pin is not connected to any internal circuit.
4. FB Pin

Application Circuit Example

Protection at the Time of LED Opening

The zener diode in the application circuit example is necessary for the provision of over-voltage protection for when the LED becomes open. As the IC does not incorporate a voltage protection circuit, it is strongly advised that a zener diode be connected.

The zener diode should satisfy the following conditions:
i) Less than maximum output voltage of 24 V
ii) Greater than the total series LED VF
iii) Less than the maximum output capacitance C_{2}.

Moreover, by connecting a protection circuit such as RZD in the figure below, it is possible to control the output current when the LED becomes open, and to use a zener diode of lower tolerance.

An example of IZD control by RZD connection. $($ RSENS $=16 \Omega)$

$R_{Z D}(\Omega)$	IZD (mA)
500	0.6 (typ.)
100	2.8 (typ.)

In order to avoid adverse effects on driver characteristics, Toshiba recommends a resistance of 500Ω or less.

Protection Circuit Application

Output-side Capacitor Setting

It is recommended that the value of C_{2} be equal to, or greater than $1.0(\mu \mathrm{~F})$.

External Inductor Size Setting

For each number of LEDs, the selected inductance should be greater than the value indicated in the table below.

Number of LEDs	Inductance (Unit: $\mu \mathrm{H})$	Note
2	4.7	
3	6.8	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
4		
5	10	
6		

Control of I_{F}

The resistance RSENS is connected between the FB pin and the GND pin.
The average current is controlled by the RSENS value, and calculated using the following equation: $\mathrm{IF}_{\mathrm{F}}(\mathrm{mA})=[325 \mathrm{mV} / \operatorname{RSENS}(\Omega)]$
Margin of error is $\pm 5 \%$.

Dimming using PWM Signal Input

A dimming function can also by applied using a PWM signal.
[Notes]

- When using a PWM signal, the minimum pulse width of the PWM should be greater than $33 \mu \mathrm{~s}$.
- Duty ratio of PWM function should be set at 10% to 90%.
- The recommended PWM frequency should be 100 Hz to 10 kHz .
<<Output current is calculated using the following equation>>

$$
\operatorname{IF}(\mathrm{mA})=\frac{325[\mathrm{mV}] \times \mathrm{ON} \text { Duty }[\%]}{\operatorname{R}_{\text {SENS }}[\Omega]}
$$

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, unless otherwise specified)

Characteristics	Symbol	Ratings	Unit
Power supply voltage	V_{IN}	-0.3 to 6.0	V
Input voltage	V $\overline{\text { SHDN }}$	-0.3 to $\mathrm{V}_{\mathrm{IN}}+0.3$ (Note 1)	V
Switching pin voltage	$\mathrm{V}_{\mathrm{O}}(\mathrm{SW})$	-0.3 to 24	V
Power dissipation	$P_{\text {D }}$	0.41 (IC only)	W
		0.47 (IC mounted on PCB) (Note 2)	
Thermal resistance	$\mathrm{R}_{\text {th (j-a) }} 1$	300 (IC only)	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\mathrm{R}_{\text {th (j-a) }} 2$	260 (IC mounted on PCB)	
Operating temperature range	Topr	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Maximum junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$

Note 1: However, do not exceed 6 V .
Note 2: Power dissipation is reduced by $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from the absolute maximum rating for every $1^{\circ} \mathrm{C}$ exceeding the ambient temperature of $25^{\circ} \mathrm{C}$ (when the IC is mounted on a PCB).

Recommended Operating Condition ($\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise specified)

Characteristics	Symbol	Test Conditions	Min	Typ.	Max	Unit
Power supply voltage	$\mathrm{V}_{\text {IN }}$	-	2.8	-	5.5	V
$\overline{\text { SHDN }}$ pin input pulse width	tpw	"H", "L" duty width	33	-	-	$\mu \mathrm{S}$
LED current (Average value)	$\mathrm{I}_{\mathrm{F} 1}$	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{SENS}}=16 \Omega$ 4 white LEDs, $\mathrm{Ta}=25^{\circ} \mathrm{C}$	-	20	-	mA

Electrical Characteristics $\mathbf{(T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V , unless otherwise specified)

Characteristics	Symbol	Test Conditions	Min	Typ.	Max	Unit
Operating consumption current	$\mathrm{I} \mathrm{IN}(\mathrm{ON})$	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{R}_{\text {SENS }}=16 \Omega$	-	0.9	1.5	mA
Standby consumption current	IIN (OFF)	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=0 \mathrm{~V}$	-	0.5	1.0	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ pin H level input voltage	V $\overline{\text { SHDN }} \mathrm{H}$	-	1.3	-	VIN	V
$\overline{\text { SHDN }}$ pin L level input voltage	V $\overline{\text { SHDNL }}$	-	0	-	0.4	V
$\overline{\text { SHDN }}$ pin current	ISHDN	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=3.6 \mathrm{~V}$ or 0 V	-10	0	10	$\mu \mathrm{A}$
Integrated MOS-FET switching frequency	fosc	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=3.6 \mathrm{~V}$	0.77	1.1	1.43	MHz
Switching pin protection voltage	$\mathrm{V}_{\mathrm{O}}(\mathrm{SW})$	-	-	25	-	V
Switching pin current	IO (SW)	-	-	400	-	mA
Switching pin leakage current	IOZ (SW)	-	-	0.5	1	$\mu \mathrm{A}$
FB pin feedback voltage	V_{FB}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{R}_{\text {SENS }}=16 \Omega \\ & \mathrm{~L}=4.7 \mu \mathrm{H} \end{aligned}$	308	325	342	mV
FB pin line regulation	$\Delta \mathrm{V}_{\mathrm{FB}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V} \text { center } \\ & \mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V} \text { to } 5.0 \mathrm{~V} \end{aligned}$	-5	-	5	\%

1. Application Circuit Example and Measurement Data (reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency (\%)
2 LEDs	82.60 to 88.46	86.29
3 LEDs	82.69 to 87.78	85.95
4 LEDs	80.73 to 86.22	83.05
5 LEDs	80.73 to 87.28	83.45
6 LEDs	79.78 to 85.55	81.15

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to $5.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}\right.$ typ.)

	Output Current $\left.\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V} \mathrm{~V}\right)$	Tolerance (\%)	
	Min	Max	
2 LEDs	21.13	-3.50	1.77
3 LEDs	20.60	-1.95	1.38
4 LEDs	20.87	-1.75	1.11
5 LEDs	20.06	-1.81	1.15
6 LEDs	19.90	-1.95	1.28

Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

2. Application Circuit Example and Measurement Data (reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency (\%)
2 LEDs	83.10 to 88.60	86.55
3 LEDs	81.32 to 86.47	84.54
4 LEDs	79.15 to 84.63	81.30
5 LEDs	79.72 to 86.39	82.87
6 LEDs	78.91 to 85.10	80.47

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to $5.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}\right.$ typ.)

	Output Current (mA) $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$	Tolerance (\%)	
	21.17	Min	Max
2 LEDs	20.85	-3.32	1.73
3 LEDs	20.56	-1.95	1.38
4 LEDs	20.10	-1.79	1.15
5 LEDs	19.95	-1.82	1.22
6 LEDs	-1.94	1.26	

Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

3. Application Circuit Example and Measurement Data (reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency (\%)
2 LEDs	82.37 to 88.70	86.38
3 LEDs	80.19 to 86.55	84.12
4 LEDs	78.11 to 84.54	80.16
5 LEDs	74.79 to 84.94	79.94
6 LEDs	74.14 to 83.47	77.17

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to $5.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}\right.$ typ. $)$

	Output Current (mA)	Tolerance (\%)	
	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$		

Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

4. Application Circuit Example and Measurement Data (reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency (\%)
2 LEDs	79.85 to 86.97	84.02
3 LEDs	80.19 to 85.32	83.39
4 LEDs	78.77 to 83.60	80.69
5 LEDs	79.72 to 86.39	82.87
6 LEDs	78.91 to 85.10	80.49

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to $5.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}\right.$ typ.)

	Output Current $\left.\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V} \mathrm{~V}\right)$	Tolerance (\%)	
	Min	Max	
2 LEDs	21.19	-3.08	1.67
3 LEDs	20.89	-1.86	1.33
4 LEDs	20.64	-1.68	1.11
5 LEDs	20.10	-1.82	1.22
6 LEDs	19.95	-1.94	1.26

Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

5. Application Circuit Example and Measurement Data (reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency (\%)
2 LEDs	83.08 to 89.23	86.73
3 LEDs	79.02 to 86.30	83.52
4 LEDs	75.75 to 83.83	80.78

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to $5.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}\right.$ typ. $)$

	Output Current (mA)$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$	Tolerance (\%)	
		Min	Max
2 LEDs	21.06	-2.46	4.02
3 LEDs	20.57	-2.39	2.94
4 LEDs	20.22	-2.28	2.65

Note: These application examples are provided for reference only. Thorough evaluation and testing should be implemented when designing your application's mass production design.

Package Dimensions

SSOP6-P-0.95B
Unit: mm

Weight: 0.016 g (typ.)

Notes on Contents

1. Block Diagrams

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

2. Equivalent Circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

3. Timing Charts

Timing charts may be simplified for explanatory purposes.

4. Application Circuits

The application circuits shown in this document are provided for reference purposes only.
Thorough evaluation is required, especially at the mass production design stage.
Toshiba does not grant any license to any industrial property rights by providing these examples of application circuits.

5. Test Circuits

Components in the test circuits are used only to obtain and confirm the device characteristics. These components and circuits are not guaranteed to prevent malfunction or failure from occurring in the application equipment.

IC Usage Considerations

Notes on Handling of ICs

(1) The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
(2) Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.
(3) If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke or ignition.
Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.
(4) Do not insert devices in the wrong orientation or incorrectly.

Make sure that the positive and negative terminals of power supplies are connected properly. Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.
(5) Carefully select external components (such as inputs and negative feedback capacitors) and load components (such as speakers), for example, power amp and regulator.
If there is a large amount of leakage current such as input or negative feedback condenser, the IC output DC voltage will increase. If this output voltage is connected to a speaker with low input withstand voltage, overcurrent or IC failure can cause smoke or ignition. (The over current can cause smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load (BTL) connection type IC that inputs output DC voltage to a speaker directly.

Points to Remember on Handling of ICs

(1) Heat Radiation Design

In using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (Tj) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.
(2) Back-EMF

When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond absolute maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.

About solderability, following conditions were confirmed

- Solderability
(1) Use of Sn-37Pb solder Bath
- solder bath temperature $=230^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux
(2) Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder Bath
- solder bath temperature $=245^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E

