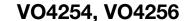
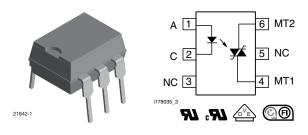
Excellent Integrated System Limited


Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Vishay Semiconductor/Opto Division</u> <u>VO4254H</u>

For any questions, you can email us directly: sales@integrated-circuit.com


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Vishay Semiconductors

Optocoupler, Phototriac Output, High dV/dt, Low Input Current

FEATURES

- High static dV/dt 5 kV/µs
- High input sensitivity 1.6 mA, 2 mA, and 3 mA
- 400 V and 600 V blocking voltage
- 300 mA on-state current
- Isolation test voltage 5300 V_{RMS}
- Material categorization:
 For definitions of compliance please see www.vishay.com/doc?99912

RoHS COMPLIAN

DESCRIPTION

The VO4254 and VO4256 phototriac consists of a GaAs IRLED optically coupled to a photosensitive non-zero crossing TRIAC packaged in a DIP-6 package.

High input sensitivity is achieved by using an emitter follower phototransistor and a cascaded SCR predriver resulting in an LED trigger current of 1.6 mA for bin D, 2 mA for bin H, and 3 mA for bin M.

The new non zero phototriac family use a proprietary dV/dt clamp resulting in a static dV/dt of greater than 5 $kV/\mu s$.

The VO4254 and VO4256 phototriac isolates low-voltage logic from 120 V_{AC} , 240 V_{AC} , and 380 V_{AC} lines to control resistive, inductive, or capacitive loads including motors, solenoids, high current thyristors or TRIAC and relays.

APPLICATIONS

- · Solid-state relays
- · Industrial controls
- · Office equipment
- Consumer appliances

AGENCY APPROVALS

- UL1577, file no. E52744 system code H or J, double protection
- cUL file no. E52744, equivalent to CSA bulletin 5A
- DIN EN 60747-5-5 (VDE 0884) available with option 1
- FIMKO: FI25250

ORDERING INFOR	MATION								
PART NUMBER PACKAGE OPTION TAPE AND REEL Option 7 0									
AGENCY	V _{DRM} 400 V _{DRM} 600								
CERTIFIED/PACKAGE	TRIGGER CURRENT, I _{FT} (mA)								
UL, cUL, FIMKO	1.6	2	3	1.6	2	3			
DIP-6	VO4254D	VO4254H	VO4254M	VO4256D VO4256H		VO4256M			
DIP-6, 400 mil, option 6	VO4254D-X006	VO4254H-X006	VO4254M-X006	VO4256D-X006	VO4256H-X006	VO4256M-X006			
SMD-6, option 7	VO4254D-X007T	VO4254H-X007T	VO4254M-X007T	VO4256D-X007T	VO4256H-X007T	VO4256M-X007T			
UL, cUL, FIMKO, VDE	1.6	2	3	1.6	2	3			
DIP-6	-	-	-	VO4256D-X001	-	-			

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

VO4254, VO4256

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT		
INPUT							
Reverse voltage			V _R	6	V		
Forward current			I _F	60	mA		
Power dissipation			P _{diss}	100	mW		
Derate from 25 °C				1.33	mW/°C		
OUTPUT							
Dook off state voltage		VO4254D/H/M	V_{DRM}	400	V		
Peak off-state voltage		VO4256D/H/M	V_{DRM}	600	V		
RMS on-state current			I _{TM}	300	mA		
Power dissipation			P _{diss}	500	mW		
Derate from 25 °C				6.6	mW/°C		
COUPLER							
Isolation test voltage (between emitter and detector, climate per DIN 500414, part 2, Nov. 74)	t = 1 s		V _{ISO}	5300	V _{RMS}		
Storage temperature range			T _{stg}	- 55 to + 150	°C		
Ambient temperature range			T _{amb}	- 55 to + 100	°C		
Soldering temperature (2)	max. ≤ 10 s dip soldering ≥ 0.5 mm from case bottom		T _{sld}	260	°C		

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
 implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
 maximum ratings for extended periods of the time can adversely affect reliability.
- (1) Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through hole devices (DIP).

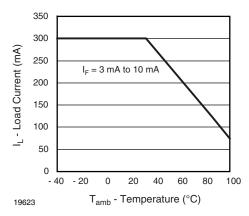


Fig. 1 - Recommended Operating Condition

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

VO4254, VO4256

Vishay Semiconductors

THERMAL CHARACTERISTICS			
PARAMETER	SYMBOL	VALUE	UNIT
LED power dissipation	P _{diss}	100	mW
Output power dissipation	P _{diss}	500	mW
Maximum LED junction temperature	T _{jmax.}	125	°C
Maximum output die junction temperature	T _{jmax.}	125	°C
Thermal resistance, junction emitter to board	θ_{JEB}	150	°C/W
Thermal resistance, junction emitter to case	$\theta_{\sf JEC}$	139	°C/W
Thermal resistance, junction detector to board	θ_{JDB}	78	°C/W
Thermal resistance, junction detector to case	θ_{JDC}	103	°C/W
Thermal resistance, junction emitter to junction detector	θ_{JED}	496	°C/W
Thermal resistance, case to ambient	$\theta_{\sf CA}$	3563	°C/W

Note

The thermal characteristics table above were measured at 25 °C and the thermal model is represented in the thermal network below. Each
resistance value given in this model can be used to calculate the temperatures at each node for a given operating condition. The thermal
resistance from board to ambient will be dependent on the type of PCB, layout and thickness of copper traces. For a detailed explanation
of the thermal model, please reference Vishay's Thermal Characteristics of Optocouplers application note.

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)									
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT		
INPUT									
Forward voltage	I _F = 10 mA		V_{F}		1.2	1.4	V		
Reverse current	V _R = 6 V		I _R		0.1	10	μA		
Input capacitance	$V_F = 0 V, f = 1 MHz$		C _I		40		pF		
OUTPUT									
Repetitive peak off-state voltage	100.00	VO4254D/H/M	V_{DRM}	400			V		
	I _{DRM} = 100 μA	VO4256D/H/M	V_{DRM}	600			V		
Off-state current	$V_D = V_{DRM}$		I _{DRM}			100	μA		
On-state voltage	I _T = 300 mA		V_{TM}			3	V		
On-current	PF = 1, V _{T(RMS)} = 1.7 V		I _{TM}			300	mA		
Critical rate of rise of off-state voltage	$V_D = 0.67 \ V_{DRM}, \ T_J = 25 \ ^{\circ}C$		dV/dt _{cr}	5000			V/µs		
COUPLER									
LED trigger current, current required to latch output	V _D = 3 V	VO4254D	I _{FT}			1.6	mA		
		VO4254H	I _{FT}			2	mA		
		VO4254M	I _{FT}			3	mA		
		VO4256D	I _{FT}			1.6	mA		
		VO4256H	I _{FT}			2	mA		
		VO4256M	I _{FT}			3	mA		
Capacitance (input to output)	f = 1 MHz, V _{IO} = 0 V		C _{IO}		0.8		pF		

Note

Minimum and maximum values were tested requierements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.

www.vishay.com

VO4254, VO4256

Vishay Semiconductors

SAFETY AND INSULATION RATINGS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Climatic classification (according to IEC68 part 1)				55/100/21			
Pollution degree (DIN VDE 0109)				2			
Comparative tracking index per DIN IEC112/VDE 0303 part 1, group Illa per DIN VDE 6110 175 399			175		399		
V _{IOTM}		V _{IOTM}	8000			V	
V _{IORM}		V _{IORM}	890			V	
P _{SO}		Pso			500	mW	
I _{SI}		I _{SI}			250	mA	
T _{SI}		T _{SI}			175	°C	
Creepage distance			7			mm	
Clearance distance			7			mm	

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

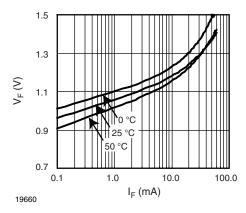


Fig. 2 - Diode Forward Voltage vs. Forward Current

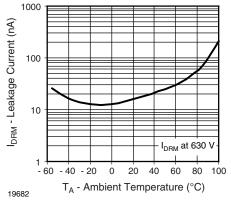


Fig. 4 - Leakage Current vs. Ambient Temperature

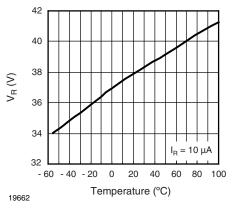


Fig. 3 - Diode Reverse Voltage vs. Temperature

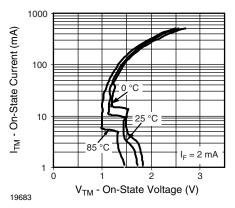


Fig. 5 - On-State Current vs. On-State Voltage

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

VO4254, VO4256

Vishay Semiconductors

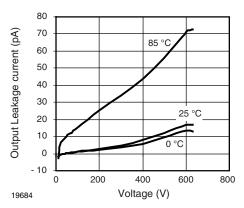


Fig. 6 - Output Off Current (Leakage) vs. Voltage

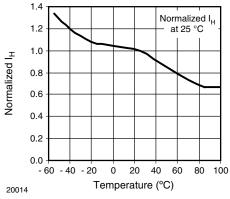


Fig. 9 - Normalized I_H vs. Temperature

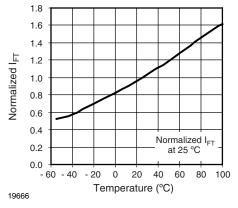


Fig. 7 - Normalized Trigger Input Current vs. Temperature

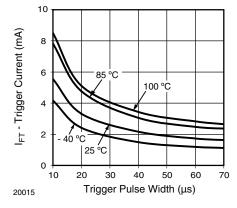
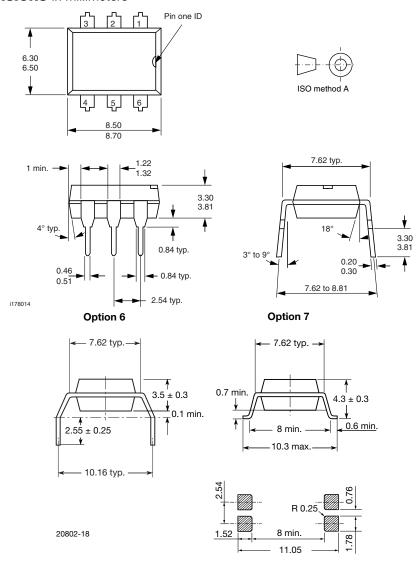


Fig. 10 - I_{FT} vs. LED Pulse Width



Fig. 8 - I_{FT} vs. Turn-On Time (µs)


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

VO4254, VO4256

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

PACKAGE MARKING (example)

Note

• VDE logo is only marked on option 1 parts. Tape and reel suffix (T) is not part of the package marking.

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000