Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: Maxim Integrated MAX4892EETX+ For any questions, you can email us directly: sales@integrated-circuit.com 19-0624: Rev 0: 8/06 # 1000 Base-T, ±15kV ESD Protection LAN Switches ### **General Description** The MAX4890E/MAX4892E meet the needs of high-speed differential switching. The devices handle the needs of Gigabit Ethernet (10/100/1000) Base-T switching as well as LVDS and LVPECL switching. The MAX4890E/ MAX4892E provide enhanced ESD protection up to ±15kV, and excellent high-frequency response, making the devices especially useful for interfaces that must go to an outside connection. Both devices provide extremely low capacitance (CON), as well as low resistance (RON), for low-insertion loss and very wide bandwidth. In addition to the four pairs of DPDT switches, the MAX4892E provides LED switching for laptop computer/docking station use. The MAX4890E/MAX4892E are pin-for-pin equivalents to the MAX4890/MAX4892 and can replace these devices for those applications requiring the enhanced ESD protection. Both devices are available in spacesaving TQFN packages and operate over the standard -40°C to +85°C temperature range. ### **Applications** Notebooks and Docking Stations Servers and Routers with Ethernet Interfaces Board-Level Redundancy Protection SONET/SDH Signal Routing T3/E3 Redundancy Protection LVDS and LVPECL Switching ### Pin Configurations ### **Features** - ±15kV ESD Protected Per MIL-STD-883, Method - ♦ Single +3.0V to +3.6V Power-Supply Voltage - ♦ Low On-Resistance (RoN): 4Ω (typ), 6.5Ω (max) - ♦ Ultra-Low On-Capacitance (CoN): 8pF (typ) - → -23dB Return Loss (100MHz) - ◆ -3dB Bandwidth: 650MHz - Optimized Pin Out for Easy Transformer and PHY Interface - ♦ Built-In LED Switches for Switching Indicators to Docking Station (MAX4892E) - ♦ Low 450µA (max) Quiescent Current - ♦ Bidirectional 8 to 16 Multiplexer/Demultiplexer - ♦ Standard Pin Out, Matching the MAX4890 and MAX4892 - ♦ Space-Saving Lead-Free Packages 32-Pin, 5mm x 5mm, TQFN Package 36-Pin, 6mm x 6mm, TQFN Package ### **Ordering Information** | PART | PIN-
PACKAGE | LED
SWITCHES | PKG
CODE | |--------------|-----------------|-----------------|-------------| | MAX4890EETJ+ | 32 TQFN-EP* | _ | T-3255-4 | | MAX4892EETX+ | 36 TQFN-EP* | 3 | T-3666-3 | +Denotes lead-free package. Note: All devices are specified over the -40°C to +85°C operating temperature range. *EP = Exposed pad. ### Eye Diagram Typical Operating Circuit and Functional Diagrams appear at end of data sheet. NIXIN Maxim Integrated Products 1 #### **ABSOLUTE MAXIMUM RATINGS** | V+ | 0.3V to +4V | |--|----------------------| | All Other Pins | -0.3V to $(V++0.3V)$ | | Continuous Current (A_ to _B_) | | | Continuous Current (LED_ to _LED_) | ±40mA | | Peak Current (A_ to _B_) | | | (pulsed at 1ms, 10% duty cycle) | ±240mA | | Current into Any Other Pin | ±20mA | | Continuous Power Dissipation (T _A = +70°C |) | | 32-Pin TQFN (derate 34.5mW/°C above - | +70°C) 2.76W | | 36-Pin TQFN (derate 35.7mW/°C above - | +70°C) 2.85W | | ESD Protection, Human Body Model | ±15kV | | Operating Temperature Range | e40°C to +85°C | |------------------------------|----------------| | Junction Temperature | +150°C | | Storage Temperature Range. | 65°C to +150°C | | Lead Temperature (soldering, | 10s)+300°C | | | | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **ELECTRICAL CHARACTERISTICS** $(V+=+3V \text{ to } +3.6V, T_A=T_J=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $V+=3.3V, T_A=+25^{\circ}C.)$ (Note 1) | PARAMETER | SYMBOL | CON | DITIONS | MIN | TYP | MAX | UNITS | |----------------------------|------------------|---|--|-----|------|-----|-------| | ANALOG SWITCH | | | | | | | | | On-Resistance | R _{ON} | $V+ = 3V,$ $I_A = -40mA,$ | T _A = +25°C | | 4 | 5.5 | Ω | | Officesistance | TION | | T _{MIN} to T _{MAX} | | | 6.5 | 32 | | On-Resistance LED Switches | Ronled | V+ = 3V, I_LED_ = -40
(MAX4892E) | V+ = 3V, I_LED_ = -40mA, VLED_ = 0, 1.5V, 3V (MAX4892E) | | | 40 | Ω | | On-Resistance Match | ΔR _{ON} | V+ = 3V,
I _A _= -40mA, | T _A = +25°C | | 0.5 | 1.5 | Ω | | Between Channels | ΔΠΟΝ | V _A _ = 0, 1.5V, 3V
(Note 2) | T _{MIN} to T _{MAX} | | | 2 | 22 | | On-Resistance Flatness | RFLAT(ON) | V+ = 3V, I _A _ = -40m. | A, V _A _ = 1.5V, 3V | | 0.01 | | Ω | | Off-Leakage Current | ILA_(OFF) | V+ = 3.6V, V _A _ = 0.3
V _{B1} or V _{B2} = 3.3V, | | -1 | | +1 | | | On-Leakage Current | ILA_(ON) | , · · · | V+ = 3.6V, VA_= 0.3V, 3.3V;
V_B1 or V_B2 = 0.3V, 3.3V or floating | | | +1 | μΑ | | ESD PROTECTION | | | | | | | | | ESD Protection | | Human Body Model
Method 3015) | (spec MIL-STD-883, | | ±15 | | kV | | SWITCH AC PERFORMANCE | | | | | | | | | Insertion Loss | ILOS | $R_S = R_L = 50\Omega$, unback (Note 2) | alanced, f = 1MHz, | | 0.6 | | dB | | Return Loss | R _{LOS} | f = 100MHz | | | -23 | | dB | ### **ELECTRICAL CHARACTERISTICS (continued)** $(V+ = +3V \text{ to } +3.6V, T_A = T_J = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $V+ = 3.3V, T_A = +25^{\circ}C.$) (Note 1) | PARAMETER | SYMBOL | CON | IDITIONS | MIN | TYP | MAX | UNITS | |--------------------------------|--------------------|---|--------------------|-----|------|-----|-------| | Crosstalk | V _{CT1} | Any switch to any switch; R _S = R _L = | f = 25MHz | | -50 | | dВ | | Crosslaik | V _{CT2} | 50Ω , unbalanced, Figure 1 | f = 125MHz | | -26 | | dB | | SWITCH AC CHARACTERISTIC | | | | | | | | | -3dB Bandwidth | BW | $R_S = R_L = 50\Omega$, unb | alanced | | 650 | | MHz | | Off-Capacitance | Coff | f = 1MHz, _B_, A_ | | | 3.5 | | pF | | On-Capacitance | Con | f = 1MHz, _B_, A_ | | | 6.5 | | pF | | Turn-On Time | ton | $V_{A_{-}} = 1V, R_{L}, 100\Omega,$ | Figure 2 | | | 50 | ns | | Turn-Off Time | toff | $V_{A_{-}} = 1V, R_{L}, 100\Omega,$ | Figure 2 | | | 50 | ns | | Propagation Delay | tplh, tphl | $R_S = R_L = 50\Omega$, unb | alanced, Figure 3 | | 0.1 | | ns | | Output Skew Between Ports | tsk(o) | Skew between any t | wo ports, Figure 4 | | 0.01 | | ns | | SWITCH LOGIC | | | | | | | | | Input-Voltage Low | V _{IL} | V+ = 3.0V | | | | 0.8 | V | | Input-Voltage High | VIH | V+ = 3.6V | | 2.0 | | | V | | Input-Logic Hysteresis | V _H YST | V+ = 3.3V | | | 100 | | mV | | Input Leakage Current | I _{SEL} | $V+ = 3.6V, V_{SEL} = 0$ | or V+ | -5 | | +5 | μΑ | | Operating Supply-Voltage Range | V+ | | | 3.0 | | 3.6 | V | | Quiescent Supply Current | l+ | V+ = 3.6V, V _{SEL} = 0 | or V+ | | 280 | 450 | μΑ | Note 1: Specifications at -40°C are guaranteed by design. Note 2: Guaranteed by design. ### **Typical Operating Characteristics** $(V + = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$ #### NIXIN ### _Pin Description | P | IN | | | |----------|----------|-------|--| | MAX4892E | MAX4890E | NAME | FUNCTION | | 1 | 32 | A1 | Differential PHY Interface Pair. Connect to the Ethernet PHY. | | 2 | 1 | A2 | Differential PHY Interface Pair. Connect to the Ethernet PHY. | | 3 | 2 | A3 | Differential PHY Interface Pair, Connect to the Ethernet PHY. | | 4 | _ | LED0 | LED0 Input | | 5 | _ | 0LED1 | 0LED1 Output. Drive SEL low (SEL = 0) to connect LED0 to 0LED1. | | 6 | _ | 0LED2 | 0LED2 Output. Drive SEL high (SEL = 1) to connect LED0 to 0LED2. | | 7 | 7 | A4 | Differential PHY Interface Pair. Connect to the Ethernet PHY. | | 8 | 8 | A5 | Differential PHY Interface Pair. Connect to the Ethernet PHY. | | 9 | 9 | A6 | Differential PHY Interface Pair. Connect to the Ethernet PHY. | | 10 | 10 | A7 | Differential PHY Interface Pair. Connect to the Ethernet PHY. | | 11 | 11 | GND | Ground | | 12 | _ | LED1 | LED1 Input | | 13 | _ | 1LED1 | 1LED1 Output. Drive SEL low (SEL = 0) to connect LED1 to 1LED1. | | 14 | _ | 1LED2 | 1LED2 Output. Drive SEL high (SEL = 1) to connect LED1 to 1LED2. | | 15 | 13 | 7B2 | B2 Differential Pair | | 16 | 14 | 6B2 | B2 Differential Pair | | 17 | 15 | 7B1 | B1 Differential Pair | | 18 | 16 | 6B1 | B1 Differential Pair | | 19 | 17 | 5B2 | B2 Differential Pair | | 20 | 18 | 4B2 | B2 Differential Pair | | 21 | 19 | 5B1 | B1 Differential Pair | | 22 | 20 | 4B1 | B1 Differential Pair | | 23 | 21 | 3B2 | B2 Differential Pair | | 24 | 22 | 2B2 | B2 Differential Pair | | 25 | 23 | 3B1 | B1 Differential Pair | | 26 | 24 | 2B1 | B1 Differential Pair | | 27 | 29 | SEL | Select Input. SEL selects switch connection. See the Truth Table (Table1). | | 28 | 25 | 1B2 | B2 Differential Pair | | 29 | 26 | 0B2 | B2 Differential Pair | | 30 | 27 | 1B1 | B1 Differential Pair | | 31 | 28 | 0B1 | B1 Differential Pair | | 32 | _ | 2LED2 | 2LED2 Output. Drive SEL high (SEL = 1) to connect LED2 to 2LED2. | | 33 | _ | 2LED1 | 2LED1 Output. Drive SEL low (SEL = 0) to connect LED2 to 2LED1. | | 34 | — | LED2 | LED2 Input | | 35 | 30 | V+ | Positive-Supply Voltage Input. Bypass to GND with a 0.1µF ceramic capacitor. | | 36 | 31 | A0 | Differential PHY Interface Pair. Connect to the Ethernet PHY. | | | 3-6, 12 | N.C. | No Connection. Not internally connected. | | _ | _ | EP | Exposed Pad. Connect exposed pad to GND or leave it unconnected. | Figure 1. Single-Ended Bandwidth, Crosstalk, and Off-Isolation #### **Detailed Description** The MAX4890E/MAX4892E are high-speed analog switches targeted for 1000 Base-T applications. In a typical application, the MAX4890E/MAX4892E switch the signals from two separate interface transformers and connect the signals to a single 1000 Base-T Ethernet PHY (see the *Typical Operating Circuit*). This configuration simplifies docking station design by avoiding signal reflections associated with unterminated transmission lines in a T configuration. The MAX4890E/MAX4892E are protected against ±15kV electrostatic discharge (ESD) shocks. The MAX4892E also includes LED switches that allow the LED output signals to be routed to a docking station along with the Ethernet signals. See the *Functional Diagrams*. With their low resistance and capacitance, as well as high ESD protection, the MAX4890E/MAX4892E can be used to switch most low-voltage differential signals, such as LVDS, SEREDES, and LVPECL, as long as the signals do not exceed maximum ratings of the devices. The MAX4890E/MAX4892E switches provide an extremely low capacitance and on-resistance to meet Ethernet insertion and return-loss specifications. The MAX4892E features three built-in LED switches. The MAX4890E/MAX4892E incorporate a unique architecture design utilizing only n-channel switches within the main Ethernet switch, reducing I/O capacitance and channel resistance. An internal two-stage charge pump with a nominal output of 7.5V provides the high voltage needed to drive the gates of the n-channel switches while maintaining a consistently low RON throughout the input signal range. An internal bandgap reference set to 1.23V and an internal oscillator running at 2.5MHz provide proper charge-pump operation. Unlike other charge-pump circuits, the MAX4890E/MAX4892E include internal flyback capacitors, reducing design time, board space, and cost. #### Table 1. Truth Table | SEL | CONNECTION | |-----|--------------------------| | 0 | A_ to _B1, LED_ to _LED1 | | 1 | A_ to _B2, LED_ to _LED2 | #### **Digital Control Inputs** The MAX4890E/MAX4892E provide a single digital control SEL. SEL controls the switches as well as the LED switches as shown in Table 1. #### **Analog Signal Levels** The on-resistance of the MAX4890E/MAX4892E is very low and stable as the analog input signals are swept from ground to V+ (see the *Typical Operating Characteristics*). The switches are bidirectional, allowing A_ and _B_ to be configured as either inputs or outputs. #### **ESD Protection** The MAX4890E/MAX4892E are characterized using the Human Body Model for $\pm 15 \text{kV}$ of ESD protection. Figure 5 shows the Human Body Model. This model consists of a 100pF capacitor charged to the ESD voltage of interest which is then discharged into the test device through a 1.5k Ω resistor. All signal and control pins are ESD protected to $\pm 15 \text{kV}$ HBM (Human Body Model). ### _Applications Information ### **Typical Operating Circuit** The *Typical Operating Circuit* shows the MAX4890E/MAX4892E in a 1000 Base-T docking station application. #### Power-Supply Sequencing and Overvoltage Protection **Caution:** Do not exceed the absolute maximum ratings. Stresses beyond the listed ratings may cause permanent damage to the device. Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited. #### Lavout High-speed switches require proper layout and design procedures for optimum performance. Keep design-controlled-impedance pc board traces as short as possible. Ensure that bypass capacitors are as close as possible to the device. Use large ground planes where possible. **Chip Information** PROCESS: BICMOS Figure 2. Turn-On and Turn-Off Times Figure 3. Propagation Delay Times Figure 4. Output Skew Figure 5. Human Body ESD Test Model (MIL-STD-883, Method 3015) B ______ /N/X//N ### _Typical Operating Circuit ### _Functional Diagrams 10 ______ /N/1XI/M ## Pin Configurations (continued) **NIXINN** ### Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) | COMMON DIMENSIONS | | | | | | | EXI | POSED | PAD | VAR I | NOITA | IS | | |--|--|---|---|--|--|---|--|---|--|---|---|---|-------------| | PKG. | 16L 5x5 | 20L 5x5 | 28L 5x5 | 32L 5x5 | 40L 5x5 | PKG. | | D2 | | | E2 | _ | | | SYMBOL | | | | MIN. NOM MAX. | _ | CODES | MIN. | NOM. | MAX. | MIN. | NOM. | MAX. | | | Α | 0.70 0.75 0.80 | 0.70 0.75 0.80 | 0.70 0.75 0.80 | 0.70 0.75 0.80 | 0.70 0.75 0.80 | T1655-2 | 3.00 | 3.10 | 3.20 | 3.00 | 3.10 | 3.20 | | | A1 | 0 0.02 0.05 | 0 0.02 0.05 | | | | T1655-3 | 3.00 | 3.10 | 3.20 | 3.00 | 3.10 | 3.20 | | | A2 | 0.20 REF. | T1655N-1 | 3.00 | 3.10 | 3.20 | 3,00 | 3.10 | 3.20 | | | b | | | | 0.20 0.25 0.30 | | T2055-3 | 3.00 | 3.10 | 3.20 | 3.00 | 3.10 | 3.20 | | | D
E | | | | 4.90 5.00 5.10 | | T2055-4 | 3,00 | 3,10 | 3,20 | 3,00 | 3,10 | 3,20 | | | | 0.80 BSC. | 4.90 5.00 5.10
0.65 BSC. | 0.50 BSC. | 0.50 BSC | 0.40 BSC | T2055-5 | 3.15 | 3.25 | 3.35 | 3.15 | 3.25 | 3.35 | | | e
k | 0.80 BSC | 0.65 BSC | 0.50 BSC | | 0.40 BSC | T2855-3 | 3.15 | | 3,35 | 3,15 | 3.25 | 3,35 | | | L. | | | | 0.25 | | T2855-4 | 2.60 | | 2.80 | | 2.70 | 2.80 | | | N | 16 | 20 | 28 | 32 | 40 | T2855-5 | 2.60 | 2.70 | | | 2.70 | | | | ND | 4 | 5 | 7 | 8 | 10 | T2855-6 | 3.15 | 3.25 | 3.35 | 3.15 | 3.25 | 3.35 | | | NE | 4 | 5 | 7 | 8 | 10 | T2855-7 | 2.60 | 2.70 | 2.80 | 2,60 | 2.70 | 2.80 | | | JEDEC | WHHB | WHHC | WHHD-1 | WHHD-2 | | T2855-8 | 3,15 | 3,25 | 3,35 | 3,15 | 3,25 | 3,35 | T2855N-1 | 3.15 | 3.25 | 3,35 | 3.15 | 3.25 | 3.35 | | | | | | | | | T3255-3 | 3.00 | 3.10 | 3.20 | 3.00 | 3.10 | 3.20 | | | OTES: | | | | | | T3255-3
T3255-4 | 3.00 | 3.10
3.10 | 3.20 | 3.00 | 3.10
3.10 | 3.20 | | | | ENSIONING & TO | LERANCING CO | ONFORM TO ASM | 1E Y14.5M-1994. | | T3255-3
T3255-4
T3255-5 | 3.00
3.00
3.00 | 3.10
3.10
3.10 | 3.20
3.20
3.20 | 3.00
3.00
3.00 | 3.10
3.10
3.10 | 3.20
3.20
3.20 | | | 1. DIM | ENSIONING & TO
DIMENSIONS AF | | | | | T3255-3
T3255-4
T3255-5
T3255N-1 | 3.00
3.00
3.00
3.00 | 3.10
3.10
3.10
3.10 | 3.20
3.20
3.20
3.20 | 3.00
3.00
3.00
3.00 | 3.10
3.10
3.10
3.10 | 3.20
3.20
3.20
3.20 | | | 1. DIM
2. ALL | | RE IN MILLIMETE | ERS. ANGLES AF | | | T3255-3
T3255-4
T3255-5
T3255N-1
T4055-1 | 3.00
3.00
3.00
3.00
3.40 | 3.10
3.10
3.10
3.10
3.50 | 3.20
3.20
3.20
3.20
3.60 | 3.00
3.00
3.00
3.00
3.40 | 3.10
3.10
3.10
3.10
3.50 | 3.20
3.20
3.20
3.20
3.60 | | | 1. DIM 2. ALL 3. N IS | DIMENSIONS AF
THE TOTAL NUM
TERMINAL #1 IE | RE IN MILLIMETE
MBER OF TERM
DENTIFIER AND | ERS. ANGLES AF
INALS.
TERMINAL NUMI | E IN DEGREES. | | T3255-3
T3255-4
T3255-5
T3255N-1 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | | | 1. DIM 2. ALL 3. N IS CON | DIMENSIONS AF
THE TOTAL NUM
TERMINAL #1 IE
NFORM TO JESD | RE IN MILLIMETE
MBER OF TERM
DENTIFIER AND
95-1 SPP-012.
BT BE LOCATED | ERS. ANGLES AF
INALS.
TERMINAL NUMI
DETAILS OF TER
WITHIN THE ZO | E IN DEGREES. BERING CONVEN MINAL #1 IDENTI NE INDICATED. T | | T3255-3
T3255-4
T3255-5
T3255N-1
T4055-1 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | | | 1. DIM 2. ALL 3. N IS A THE COPT IDEI A DIM | DIMENSIONS AF
THE TOTAL NUM
TERMINAL #1 IE
NFORM TO JESD
FIONAL, BUT MUS
NTIFIER MAY BE | RE IN MILLIMETE
MBER OF TERM
DENTIFIER AND
95-1 SPP-012.
BT BE LOCATED
EITHER A MOLI
ES TO METALLI | ERS, ANGLES AR
INALS.
TERMINAL NUMI
DETAILS OF TER
VITHIN THE ZO
D OR MARKED FI
ZED TERMINAL A | E IN DEGREES. BERING CONVEN MINAL #1 IDENTI NE INDICATED. T | FIER ARE
THE TERMINAL #1 | T3255-3
T3255-4
T3255-5
T3255N-1
T4055-1 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | | | 1. DIM 2. ALL 3. N IS CON OPT IDE DIM 0.25 | DIMENSIONS AF
THE TOTAL NUM
TERMINAL #1 IE
NFORM TO JESD
FIONAL, BUT MUS
NTIFIER MAY BE
IENSION 16 APPLI
5 mm AND 0.30 m | RE IN MILLIMETE MBER OF TERM DENTIFIER AND 95-1 SPP-012. BT BE LOCATED EITHER A MOLI ES TO METALLI M FROM TERMI | ERS. ANGLES AR
INALS.
TERMINAL NUMI
DETAILS OF TER
WITHIN THE ZO
D OR MARKED FI
ZED TERMINAL A
NAL TIP. | E IN DEGREES. BERING CONVEN MINAL #1 IDENTI NE INDICATED. T EATURE. AND IS MEASURE | FIER ARE
THE TERMINAL #1
D BETWEEN | T3255-3
T3255-4
T3255-5
T3255N-1
T4055-1
T4055-2 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | | | 1. DIM 2. ALL 3. N IS COPTOPT IDE DIM 0.25 | DIMENSIONS AF
THE TOTAL NUM
TERMINAL #1 IE
NFORM TO JESD
ITONAL, BUT MUS
NTIFIER MAY BE
IENSION 16 APPLI
5 mm AND 0.30 m
AND NE REFER | RE IN MILLIMETE MBER OF TERM DENTIFIER AND 95-1 SPP-012. BT BE LOCATED EITHER A MOLI ES TO METALLI M FROM TERMI TO THE NUMBE | ERS. ANGLES AR
INALS.
TERMINAL NUMI
DETAILS OF TER
WITHIN THE ZO
D OR MARKED FI
ZED TERMINAL A
NAL TIP.
R OF TERMINALS | E IN DEGREES. BERING CONVEN MINAL #1 IDENTI NE INDICATED. T EATURE. AND IS MEASURE S ON EACH D ANI | FIER ARE
THE TERMINAL #1 | T3255-3
T3255-4
T3255-5
T3255N-1
T4055-1
T4055-2 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | | | 1. DIM 2. ALL 3. N IS COPTION IDE 3. DIM 0.25 N ND 7. DEF | DIMENSIONS AF
THE TOTAL NUM
TERMINAL #1 IE
NFORM TO JESD
ITONAL, BUT MUS
NTIFIER MAY BE
ENSION 16 APPLI
TO MM AND 0.30 m
AND NE REFER TOPOPULATION IS F | RE IN MILLIMETE MBER OF TERM DENTIFIER AND 95-1 SPP-012. ST BE LOCATE EITHER A MOLI ES TO METALLI M FROM TERMI TO THE NUMBE POSSIBLE IN A S | ERS, ANGLES AR INALS. TERMINAL NUMI DETAILS OF TER OUT OF MARKED FI ZED TERMINAL A NAL TIP. R OF TERMINAL FI SYMMETRICAL FA | E IN DEGREES. BERING CONVEN MINAL #1 IDENTI NE INDICATED. T EATURE. AND IS MEASURE S ON EACH D AND ASHION. | FIER ARE THE TERMINAL #1 TO BETWEEN DIE SIDE RESPECTI | T3255-3
T3255-4
T3255-5
T3255N-1
T4055-1
T4055-2 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | | | 1. DIM 2. ALL 3. N IS COPY OPT IDE 3. N IS DIM 0.25 3. N IS DIM 0.25 3. N ID 7. DEF | DIMENSIONS AF
THE TOTAL NUM
TERMINAL #11 IE
FORM TO JESD
FIONAL, BUT MUS
NTIFIER MAY BE
EINSION 16 APPLI
5 mm AND 0.30 m
AND NE REFER
POPULATION IS F
PLANARITY APPL | RE IN MILLIMETE MBER OF TERM DENTIFIER AND 195-1 SPP-012. ST BE LOCATEE EITHER A MOLI ES TO METALLI M FROM TERM TO THE NUMBE POSSIBLE IN A S LIES TO THE EX | ERS, ANGLES AF INALS. TERMINAL NUM DETAILS OF TER WITHIN THE ZO D OR MARKED FI ZED TERMINAL A NAL TIP. R OF TERMINALS SYMMETRICAL F. POSED HEAT SIF | E IN DEGREES. BERING CONVEN MINAL #1 IDENTI NE INDICATED. T EATURE. AND IS MEASURE S ON EACH D AND ASHION. NK SLUG AS WEL | FIER ARE THE TERMINAL #1 DE BETWEEN DE SIDE RESPECTION LAS THE TERMINAL | T3255-3
T3255-4
T3255-5
T3255N-1
T4055-1
T4055-2 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | | | 1. DIM 2. ALL 3. N IS 4. THE COP OPT IDE 5. DIM 0.26 ND 7. DEF 6. COP 9. DRA T28 | DIMENSIONS AF THE TOTAL NUM TERMINAL #1 IE TERMINAL #1 IE TERMINAL #1 IE TERMINAL TIFIER MAY BE TENSION B APPLI THE MAY BE TENSION B APPLI THE MAY BE TENSION B TENSION B TENSION THE MAY BE THE MAY BE TENSION B | RE IN MILLIMETE MBER OF TERM MENTIFIER AND 95-1 SPP-012. BT BE LOCATED EITHER A MOLI ES TO METAL M FROM TERM FOOTHER NUMBE OSSIBLE IN A S. LIES TO THE EX MS TO JEDEC W B. S. TO JEDEC W B. | ERS, ANGLES AF INALS. TERMINAL NUM DETAILS OF TER DITHIN THE ZO O OR MARKED FI ZED TERMINAL A NAL TIP. R OF TERMINALS SYMMETRICAL F, POSED HEAT SII (10220, EXCEPT E | E IN DEGREES. BERING CONVEN MINAL #1 IDENTI NE INDICATED. T EATURE. AND IS MEASURE S ON EACH D AND ASHION. | FIER ARE THE TERMINAL #1 DE BETWEEN DE SIDE RESPECTION LAS THE TERMINAL | T3255-3
T3255-4
T3255-5
T3255N-1
T4055-1
T4055-2 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50 | 3.20
3.20
3.20
3.20
3.60
3.60 | | | 1. DIM 2. ALL 3. N IS 4. THE COP OPT IDE 6. DIM 0.25 6. ND 7. DEF 6. COP 9. DRA T28 6. WAF | DIMENSIONS AF
THE TOTAL NUI
FORM TO JESO
FORM TO JESO
FIONAL, BUT MUS
MITHER MAY BE
EIENSION B APPLI
FORM TO SOME
FORM TO SOME
PLANARITY APPL
WINING CONFORT
RPAGE SHALL NO | RE IN MILLIMETE MBER OF TERM MENTIFIER AND 95-1 SPP-012. BT BE LOCATED EITHER A MOLI EST OF METALLI M FROM TERM FOO THE NUMBE POSSIBLE IN A S LES TO THE EX MS TO JEDEC W S DT EXCEED 0.16 | ERS, ANGLES AF INALS. TERMINAL NUM DETAILS OF TER WITHIN THE ZO O OR MARKED FI ZED TERMINAL A NAL TIP. R OF TERMINALS SYMMETRICAL F. POSED HEAT SII (0220, EXCEPT E) mm. | E IN DEGREES. BERING CONVEN MINAL #1 IDENTI NE INDICATED. T EATURE. AND IS MEASURE S ON EACH D ANI ASHION. UK SLUG AS WEL XPOSED PAD DII | FIER ARE THE TERMINAL #1 DE BETWEEN DE SIDE RESPECTION LAS THE TERMINAL | T3255-3
T3255-4
T3255-5
T3255N-1
T4055-1
T4055-2 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50
*SEE CC | 3.20
3.20
3.20
3.60
3.60 | 3.00
3.00
3.00
3.00
3.40
3.40
DIMEN | 3.10
3.10
3.10
3.50
3.50
SIONS | 3.20
3.20
3.20
3.20
3.60
3.60
TABLE | Y 1. | | 1. DIM 2. ALL 3. N IS 3. N IS COP OPT IDE 3. DIM 0.25 6. ND 7. DEF 8. COP 9. DR/ T28 WAF 11. MAF | DIMENSIONS AF THE TOTAL NUM TERMINAL #1 IE TERMINAL #1 IE TERMINAL #1 IE TERMINAL TIFIER MAY BE TENSION B APPLI THE MAY BE TENSION B APPLI THE MAY BE TENSION B TENSION B TENSION THE MAY BE THE MAY BE TENSION B | RE IN MILLIMETE MBER OF TERM MENTIFIER AND 195-1 SPP-012. ST BE LOCATEE EITHER A MOLI ES TO METALLI M FROM TERMI TO THE NUMBE POSSIBLE IN A S LIES TO THE EX MS TO JEDEC M S. DT EXCEED 0.11 CKAGE ORIENT | ERS. ANGLES AF INALS. TERMINAL NUMI DETAILS OF TER WITHIN THE ZO O OR MARKED FI ZED TERMINAL A NAL TIP. R OF TERMINALS SYMMETRICAL F. POSEO HEAT SII (0220, EXCEPT E) mm. 'ATION REFEREN | E IN DEGREES. BERING CONVENIMINAL #1 IDENTI ME INDICATED. T GEATURE. NAD IS MEASURE S ON EACH D AND ASHION. UK SLUG AS WEL EXPOSED PAD DI NCE ONLY. | FIER ARE THE TERMINAL #1 DE BETWEEN DE SIDE RESPECTION LAS THE TERMINAL | T3255-3
T3255-4
T3255-5
T3255N-1
T4055-1
T4055-2 | 3.00
3.00
3.00
3.00
3.40
3.40 | 3.10
3.10
3.10
3.10
3.50
3.50
*SEE CC | 3.20
3.20
3.20
3.60
3.60 | 3.00
3.00
3.00
3.00
3.40
3.40
DIMEN | 3.10
3.10
3.10
3.50
3.50
SIONS | 3.20
3.20
3.20
3.20
3.60
3.60
TABLE | ΧI | ### Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) | | | | C | NOMMC | DIMENS | IONS | | | | | |--------|---------|----------|------|-------|----------|------|-----------|---------|-----|--| | PKG. | 36L 6x6 | | | | 40L 6x6 | | | 48L 6x6 | | | | SYMBOL | MIN. | NOM. | MAX. | MIN. | NOM. | MAX. | MIN. | NOM. | MAX | | | A | 0.70 | 0.75 | 0.80 | 0.70 | 0.75 | 0.80 | 0.70 | 0.75 | 0.8 | | | A1 | 0 | 0.02 | 0.05 | 0 | 0.02 | 0.05 | 0 | - | 0.0 | | | A2 | | 0.20 REF | | | 0.20 REF | | 0.20 REF. | | | | | ь | 0.20 | 0.25 | 0.30 | 0.20 | 0.25 | 0.30 | 0.15 | 0.20 | 0.: | | | D | 5.90 | 6.00 | 6.10 | 5.90 | 6.00 | 6.10 | 5.90 | 6.00 | 6. | | | Ε | 5.90 | 6.00 | 6.10 | 5.90 | 6.00 | 6.10 | 5.90 | 6.00 | 6. | | | e | | 0.50 BSC | | | 0.50 BSC | | 0.40 BSC. | | | | | k | 0.25 | - | - | 0.25 | - | - | 0.25 | - | | | | L | 0.45 | 0.55 | 0.65 | 0.30 | 0.40 | 0.50 | 0.30 | 0.40 | 0. | | | N | | 36 40 | | | 48 | | | | | | | ND | | 9 10 | | 12 | | | | | | | | NE | | 9 | | | 10 | | | 12 | | | | JEDEC | | WJJD-1 | | | WJJD-2 | | | | | | | PKG. | | D2 | | E2 | | | | |----------|------|------|------|------|------|------|--| | CODES | MIN. | NOM. | MAX. | MIN. | NOM. | MAX. | | | T3666-2 | 3.60 | 3.70 | 3.80 | 3.60 | 3.70 | 3.80 | | | T3666-3 | 3.60 | 3.70 | 3.80 | 3.60 | 3.70 | 3.80 | | | T3666N-1 | 3.60 | 3.70 | 3.80 | 3.60 | 3.70 | 3.80 | | | T4066-2 | 4.00 | 4.10 | 4.20 | 4.00 | 4.10 | 4.20 | | | T4066-3 | 4.00 | 4.10 | 4.20 | 4.00 | 4.10 | 4.20 | | | T4066-4 | 4.00 | 4.10 | 4.20 | 4.00 | 4.10 | 4.20 | | | T4066-5 | 4.00 | 4.10 | 4.20 | 4.00 | 4.10 | 4.20 | | | T4866-1 | 4.40 | 4.50 | 4.60 | 4.40 | 4.50 | 4.60 | | | T4866-2 | 4.40 | 4.50 | 4.60 | 4.40 | 4.50 | 4.60 | | - NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14,5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES. 3. NIS THE TOTAL NUMBER OF TERMINALS. 1. NIS THE TOTAL NUMBER OF TERMINALS. 1. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD SPP-012, DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL DIT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. - ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. DIMENSION DAPPLES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0,25 mm AND 0,30 mm FROM TERMINAL TIP. 6. NO AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. DEPOPULATION IS FOSSIBLE IN A SYMMETRICAL FASHION. 3. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 9. DRAWING CONFORMS TO JEDEC MOZZO, EXCEPT FOR 0.4mm LEAD PITCH PACKAGE T4866-1. 10. WARPAGE SHALL NOT EXCEED 0.10 mm. 3. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. 12. NUMBER OF LEADS SHOWN FOR REFERENCE ONLY. Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600