

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Maxim Integrated MAX4818ETE+

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of Maxim Integrated: Excellent Integrated System Limited Datasheet of MAX4818ETE+ - IC SWITCH DUAL SPDT 16TQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

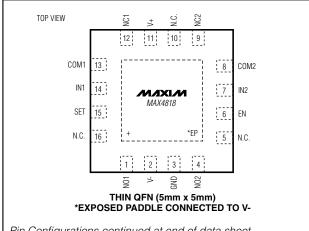
19-3915; Rev 1; 1/07

High-Bandwidth T1/E1 Dual-SPDT Switches/ 4:1 Muxes

General Description

The MAX4818/MAX4819 high-bandwidth, low-on-resistance analog dual SPDT switches/4:1 multiplexers are designed to serve as integrated T1/E1 protection switches for 1+1 and N+1 line-card redundancy applications. Each MAX4818/MAX4819 replaces four electromechanical relays, significantly reducing board space, simplifying PC board routing, and reducing power consumption. These devices operate with ±3.3V or ±5V dual supplies for applications requiring T1/E1 signal switching in the line side of the interface transformer. Internal voltage multipliers drive the analog switches, yielding excellent linearity and low 4Ω typical on-resistance within the T1/E1 analog signal range. This high-bandwidth family of products is optimized for low return loss and matched pulse template performance in T1/E1 long-haul and short-haul applications.

The MAX4818/MAX4819 are available in a tiny 16-pin, 5mm x 5mm, thin QFN package and are specified over the extended -40°C to +85°C temperature range.


Applications

- T1/E1 Redundancy Switching Base Stations and Base-Station Controllers Add and Drop Multiplexers Multi-Service Provisioning Platforms Edge Routers Multi-Service-Switches (MSSs) Digital Loop Carriers Industrial Applications Data Acquisition Telecom Signal Switching Test Equipment
- Avionics

Features

- Dual SPDT and 4:1 Multiplexer Configurations
- Dual-Supply Operation from ±3.3V to ±5V
- Single-Supply Operation from +6V to +11V
- Hot-Insertion Tolerant with No DC Path to the Supplies
- Low On-Resistance, Ron = 4 Ω (typ) and 6 Ω (max)
- Over 350MHz -3dB Signal Bandwidth (MAX4818)
- Excellent Crosstalk and Off-Isolation Performance Over the T1/E1 Signal Spectrum: Over 110dB Crosstalk Attenuation at 1MHz (MAX4818)
- Low Current Consumption of 2mA (max)
- ♦ -40°C to +85°C Extended Temperature Range
- ♦ Space-Saving, 16-Pin, 5mm x 5mm Thin QFN
- SET Controls All Switches Simultaneously For Redundancy Switching (MAX4819)

_Pin Configurations

Pin Configurations continued at end of data sheet.

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	CONFIGURATION	PACKAGE CODE
MAX4818ETE+	-40°C to +85°C	16 TQFN-EP*	2 x SPDT	T1655-3
MAX4819ETE+	-40°C to +85°C	16 TQFN-EP*	4:1 MUX	T1655-3

*EP = Exposed Paddle

Devices are available in lead-free packages.

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND unless oth	nerwise noted.)
V+	0.3V to +6V
V	6V to +0.3V
V+ to V	0.3V to +12V
IN_, A0, A1, SET, EN	0.3V to (V+) + 0.3V
NO_, NC_, COM	12V to +12V
NO_, to COM_, NC_ to COM	18V to +18V
Continuous Current (NO_, NC_, COM_)	±100mA
Continuous Current (Any Other Terminal)	±30mA

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual ±3.3V Supplies

 $(V + = +3.3V \pm 10\%, V - = -3.3V \pm 10\%, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
ANALOG SWITCH							
Fault-Free Analog Signal Range	V _{COM} _ V _{NO} _ V _{NC} _			V-		V+	V
		V + = +3V, V - = -3V,	$T_A = +25^{\circ}C$		4	5	
MAX4818 On-Resistance	R _{ON}	I _{COM} _ = 30mA, V _{NO} _ or V _{NC} _ = +3V (Note 2)	T _A = T _{MIN} to T _{MAX}			6	Ω
		V + = +3V, V - = -3V,	$T_A = +25^{\circ}C$		4	5	
MAX4819 On-Resistance	R _{ON}	I_{COM} = 30mA, V _{NO} or V _{NC} = +3V (Note 2)	$T_A = T_{MIN}$ to T_{MAX}			6.2	Ω
		V + = +3V, V - = -3V,	$T_A = +25^{\circ}C$		0.3	0.6	
On-Resistance Match Between Channels ΔR		I_{COM} = 30mA, V_{NO} or V_{NC} = +3V (Notes 2, 3)	T _A = T _{MIN} to T _{MAX}			0.8	Ω
		V+ = +3V, V- = -3V,	$T_A = +25^{\circ}C$		0.5	1.2	
On-Resistance Flatness	R _{FLAT(ON)}	I _{COM} = 30mA, V _{NO} or V _{NC} = -3V, 0V, +3V (Notes 2, 4)	$T_A = T_{MIN}$ to T_{MAX}			1.5	Ω
NO or NC Off-Leakage Current	I _{NO_(OFF)} I _{NC_(OFF)}	V+ = +3.6V, V- = -3.6V, V _{COM} _ = -3V, +3V, V _{NO} _ or V _{NC} _ = +3V, -3V		-10		+10	nA
COM Off-Leakage Current	ICOM_(OFF)	V+ = +3.6V, V- = -3.6V, V _{COM} _ = -3V, +3V, V _{NO} _ or V _{NC} _ = +3V, -3V		-10		+10	nA
COM On-Leakage Current	ICOM_(ON)	$V_{+} = +3.6V, V_{-} = -3.6V, V_{COM_{-}} = -3V, +3V, V_{NO_{-}} $ or $V_{NC_{-}}$ unconnected	1	-15		+15	nA

ELECTRICAL CHARACTERISTICS—Dual ±3.3V Supplies (continued)

 $(V + = +3.3V \pm 10\%, V - = -3.3V \pm 10\%, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITION	MIN	ТҮР	MAX	UNITS	
FAULT	·	·					
Fault Analog Signal Range	VCOM_ VNO_ VNC_	V+ = +3.3V, V- = -3.3V	-11		+11	V	
NO or NC Off-Leakage Current	I _{NO} _ I _{NC} _	$\begin{array}{l} V+=+3.3V,V-=-3.3V,\\ V_{COM_}=+11V,-11V,\\ V_{NO_}orV_{NC_}=-5.5V,+5. \end{array}$	-1		+1	μA	
COM Off-Leakage Current	ICOM_	$\begin{array}{l} V+=+3.3V,V-=-3.3V,\\ V_{COM_}=+11V,-11V,\\ V_{NO_}orV_{NC_}=-5.5V,+5. \end{array}$	-1		+1	μA	
SWITCH DYNAMIC CHARACTE	RISTICS	1					
MAX4818	V _{CT1}	$R_L = 50\Omega$, f = 1.024MHz, F	0		110		dB
Crosstalk (Note 5)	V _{CT2}	$R_L = 50\Omega$, f = 30MHz, Figure	94		77		ab
MAX4819	V _{HCT1}	$R_L = 50\Omega$, f = 1.024MHz			50		dB
All-Hostile Crosstalk (Note 6)	V _{HCT2}	$R_L = 50\Omega$, f = 30MHz		17		0.5	
Off-Isolation (Note 7)	VISO1	V_{COM} to V_{NO} or V_{NC} , R _L = 50 Ω , f = 1.024MHz, Figure 4			60		dB
	V _{ISO2}	V_{COM} to V_{NO} or V_{NC} , R _L = 50 Ω , f = 30MHz, Figu	30				
On-Channel -3dB Bandwidth	BW	MAX			350		MHz
On-Channel -3dB Bandwidth	DVV	RS = RL = 50S2, Figure 4	$R_S = R_L = 50\Omega$, Figure 4 MAX4819		220		IVINZ
COM On-Capacitance	CON(COM_)	f = 1MHz, Figure 5	MAX4818		20		рF
			MAX4819		40		р
COM Off-Capacitance	COFF(COM_)	f = 1MHz, Figure 5	MAX4818		15		рF
	OUFF(COIM_)		MAX4819		30		рі
NC/NO Off-Capacitance	COFF	f = 1MHz, Figure 5			7		pF
Charge Injection	Q	$C_{L} = 1.0 nF$, $V_{GEN} = 0$,	MAX4818		35		рС
	Ğ	R _{GEN} = 0, Figure 3	MAX4819	60			po
Fault Recovery Time	t _{REC}	V_{NO} , V_{NC} , V_{COM} = -11V			128		μs
		V_{NO} or V_{NC} = +3V,	$T_A = +25^{\circ}C$		20	50	
Turn-On Time	ton	$R_L = 300\Omega$, $C_L = 35pF$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			50	μs
		V_{NO} or V_{NC} = +3V,	$T_A = +25^{\circ}C$		0.5	1	
Turn-Off Time	toff	$R_{L} = 300\Omega$, $C_{L} = 35pF$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			1	μs
Power-Up Delay	tDEL				128		μs

ELECTRICAL CHARACTERISTICS—Dual ±3.3V Supplies (continued)

 $(V + = +3.3V \pm 10\%, V - = -3.3V \pm 10\%, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
LOGIC INPUT (IN_, EN, SET, A0,	A1)					
Input Voltage Low	VIL				0.8	V
Input Voltage High	VIH		2.4			V
Input Leakage Current	lin	$V_{IN} = 0 \text{ or } V +$	-1		+1	μA
POWER SUPPLY						
Quiescent Positive Supply Current	l+	$V_{+} = +3.6V, V_{-} = -3.6V, V_{IN} = 0 \text{ or } V_{+}$		0.8	2	mA
Quiescent Negative Supply Current	-	$V + = +3.6V, V - = -3.6V, V_{IN} = 0 \text{ or } V +$		0.8	2	mA
Positive Supply Voltage	V+		3.0		3.6	V
Negative Supply Voltage	V-		-3.6		-3.0	V

ELECTRICAL CHARACTERISTICS—Dual ±5V Supplies

 $(V + = +5V \pm 10\%, V - = -5V \pm 10\%, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 1)

V+ = +4.5V, V- = -4.5V, I_{COM} = 30mA, V_{NO} or V_{NC} = +3V (Note 2) V+ = +4.5V, V- = -4.5V, I_{COM} = 30mA, V_{NO} or V_{NC} = +3V (Note 2)	$T_A = +25^{\circ}C$ $T_A = T_{MIN}$ to	V-	4	V+ 5 6 5	V Ω Ω
$I_{COM} = 30mA,$ $V_{NO} \text{ or } V_{NC} = +3V \text{ (Note 2)}$ $V_{+} = +4.5V, V_{-} = -4.5V,$ $I_{COM} = 30mA,$ $V_{NO} \text{ or } V_{NC} = +3V \text{ (Note 2)}$	$T_{A} = T_{MIN} \text{ to}$ T_{MAX} $T_{A} = +25^{\circ}\text{C}$ $T_{A} = T_{MIN} \text{ to}$	V-	<u>_</u>	5	Ω
$I_{COM} = 30mA,$ $V_{NO} \text{ or } V_{NC} = +3V \text{ (Note 2)}$ $V_{+} = +4.5V, V_{-} = -4.5V,$ $I_{COM} = 30mA,$ $V_{NO} \text{ or } V_{NC} = +3V \text{ (Note 2)}$	$T_{A} = T_{MIN} \text{ to}$ T_{MAX} $T_{A} = +25^{\circ}\text{C}$ $T_{A} = T_{MIN} \text{ to}$		<u>_</u>	6	
I_{COM} = 30mA, V _{NO} or V _{NC} = +3V (Note 2)	$T_A = T_{MIN}$ to		4	5	0
				6.2	52
$V_{+} = +4.5V, V_{-} = -4.5V,$ $I_{COM} = 30mA,$ V_{NO} or $V_{NC} = +3V$ (Notes 2, 3)	$T_A = +25^{\circ}C$ $T_A = T_{MIN}$ to T_{MAX}		0.3	0.6 0.8	Ω
$V_{+} = +4.5V, V_{-} = -4.5V, \\ I_{COM} = 30mA, \\ V_{NO} \text{ or } V_{NC} = -3V, 0V, +3V \\ (Notes 2, 4)$	$T_{A} = +25^{\circ}C$ $T_{A} = T_{MIN} \text{ to}$ T_{MAX}		0.5	1.2 1.5	Ω
1 VCOM = -3 V + 3 V		-10		+10	nA
F) $V_{+} = +5.5V, V_{-} = -5.5V, V_{COM_{-}} = -5V, +5V, V_{NO_{-}} or V_{NC_{-}} = +5V, -5V$		-10		+10	nA
	$\begin{array}{c} V_{NO_{-}} \text{ or } V_{NC_{-}} = +3V\\ (\text{Notes 2, 3}) \end{array}$ $\begin{array}{c} V_{+} = +4.5V, V_{-} = -4.5V, \\ I_{COM_{-}} = 30\text{mA}, \\ V_{NO_{-}} \text{ or } V_{NC_{-}} = -3V, 0V, +3V\\ (\text{Notes 2, 4}) \end{array}$ $\begin{array}{c} V_{+} = +5.5V, V_{-} = -5.5V, \\ V_{COM_{-}} = -5V, +5V, \\ V_{NO_{-}} \text{ or } V_{NC_{-}} = +5V, -5V \end{array}$ $\begin{array}{c} V_{+} = +5.5V, V_{-} = -5.5V, \\ V_{+} = +5.5V, V_{-} = -5.5V, \\ V_{+} = -5V, +5V, \end{array}$	$\begin{array}{c c} I_{COM} = 30mA, \\ V_{NO} \text{ or } V_{NC} = +3V \\ (Notes 2, 3) \end{array} \qquad \begin{array}{c} T_A = T_{MIN} \text{ to} \\ T_{MAX} \end{array}$ $\begin{array}{c} V_+ = +4.5V, V = -4.5V, \\ I_{COM} = 30mA, \\ V_{NO} \text{ or } V_{NC} = -3V, 0V, +3V \\ (Notes 2, 4) \end{array} \qquad \begin{array}{c} T_A = +25^{\circ}C \\ T_A = T_{MIN} \text{ to} \\ T_{MAX} \end{array}$ $\begin{array}{c} T_A = T_{MIN} \text{ to} \\ T_{MAX} \end{array}$ $\begin{array}{c} V_+ = +5.5V, V = -5.5V, \\ V_{COM} = -5V, +5V, \\ V_{NO} \text{ or } V_{NC} = +5V, -5V \end{array}$ $\begin{array}{c} V_+ = +5.5V, V = -5.5V, \\ V_{COM} = -5V, +5V, \\ V_+ = +5.5V, V = -5.5V, \\ V = -5.5V, V = -5.5V, \\ V = -5V, +5V, \end{array}$	$\begin{array}{c c} I_{COM} = 30mA, \\ V_{NO} \text{ or } V_{NC} = +3V \\ (Notes 2, 3) \end{array} \qquad \begin{array}{c c} T_A = T_{MIN} \text{ to} \\ T_{MAX} \end{array} \\ \hline \\ T_A = T_{MIN} \text{ to} \\ T_{MAX} \end{array} \\ \hline \\ V + = +4.5V, V - = -4.5V, \\ I_{COM} = 30mA, \\ V_{NO} \text{ or } V_{NC} = -3V, 0V, +3V \\ \hline \\ I_{COM} = 30mA, \\ V_{NO} \text{ or } V_{NC} = -3V, 0V, +3V \\ \hline \\ T_A = T_{MIN} \text{ to} \\ T_{MAX} \end{array} \\ \hline \\ \hline \\ V + = +5.5V, V - = -5.5V, \\ V_{COM} = -5V, +5V, \\ V_{NO} \text{ or } V_{NC} = +5V, -5V \end{array} \qquad \begin{array}{c c} -10 \\ \hline \\ V + = +5.5V, V - = -5.5V, \\ V_{COM} = -5V, +5V, \\ V_{COM} = -5V, +5V, \\ \end{array} \\ \hline \end{array}$	$\begin{array}{c c} I_{COM} = 30mA, \\ V_{NO} \text{ or } V_{NC} = +3V \\ (Notes 2, 3) \end{array} \qquad \begin{array}{c} T_A = T_{MIN} \text{ to} \\ T_{MAX} \end{array}$	$\begin{array}{c c} I_{COM} = 30 \text{mA}, \\ V_{NO} \text{ or } V_{NC} = +3V \\ (Notes 2, 3) \end{array} \qquad \begin{array}{c c} T_A = T_{MIN} \text{ to} \\ T_{MAX} \end{array} \qquad \begin{array}{c c} 0.8 \end{array}$

M/IXI/M

ELECTRICAL CHARACTERISTICS—Dual ±5V Supplies (continued)

 $(V + = +5V \pm 10\%, V - = -5V \pm 10\%, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

$ \begin{array}{ c c c c c c } \hline FAULT & \hline VNO_{C} \text{ or } VN_{C} \text{ unconnected} & \hline VNO_{C} \text{ or } VN_{C} \text{ unconnected} & \hline VNO_{C} \text{ or } VN_{C} \text{ unconnected} & \hline VNO_{C} \text{ or } VNO_{C} \text{ or } VNO_{C} \text{ unconnected} & \hline VNO_{$	PARAMETER	SYMBOL	CONDITI	ONS	MIN	TYP	MAX	UNITS
	COM On-Leakage Current	ICOM_(ON)	$V_{COM_{-}} = -5V, +5V,$	-15		+15	nA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	FAULT	•						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fault Analog Signal Range	V _{NO} _	V+ =5V, V- = -5V	-11		+11	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NO or NC Off-Leakage Current		V_{NO} or V_{NC} = +11V, -1	-1		+1	μA	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	COM Off-Leakage Current	ICOM_	V_{NO} or V_{NC} = +11V, -1	-1		+1	μA	
$\begin{array}{c} \mbox{Crosstalk (Note 5)} & \mbox{Vc12} & \mbox{R}_L = 50\Omega, f = 30 \mbox{Hz}, \mbox{Figure 4} & \mbox{77} & \mbox{Grosstalk (Note 6)} & \mbox{VHC11} & \mbox{R}_L = 50\Omega, f = 1.024 \mbox{MHz} & \mbox{50} & \mbox{17} & \mbox{Grosstalk (Note 6)} & \mbox{VHC12} & \mbox{R}_L = 50\Omega, f = 30 \mbox{MHz}, \mbox{Figure 4} & \mbox{60} & \mbox{Grosstalk (Note 6)} & \mbox{VHC12} & \mbox{R}_L = 50\Omega, f = 30 \mbox{MHz}, \mbox{Figure 4} & \mbox{60} & \mbox{Grosstalk (Note 6)} & \mbox{VHC12} & \mbox{R}_L = 50\Omega, f = 1.024 \mbox{MHz}, \mbox{Figure 4} & \mbox{60} & \mbox{Grosstalk (Note 6)} & \mbox{VISO1} & \mbox{VCOM_to VNO_or VNC_, \mbox{R}_L = 50\Omega, f = 30 \mbox{MHz}, \mbox{Figure 4} & \mbox{30} & \mbox{Grosstalk (Note 6)} & \mbox{VISO2} & \mbox{VCOM_to VNO_or VNC_, \mbox{R}_L = 50\Omega, f = 30 \mbox{MHz}, \mbox{Figure 4} & \mbox{30} & \mbox{MHz} & \mbox{31} & \mbox{30} & \mbox{MHz} & \mbox{31} & \mbox{30} & \mbox{MHz} & \mbox{31} & \mbox{31} & \mbox{32} & \mbox{MHz} & \mbox{31} & \mbox{32} & \mbox{MHz} & \mbox{31} & \mbox{MHz} & \mbox{31} & \mbox{32} & \mbox{MHz} & \mbox{31} & \mbox{MHz} & \mbox{31} & \mbox{MHz} & \mbox{MHz} & \mbox{31} & \mbox{MHz} & \mbox{31} & \mbox{MHz} & \mbox{MHz} & \mbox{31} & \mbox{MHz} & \mbox{MHz} & \mbox{MHz} & \mbox{MHz} & \mbox{MHz} & \mbox{32} & \mbox{MHz} & \mbox{MHz} & \mbox{32} & \mbox{MHz} & \m$	SWITCH DYNAMIC CHARACTE	RISTICS						
$ \begin{array}{c} \mbox{Crosstalk} (Note 5) & V_{CT2} & R_{L} = 50\Omega, f = 30MHz, Figure 4 & 77 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	MAX4818	V _{CT1}	$R_L = 50\Omega$, f = 1.024MHz,	Figure 4		110		dB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Crosstalk (Note 5)	V _{CT2}	$R_L = 50\Omega$, f = 30MHz, Figure 4			77		uв
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		V _{HCT1}	$R_L = 50\Omega$, f = 1.024MHz			50		dB
$ \begin{array}{c} \mbox{Off-Isolation} \\ (Note 6) \end{array} \begin{tabular}{ c c c c c c } \hline $VISO1$ & $R_L = 50\Omega, f = 1.024MHz, Figure 4$ & 00 $	All-Hostile Crosstalk (Note 6)	V _{HCT2}	$R_L = 50\Omega$, f = 30MHz			17		GD
$ \begin{array}{ c c c c c c } \hline \mbox{(Note 6)} & \mbox{V}{\rm ISO2} & \begin{tabular}{c c c c c c c c } \hline \mbox{V}{\rm ISO2} & \begin{tabular}{c c c c c c c c } \hline \mbox{V}{\rm ISO2} & \begin{tabular}{c c c c c c c } \hline \mbox{V}{\rm ISO2} & \begin{tabular}{c c c c c c c } \hline \mbox{V}{\rm ISO2} & \begin{tabular}{c c c c c c c } \hline \mbox{V}{\rm ISO2} & \begin{tabular}{c c c c c c c } \hline \mbox{V}{\rm ISO2} & \begin{tabular}{c c c c c c c } \hline \mbox{V}{\rm ISO2} & \begin{tabular}{c c c c c c c } \hline \mbox{V}{\rm ISO2} & \begin{tabular}{c c c c c c c } \hline \mbox{V}{\rm ISO2} & \begin{tabular}{c c c c c c c c } \hline \mbox{N}{\rm ISO2} & \begin{tabular}{c c c c c c c c } \hline \mbox{N}{\rm ISO2} & \begin{tabular}{c c c c c c c c c } \hline \mbox{N}{\rm ISO2} & \begin{tabular}{c c c c c c c c c c c c } \hline \mbox{N}{\rm ISO2} & \begin{tabular}{c c c c c c c c c c c c c c c c c c c $	Off-Isolation	VISO1			60			dB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Note 6)	VISO2			30			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	On-Channel -3dB Bandwidth	RW/	$R_S = R_L = 50\Omega$,	$R_{S} = R_{L} = 50\Omega$, MAX4818		350		MHz
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		DW	Figure 4	MAX4819		220		1011.12
$\frac{1}{1} + \frac{1}{1} + \frac{1}$	COM On-Capacitance		f = 1MHz. Figure 5	MAX4818		20		рF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Com on oupdollario			MAX4819	40			рг
NC/NO Off-CapacitanceCOFFf = 1MHz, Figure 57pFCharge InjectionQ $C_L = 1.0nF, V_{GEN} = 0, R_{GEN} = 0, Figure 3$ MAX481835pCFault Recovery TimetRECVNO_, VNC_, VCOM_ = -11V128µsTurn-On Timeton V_{NO_o} or $V_{NC_o} = +3V, R_L = 300\Omega, C_L = 35pF, Figure 2TA = +25°C2050Turn-Off TimetoFFV_{NO_o} or V_{NC_o} = +3V, R_L = 300\Omega, C_L = 35pF, Figure 2TA = +25°C0.51Turn-Off TimetoFFV_{NO_o} or V_{NC_o} = +3V, R_L = 300\Omega, C_L = 35pF, Figure 2TA = +25°C0.51Turn-Off TimetoFFV_{NO_o} or V_{NC_o} = +3V, R_L = 300\Omega, C_L = 35pF, Figure 2TA = T_{MIN} to T_{MAX}1$	COM Off-Capacitance	COFF(COM)	f = 1MHz. Figure 5			15		pF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				MAX4819				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NC/NO Off-Capacitance	COFF	f = 1MHz, Figure 5					pF
Fault Recovery TimetREC $V_{NO}, V_{NC}, VCOM = -11V$ 128 μ sTurn-On Timeton V_{NO} or $V_{NC} + 3V$, $R_L = 300\Omega$, $C_L = 35pF$, Figure 2 $T_A = +25^{\circ}C$ 2050Turn-Off TimetoFF V_{NO} or $V_{NC} = +3V$, $R_L = 300\Omega$, $C_L = 35pF$, Figure 2 $T_A = +25^{\circ}C$ 0.51Turn-Off TimetoFF V_{NO} or $V_{NC} = +3V$, $R_L = 300\Omega$, $C_L = 35pF$, Figure 2 $T_A = +25^{\circ}C$ 0.51Turn-Off TimetoFF V_{NO} or $V_{NC} = +3V$, $R_L = 300\Omega$, $C_L = 35pF$, Figure 2 $T_A = T_{MIN}$ to T_{MAX} 1	Charge Injection	Q						рС
Turn-On Time t_{ON} $V_{NO_{-}} or V_{NC_{-}} = +3V,$ $R_L = 300\Omega,$ $C_L = 35pF, Figure 2$ $T_A = +25^{\circ}C$ 2050Turn-Off Time t_{OFF} $V_{NO_{-}} or V_{NC_{-}} = +3V,$ $R_L = 300\Omega,$ $C_L = 35pF, Figure 2$ $T_A = T_{MIN}$ to T_{MAX} 50 μs Turn-Off Time t_{OFF} $V_{NO_{-}}$ or $V_{NC_{-}} = +3V,$ $R_L = 300\Omega,$ $C_L = 35pF, Figure 2$ $T_A = +25^{\circ}C$ 0.5 1Turn-Off Time t_{OFF} $V_{NO_{-}}$ or $V_{NC_{-}} = +3V,$ $R_{-} = 300\Omega,$ $C_{-} = 35pF, Figure 2T_A = T_{MIN} toT_{MAX}1$			-					
Turn-On Timeton $R_L = 300\Omega$, $C_L = 35pF$, Figure 2 $T_A = T_{MIN}$ to T_{MAX} 50 μs Turn-Off TimetoFF V_{NO} or $V_{NC} = +3V$, $R_L = 300\Omega$, $C_L = 35pF$, Figure 2 $T_A = +25^{\circ}C$ 0.5 1Turn-Off TimetoFF V_{NO} or $V_{NC} = +3V$, $C_L = 35pF$, Figure 2 $T_A = +25^{\circ}C$ 0.5 1	Fault Recovery Time	tREC						μs
Turn-Off TimetoFF $V_{NO_{-}} or V_{NC_{-}} = +3V,$ $R_{L} = 300\Omega,$ $C_{L} = 35pF,$ Figure 2 $T_{A} = +25^{\circ}C$ 0.5 1Turn-Off Time $V_{NO_{-}} or V_{NC_{-}} = +3V,$ $T_{A} = 300\Omega,$ $T_{A} = T_{MIN}$ to T_{MAX} 1	Turn-On Time	ton	$R_{L} = 300\Omega, \qquad T_{A} = T_{MIN} \text{ to}$			20		μs
Turn-Off TimetoFF $T_{A} = 300\Omega$, $C_{L} = 35pF$, Figure 2 $T_{A} = T_{MIN}$ to T_{MAX} μ s						0.5	1	
	Turn-Off Time	toff	$R_{L} = 300\Omega$,	$T_A = T_{MIN}$ to		0.0		μs
Power-Up Delay t _{DEL} 128 µs	Power-Up Delay	t _{DFI}		I	ł	128		μs

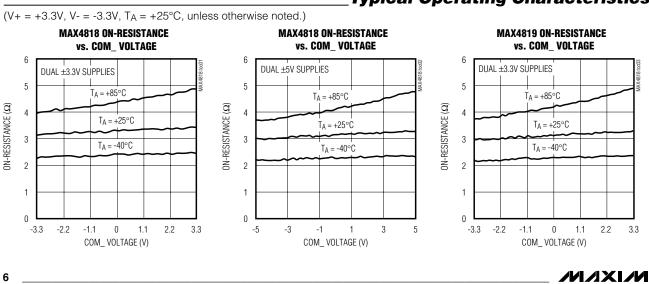
ELECTRICAL CHARACTERISTICS—Dual ±5V Supplies (continued)

 $(V + = +5V \pm 10\%, V - = -5V \pm 10\%, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
LOGIC INPUT (IN_, EN, SET, A	0, A1)					
Input Voltage Low	VIL				0.8	V
Input Voltage High	VIH		2.4			V
Input Leakage Current	lin	$V_{IN} = 0 \text{ or } V +$	-1		+1	μA
POWER SUPPLY						
Quiescent Positive Supply Current	l+	V+ = +5.5V, V- = -5.5V, V _{IN} = 0 or V+		0.9	2	mA
Quiescent Negative Supply Current	-	$V_{+} = +5.5V, V_{-} = -5.5V, V_{IN} = 0 \text{ or } V_{+}$		0.9	2	mA
Positive Supply Voltage	V+		4.5		5.5	V
Negative Supply Voltage	V-		-5.5		-4.5	V

Note 1: All parameters are production tested at $T_A = +85^{\circ}C$ and guaranteed by design over specified temperature range.

Note 2: Guaranteed by design, not production tested.


Note 3: $\Delta R_{ON} = R_{ON}(MAX) - R_{ON}(MIN)$.

Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

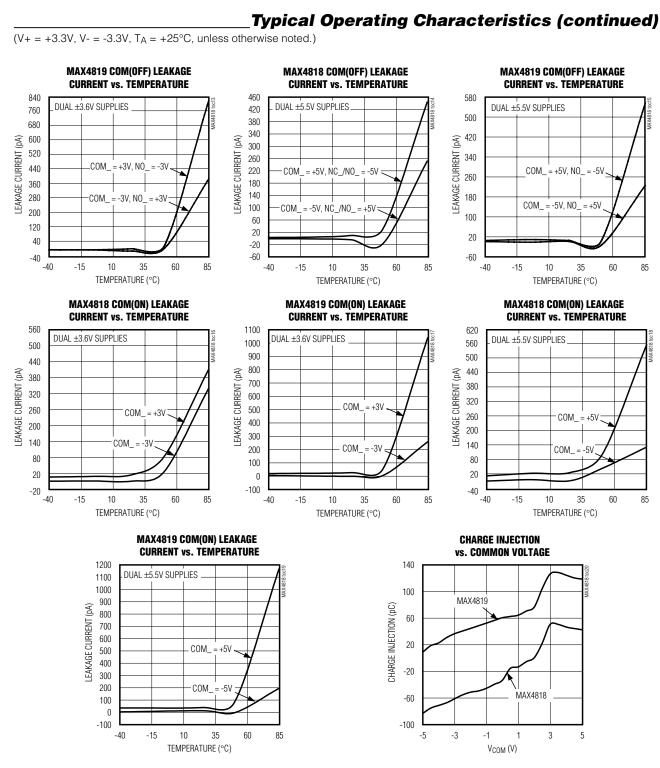
Note 5: Between any two switches.

Note 6: All-hostile crosstalk from all OFF multiplexer inputs to the ON multiplexer channel. All-hostile crosstalk is tested by applying the same signal to all OFF inputs and measuring the crosstalk on the ON channel (COM terminal of the multiplexer.)


Note 7: Off-Isolation = 20log₁₀ [V_{COM} / (V_{NC} or V_{NO})], V_{COM} = output, V_{NC} or V_{NO} = input to OFF switch.

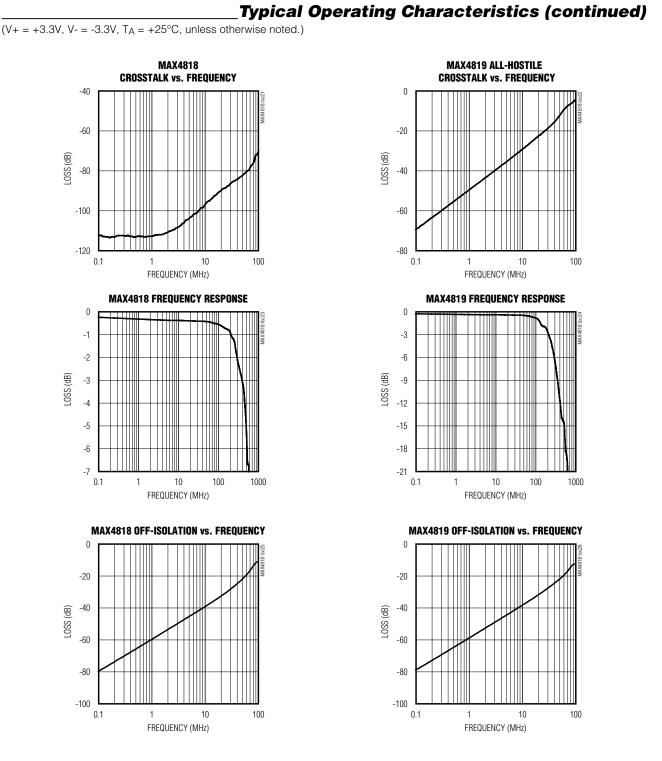
Typical Operating Characteristics

Typical Operating Characteristics (continued)

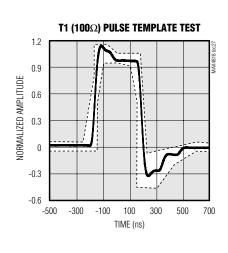

7

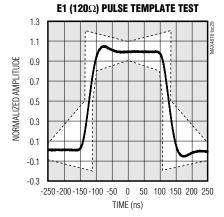
MAX4818/MAX4819

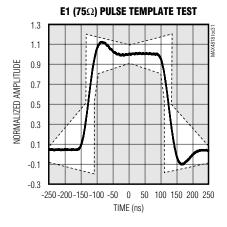
MAX4818/MAX4819

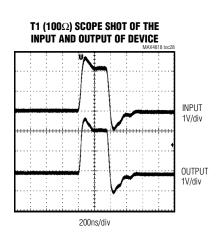

High-Bandwidth T1/E1 Dual-SPDT Switches/ 4:1 Muxes

M/IXI/M

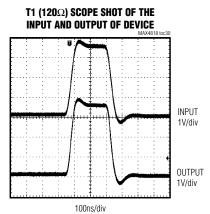

High-Bandwidth T1/E1 Dual-SPDT Switches/ 4:1 Muxes

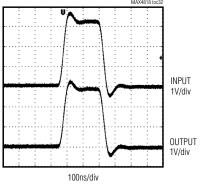



MAX4818/MAX4819



(V+ = +3.3V, V- = -3.3V, T_A = +25°C, unless otherwise noted.)





Typical Operating Characteristics (continued)

Pin Description

PIN NAME			FUNCTION
MAX4818	MAX4819	NAME	FUNCTION
1	1	NO1	Analog Multiplexer Normally Open Terminal 1
2	2	V-	Negative Supply Voltage. Bypass V- to ground with a 0.1µF ceramic capacitor.
3	3	GND	Ground
4	12	NO2	Analog Multiplexer Normally Open Terminal 2
5, 10, 16	5, 8, 10, 16	N.C.	No Connect. Not Internally Connected.
6	6	EN	Enable Input. Connect EN to V+ or a logic-high for normal operation. Connect EN to ground to disable all switches.
7	—	IN2	Switch 2 Logic-Level Input (See Table 1)
8	—	COM2	Analog Switch Common Terminal 2
9		NC2	Analog Switch Normally Close Terminal 2
11	11	V+	Positive Supply Voltage. Bypass V+ to ground with a 0.1µF ceramic capacitor.
12	—	NC1	Analog Switch Normally Close Terminal 1
13	—	COM1	Analog Switch Common Terminal 1
14	—	IN1	Switch 1 Logic-Level Input (See Table 1)
15	15	SET	Logic Input. Drive SET logic-high to set all switches. (See Tables 1, 2)
	4	NO4	Analog Multiplexer Normally Open Terminal 4
	7	A0	Multiplexer Address Input 0 (See Table 2)
	9	NO3	Analog Multiplexer Normally Open Terminal 3
_	13	COM	Analog Multiplexer Common Terminal
_	14	A1	Multiplexer Address Input 1 (See Table 2)
EP	EP	EP	Exposed Paddle. Connect exposed paddle to V- or leave unconnected.

Detailed Description

The MAX4818/MAX4819 are each a high-bandwidth, low-on-resistance dual-SPDT analog switch/4:1 multiplexer, respectively. Both the MAX4818 and the MAX4819 are designed to serve as integrated T1/E1 analog protection switches for 1+1 and N+1 line-card redundancy applications. These devices replace electromechanical relays to save board space, reduce power consumption, and simplify PC board routing. The MAX4818/ MAX4819 allow the user to live insert the boards with no adverse effects.

The MAX4818/MAX4819 operate from $\pm 3.3V$ or $\pm 5V$ dual supplies, which are required for E1/T1 signal switching in the line-side of the interface transformer. Internal voltage multipliers supply the switches yielding excellent linearity and low on-resistance, typically 4Ω within the E1/T1 analog signal range. This high-bandwidth family of devices is optimized for low return loss

and matched pulse template performance in E1/T1 short-haul and long-haul applications.

Logic Inputs

The MAX4818 has four digital control inputs: EN, SET, IN1, and IN2. The EN input enables the switches. A logic 1 on SET connects COM to the NO_ terminal. IN_ controls the switch when SET is low, as shown in Table 1.

The MAX4819 has four digital control inputs: EN, SET, A1, and A0. The EN input enables the multiplexer. A logic 1 on SET connects all NO_ to COM. A1 and A0 control which terminal will be connected to COM when SET is low, as shown in Table 2.

Analog Signal Levels

The on-resistance of the MAX4818/MAX4819 is very low and stable as the analog signals are swept from V- to V+ (see the *Typical Operating Characteristics*).

MAX4818/MAX4819

Fault Protection

The fault protection of the MAX4818/MAX4819 allows the devices to handle input signals of more than twice the supply voltage without clamping the signal, latching up, or disturbing other cards in the system. The device detects when the input voltage drops below the negative supply. As soon as a fault condition is detected, the switch is immediately turned off for 128 clock cycles (typically 128µs). At the end of the 128µs timeout, the switch is turned back on for one clock cycle. At the end of the one clock cycle, if the signal is within the operating range, the switch will remain on. Otherwise, the device will turn the switch off again for 128 clock cycles. This will repeat until the signal is within the operating range. In T1/E1 redundancy applications, this can happen when the load resistor (RL) is removed or disconnected for any reason, as shown in Figure 1. Without a load resistor, the output voltage when using a 1:2 transformer can be as high as $\pm 11V$.

Hot Insertion The MAX4818/MAX4819 tolerate hot insertions, thus are not damaged when inserted into a live backplane. Competing devices can exhibit low impedance when plugged into a live backplane that can cause high power dissipation leading to damage of the device itself. The MAX4818/MAX4819 have relatively high input impedance when V+ and V- supplies are unconnected or connected to GND. Therefore, the devices are not destroyed by a hot insertion. In order to guarrantee data integrity, the V+ and V- supplies must be properly biased.

Applications Information

T1/E1 N+1 Redundancy

Figures 6, 7, and 8 show a basic architecture for twistedpair interface (120Ω , E1 or 100Ω , T1). Coaxial cable interface (75Ω , E1) can be illustrated with the same figures but without the single-ended to differential conversion stage. A single protection card can replace up to N line cards in a N+1 redundancy scheme. Figure 6 shows the switches sitting in the line cards where they can reroute any of the input/output signals to a protection line card. Figure 7 shows a "multiplexed" redundancy architecture using the MAX4819 where the multiplexers are in the line cards. This architecture is more scalable as the number of boards is increased. It also does not

Table 1. Dual SPDT Truth Table(MAX4818)

EN	SET	IN_	COM_ CONNECTION
0	Х	Х	NONE
1	0	0	NC_
1	0	1	NO_
1	1	Х	NO_

 $(X = don't \ care.)$

Table 2. 4:1 Multiplexer Truth Table(MAX4819)

EN	SET	A1	A0	COM CONNECTION
0	Х	Х	Х	NONE
1	0	0	0	NO1
1	0	0	1	NO2
1	0	1	0	NO3
1	0	1	1	NO4
1	1	Х	Х	NO1, NO2, NO3, NO4

(X = don't care.)

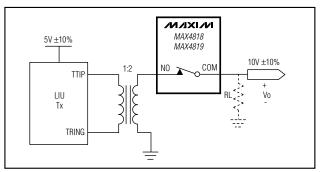


Figure 1. Fault Protection

require a dedicated external switching card as the multiplexers reside in the line cards themselves. The number of signals routed through the backplane is substantially higher than in the switching-card architecture. Figure 8 shows a similar architecture, but the multiplexers reside in the protection switching card. These figures do not show the surge-protection elements and resistors for line termination/impedance matching.

Test Circuits/Timing Diagrams

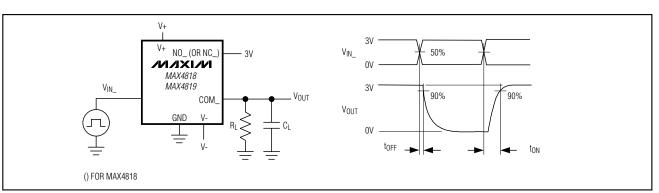


Figure 2. Switch Turn-On/Turn-Off Times

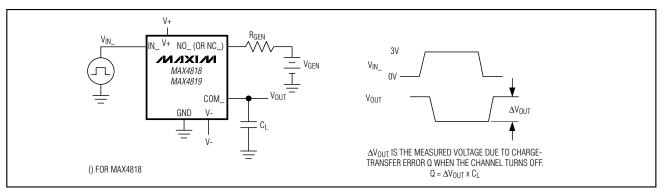


Figure 3. Charge Injection

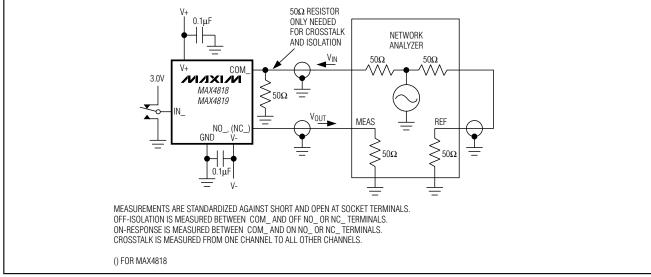


Figure 4. On-Loss, Off-Isolation, and Crosstalk

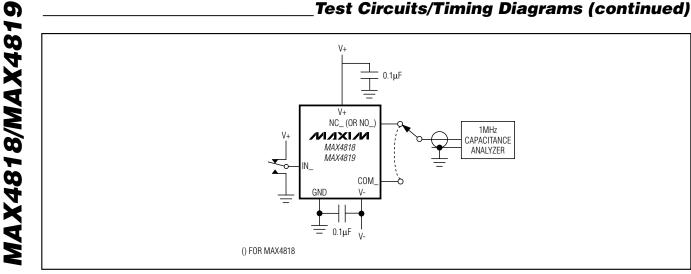


Figure 5. Channel Off-/On-Capacitance

The low on-resistance and high-bandwidth of the MAX4818/MAX4819 yield good pulse template and return-loss performance (see the *Typical Operating Characteristics*). The pulse template tests for E1 (twist-ed-pair interface 120 Ω and coaxial interface 75 Ω) and T1 (twisted-pair interface 100 Ω) were tested using the Dallas DS2155 single-chip-transceiver evaluation board, and twelve switches in parallel with one switch closed and the other eleven open. The internal transmit

termination feature must be disable when using this circuit. In order to use the same transmit resistors for E1 twisted-pair and coaxial cables, the Transmit Line Buildout Control Register (TLBC) is set to the value 6Ah. This sets the driver voltage so the output pulse has the right amplitude for both 120 Ω (twisted pair) and 75 Ω (coaxial) loads. The analog switches were powered with dual power supplies at ±5V.

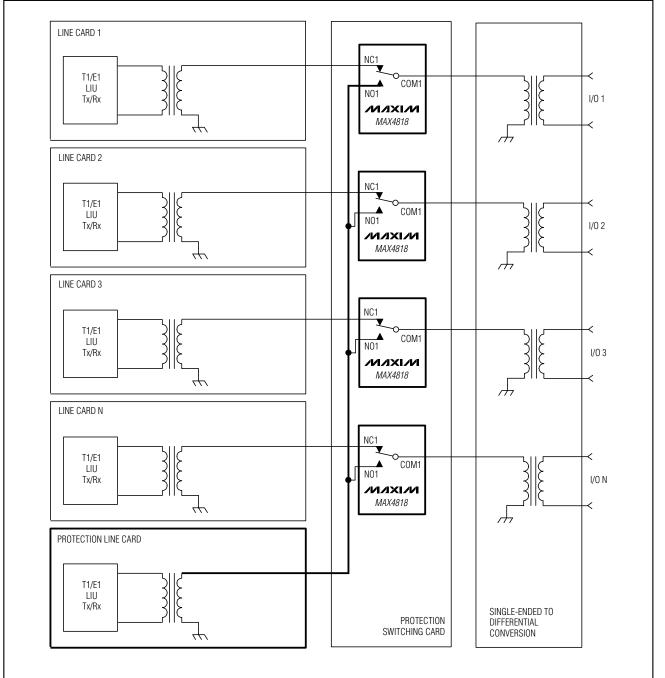


Figure 6. Switch Architecture for Twisted-Pair Cable (120Ω , E1 or 100Ω , T1). Same figure for Coaxial Cable (75Ω , E1) without the single-ended-to-differential conversion.

16

High-Bandwidth T1/E1 Dual-SPDT Switches/ 4:1 Muxes

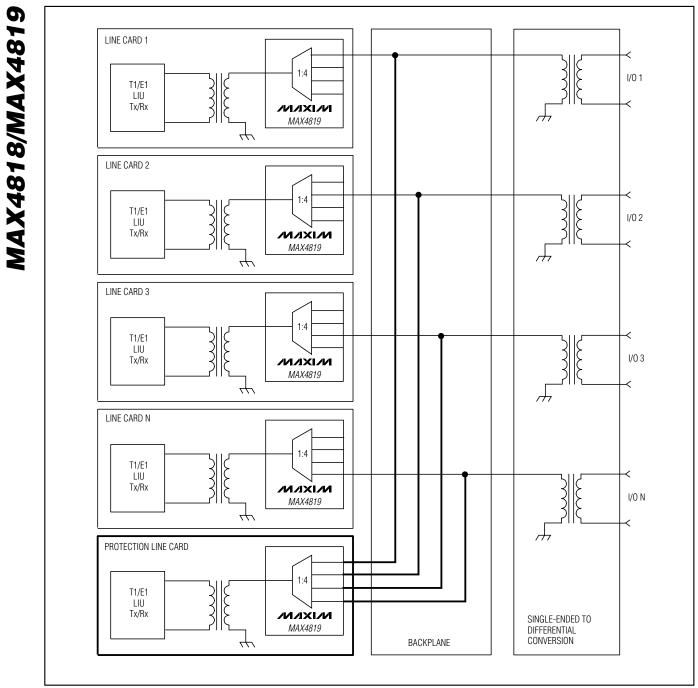
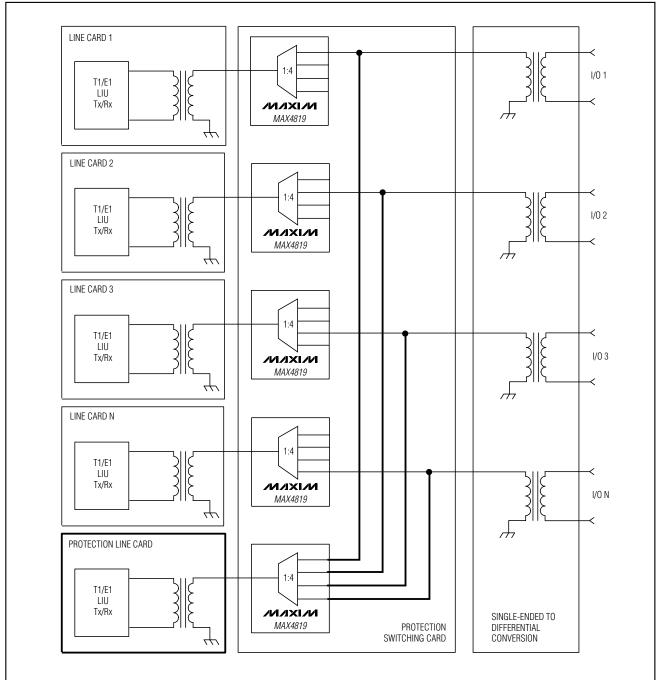
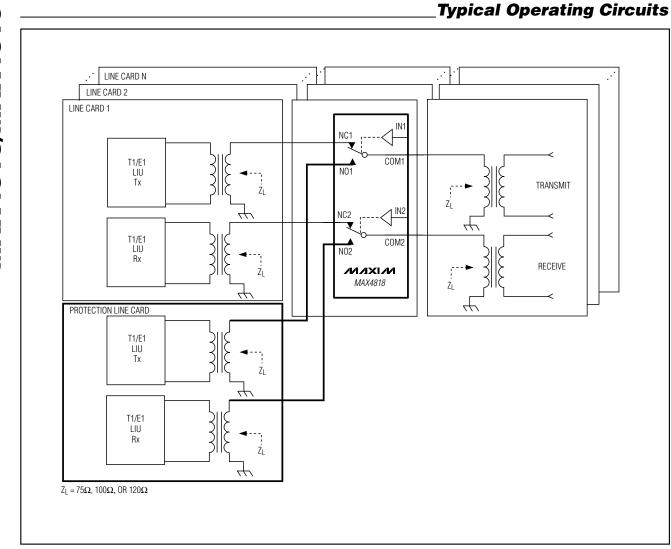
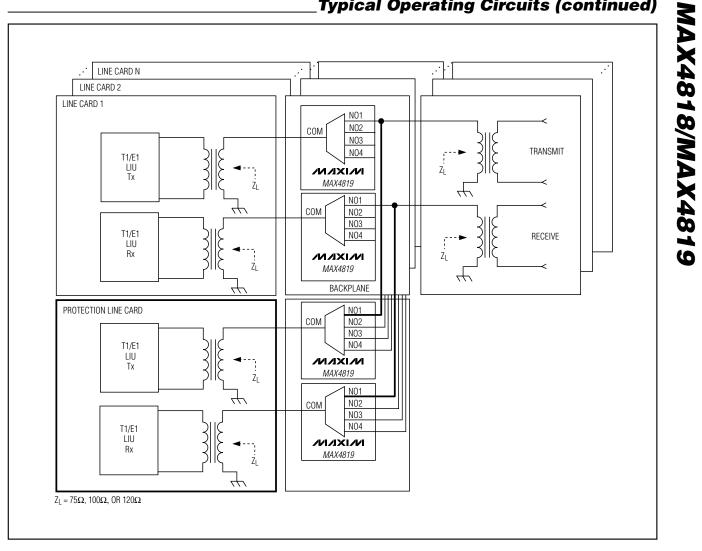
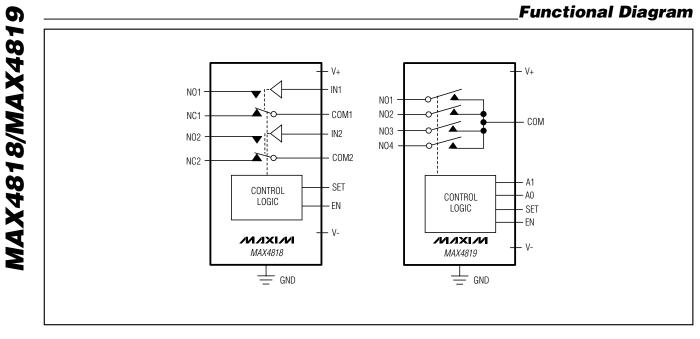


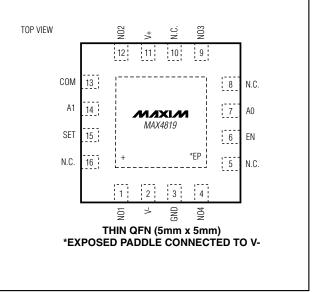
Figure 7. Multiplexed Redundancy Architecture with Multiplexer in the Line Cards for Twisted-Pair Cable (120 Ω , E1 or 100 Ω , T1). Same figure for coaxial cable (75 Ω , E1) without the single-ended-to-differential conversion.


Figure 8. Multiplexed Redundancy Architecture with Multiplexer Out of the Line Cards for Twisted-Pair Cable (120 Ω , E1 or 100 Ω , T1). Same figure for coaxial cable (75 Ω , E1) without the single-ended-to-differential conversion.

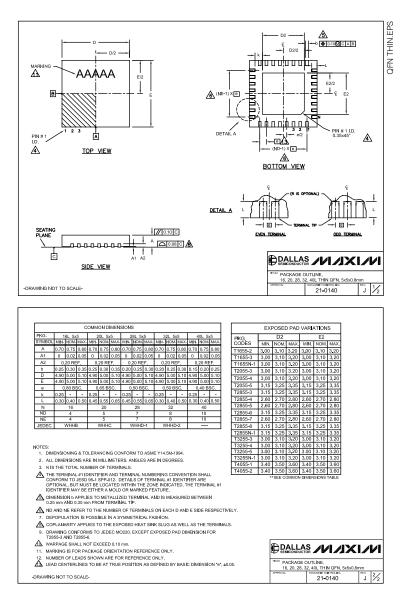

MAX4818/MAX4819

Typical Operating Circuits (continued)



Chip Information

PROCESS: BICMOS CONNECT EXPOSED PADDLE TO V-.



Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

MAX4818/MAX4819

21

Revision History

Pages changed at Rev 1: 1, 12, 21

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2007 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products, Inc.