

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor NTD4805N-1G

For any questions, you can email us directly: sales@integrated-circuit.com

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTD4805N, NVD4805N

Power MOSFET

30 V, 88 A, Single N-Channel, DPAK/IPAK

Features

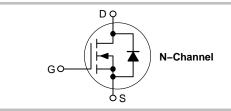
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- CPU Power Delivery
- DC-DC Converters
- Low Side Switching

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

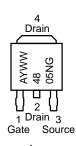
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Voltage	е		V _{GS}	±20	V
Continuous Drain		T _A = 25°C	I _D	17.4	Α
Current (R _{θJA}) (Note 1)		T _A = 85°C		13.5	
Power Dissipation (R _{θJA}) (Note 1)		T _A = 25°C	P _D	2.65	W
Continuous Drain		T _A = 25°C	I _D	12.7	Α
Current (R _{θJA}) (Note 2)	Steady	T _A = 85°C		9.8	
Power Dissipation (R _{θJA}) (Note 2)	State	T _A = 25°C	P _D	1.41	W
Continuous Drain		T _C = 25°C	I _D	95	Α
Current (R _{θJC}) (Note 1)		T _C = 85°C		73	
Power Dissipation (R _{θJC}) (Note 1)		T _C = 25°C	P _D	79	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	175	Α
Current Limited by Pack	age	T _A = 25°C	I _{DmaxPkg}	45	Α
Operating Junction and	Operating Junction and Storage Temperature			-55 to 175	°C
Source Current (Body D	Source Current (Body Diode)			55	Α
Source Current (Body Di	Source Current (Body Diode) Pulsed t _p =20 μs			175	Α
Drain to Source dV/dt			dV/dt	6.0	V/ns
Single Pulse Drain–to–Source Avalanche Energy (V_{DD} = 24 V, V_{GS} = 10 V, L = 1.0 mH, $I_{L(pk)}$ = 24 A, R_{G} = 25 Ω)			E _{AS}	288	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

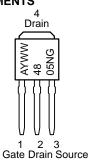

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX		
30 V	5.0 mΩ @ 10 V	88 A		
30 V	$7.4~\text{m}\Omega$ @ $4.5~\text{V}$	00 /		




DPAK CASE 369AA (Bent Lead) STYLE 2

IPAK CASE 369D (Straight Lead DPAK) STYLE 2

MARKING DIAGRAMS & PIN ASSIGNMENTS

A = Assembly Location*

Y = Year
WW = Work Week
4805N = Device Code
G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

^{*} The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

Datasheet of NTD4805N-1G - MOSFET N-CH 30V 12.6A IPAK

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTD4805N, NVD4805N

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	1.9	°C/W
Junction-to-TAB (Drain)	$R_{\theta JC-TAB}$	3.5	
Junction-to-Ambient - Steady State (Note 1)	$R_{ heta JA}$	56.6	
Junction-to-Ambient - Steady State (Note 2)	$R_{ hetaJA}$	106.6	

- Surface-mounted on FR4 board using 1 in sq pad size, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Co	ndition	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(BR)DSS}/T_J$				27		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μΑ
		$V_{DS} = 24 \text{ V}$	T _J = 125°C			10	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	_{GS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)						-	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$	l _D = 250 μA	1.5		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.86		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 to	I _D = 30 A		4.3	5.0	mΩ
		11.5 V	I _D = 15 A		4.2		1
		V _{GS} = 4.5 V	I _D = 30 A		6.0	7.4	1
	I _D :	I _D = 15 A		5.8		1	
Forward Transconductance	9FS	V _{DS} = 15 V	, I _D = 15 A		17		S
HARGES AND CAPACITANCES	•				•	•	
Input Capacitance	C _{iss}				2865		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f}$			610		
Reverse Transfer Capacitance	C _{rss}	V _{DS} = 12 V			338		
Total Gate Charge	Q _{G(TOT)}				20.5	26	nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 4.5 \text{ V},$	V _{DS} = 15 V,		4.05		
Gate-to-Source Charge	Q_{GS}	I _D = 3			8.28		1
Gate-to-Drain Charge	Q_{GD}				8.36		
Total Gate Charge	$Q_{G(TOT)}$	$V_{GS} = 11.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 30 \text{ A}$			48		nC
WITCHING CHARACTERISTICS (Note 4)							
Turn-On Delay Time	t _{d(on)}				17.2		ns
Rise Time	t _r	V _{GS} = 4.5 V,	V _{DS} = 15 V,		20.3		7
Turn-Off Delay Time	t _{d(off)}	$I_D = 15 \text{ A}, R_G = 3.0 \Omega$			20.8		
Fall Time	t _f				8.0		1
Turn-On Delay Time	t _{d(on)}				10.8		ns
Rise Time	t _r	V _{GS} = 11.5 V,	V _{DS} = 15 V,		20.5		1
Turn-Off Delay Time	t _{d(off)}	$I_D = 15 \text{ A}, R_G = 3.0 \Omega$			30.8		1
Fall Time	t _f				4.4		1

Datasheet of NTD4805N-1G - MOSFET N-CH 30V 12.6A IPAK

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTD4805N, NVD4805N

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
RAIN-SOURCE DIODE CHARACT	ERISTICS	•					
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V$,	$T_J = 25^{\circ}C$		0.87	1.2	V
		I _S = 30 A	T _J = 125°C		0.76		1
Reverse Recovery Time	t _{RR}		•		25.7		ns
Charge Time	ta	$V_{GS} = 0 \text{ V, dls/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 30 \text{ A}$			13.1		1
Discharge Time	tb				12.6		1
Reverse Recovery Time	Q_{RR}				18		nC
PACKAGE PARASITIC VALUES	-						
Source Inductance	L _S				2.49		nH
Drain Inductance, DPAK	L _D				0.0164		1
Drain Inductance, IPAK	L _D	T _A = 25°C			1.88		1
Gate Inductance	L _G				3.46		1
Gate Resistance	R _G				0.8		Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width $\leq 300~\mu s$, Duty Cycle $\leq 2\%$.

4. Switching characteristics are independent of operating junction temperatures.

NTD4805N, NVD4805N

TYPICAL PERFORMANCE CURVES

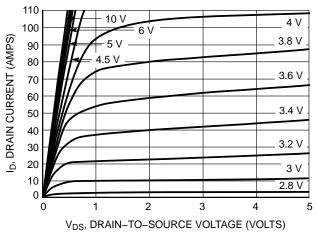


Figure 1. On–Region Characteristics

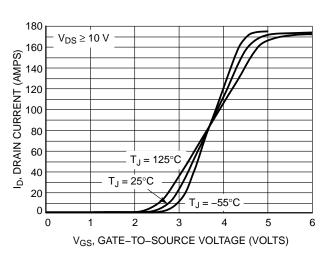


Figure 2. Transfer Characteristics

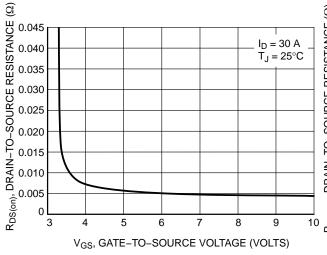


Figure 3. On-Resistance vs. Gate-to-Source Voltage

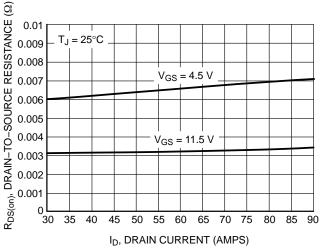


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

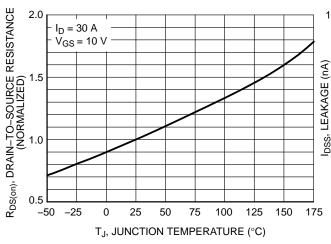


Figure 5. On–Resistance Variation with Temperature

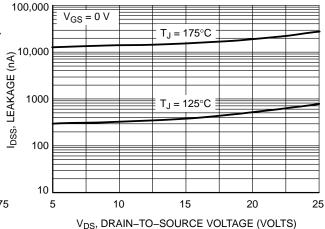
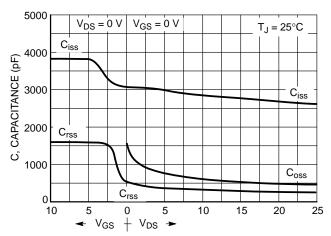



Figure 6. Drain-to-Source Leakage Current vs. Drain Voltage

NTD4805N, NVD4805N

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

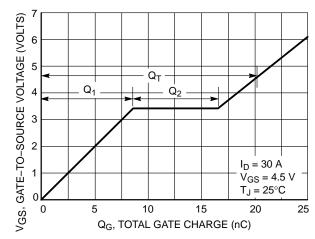


Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

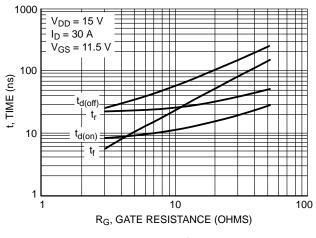


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

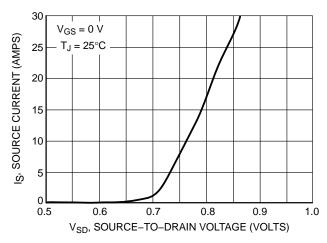


Figure 10. Diode Forward Voltage vs. Current

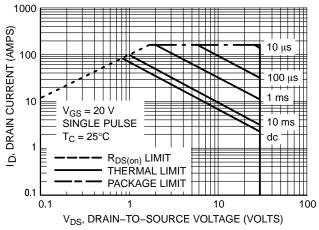


Figure 11. Maximum Rated Forward Biased Safe Operating Area

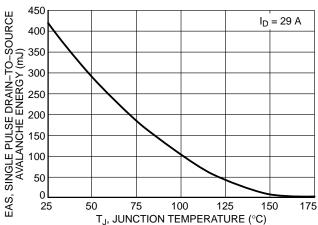


Figure 12. Maximum Avalanche Energy vs.
Starting Junction Temperature

NTD4805N, NVD4805N

TYPICAL PERFORMANCE CURVES

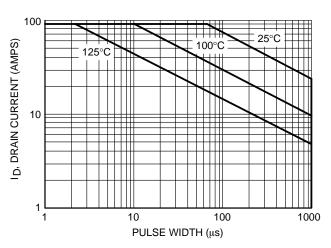


Figure 13. Avalanche Characteristics

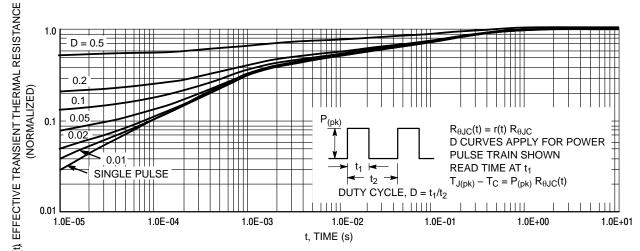


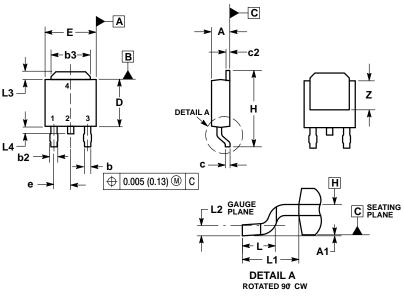
Figure 14. Thermal Response

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NTD4805NT4G	DPAK (Pb-Free)	2,500 / Tape & Reel
NTD4805N-1G	IPAK (Pb-Free)	75 Units / Rail
NVD4805NT4G*	DPAK (Pb-Free)	2,500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.


Datasheet of NTD4805N-1G - MOSFET N-CH 30V 12.6A IPAK

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTD4805N, NVD4805N

PACKAGE DIMENSIONS

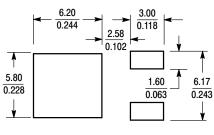
DPAK (SINGLE GUAGE) CASE 369AA ISSUE B

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: INCHES.

 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.


 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED .006 INCHES PER SIDE.

 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

INCHES MILLIMETERS					
	INCHES				
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
Ф	0.090	BSC	2.29	BSC	
Η	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108	REF	2.74	REF	
L2	0.020	BSC	0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

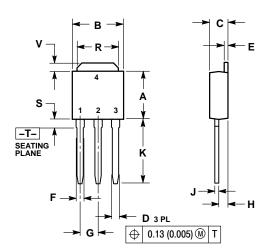
SOLDERING FOOTPRINT*

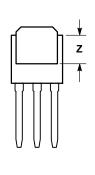
 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 3:1

STYLE 2:

PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


Datasheet of NTD4805N-1G - MOSFET N-CH 30V 12.6A IPAK


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTD4805N, NVD4805N

PACKAGE DIMENSIONS

IPAK CASE 369D ISSUE C

NOTES:

- DIMENSIONING AND TOLERANCING PER
 ANSLY 44 FM 4022
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MIN MAX		MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090	BSC	2.29	BSC	
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
7	0.155		3 03		

STYLE 2:

PIN 1. GATE 2. DRAIN

DRAIN
 SOURCE

4. DRAIN

ON Semiconductor and the III are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliativitors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the desig

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative