

# **Excellent Integrated System Limited**

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor CD4013BCN

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>



# FAIRCHILD

SEMICONDUCTOR

# CD4013BC Dual D-Type Flip-Flop

#### **General Description**

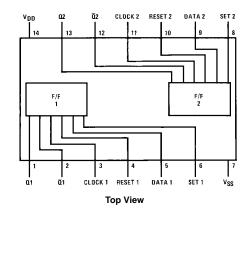
The CD4013B dual D-type flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement mode transistors. Each flip-flop has independent data, set, reset, and clock inputs and "Q" and "Q" outputs. These devices can <u>be</u> used for shift register applications, and by connecting "Q" output to the data input, for counter and toggle applications. The logic level present at the "D" input is transferred to the Q output during the positive-going transition of the clock pulse. Setting or resetting is independent of the clock and is accomplished by a high level on the set or reset line respectively.

October 1987 Revised March 2002

# CD4013BC Dual D-Type Flip-Flop

#### Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V<sub>DD</sub> (typ.)
- Low power TTL: fan out of 2 driving 74L compatibility: or 1 driving 74LS


## Applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm system
- Industrial electronicsRemote metering
- Remote metern
- Computers

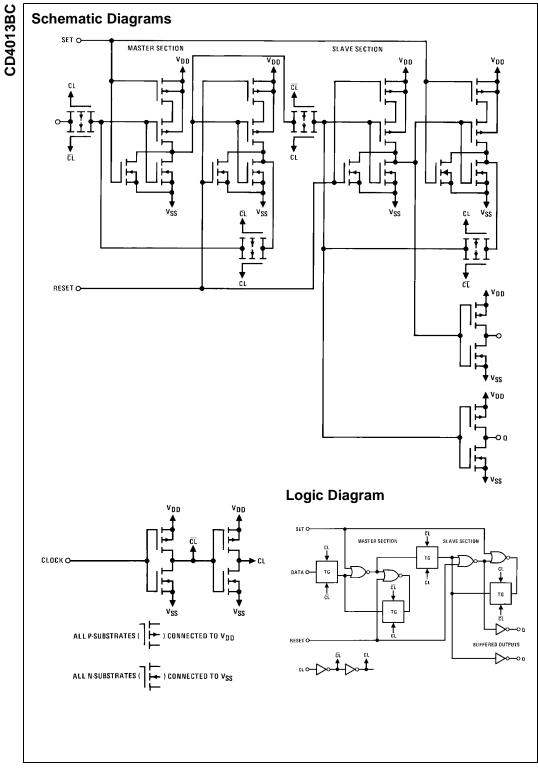
# **Ordering Code:**

| Order Number              | Package Number            | Package Description                                                          |
|---------------------------|---------------------------|------------------------------------------------------------------------------|
| CD4013BCM                 | M14A                      | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow |
| CD4013BCSJ                | M14D                      | 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide                |
| CD4013BCN                 | N14A                      | 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide       |
| Devices also available in | Tape and Reel. Specify by | appending the suffix letter "X" to the ordering code.                        |

# Connection Diagram



## **Truth Table**


| CL<br>(Note 1) | D | R | S | Q | Q |
|----------------|---|---|---|---|---|
| ~              | 0 | 0 | 0 | 0 | 1 |
| ~              | 1 | 0 | 0 | 1 | 0 |
| ~              | х | 0 | 0 | Q | Q |
| x              | х | 1 | 0 | 0 | 1 |
| x              | х | 0 | 1 | 1 | 0 |
| x              | х | 1 | 1 | 1 | 1 |

No Change x = Don't Care Case

Note 1: Level Change

© 2002 Fairchild Semiconductor Corporation DS005946







# Absolute Maximum Ratings(Note 2)

| (Note 3)                                    |                                         |
|---------------------------------------------|-----------------------------------------|
| DC Supply Voltage (V <sub>DD</sub> )        | –0.5 $V_{DC}$ to +18 $V_{DC}$           |
| Input Voltage (V <sub>IN</sub> )            | –0.5 $V_{DC}$ to $V_{DD}$ +0.5 $V_{DC}$ |
| Storage Temperature Range (T <sub>S</sub> ) | -65°C to +150°C                         |
| Power Dissipation (P <sub>D</sub> )         |                                         |
| Dual-In-Line                                | 700 mW                                  |
| Small Outline                               | 500 mW                                  |
| Lead Temperature (T <sub>L</sub> )          |                                         |
| (Soldering, 10 seconds)                     | 260°C                                   |

# **Recommended Operating** Conditions (Note 3)

DC Supply Voltage (V<sub>DD</sub>) Input Voltage (VIN)

+3  $V_{DC}$  to +15  $V_{DC}$ 0 V<sub>DC</sub> to V<sub>DD</sub> V<sub>DC</sub> –55°C to +125°C CD4013BC

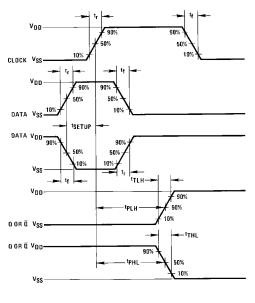
Operating Temperature Range (T<sub>A</sub>) Note 2: "Absolute Maximum Ratings" are those values beyond which the N
N
A safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The tables of "Recom-mended Operating Conditions" and "Electrical Characteristics" provide con-ditions for actual device operation.

Note 3:  $V_{SS} = 0V$  unless otherwise specified.

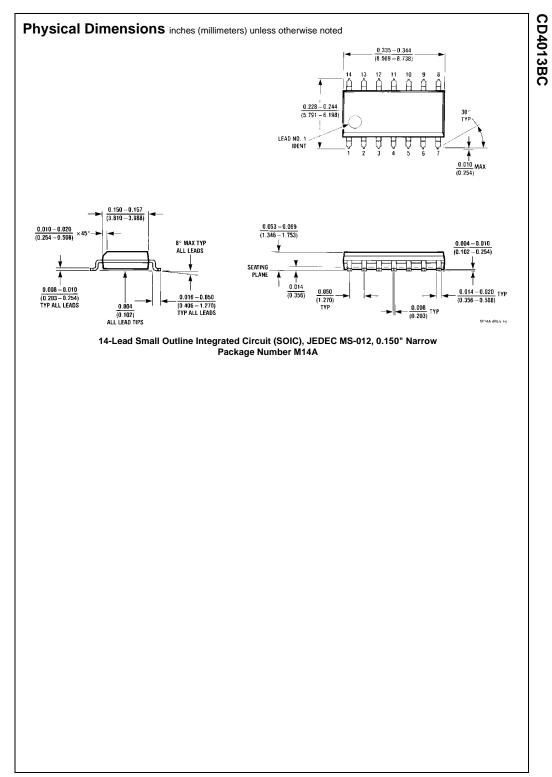
| <b>DC Electrical Characteristics</b> | (Note 3) |
|--------------------------------------|----------|
| DC Electrical Characteristics        | (Note 3) |

| 0               | Parameter         | Conditions                                        | –55°C |      |       | +25°C             |      |       | +125°C |       |
|-----------------|-------------------|---------------------------------------------------|-------|------|-------|-------------------|------|-------|--------|-------|
| Symbol          |                   | Conditions                                        | Min   | Max  | Min   | Тур               | Max  | Min   | Max    | Units |
| I <sub>DD</sub> | Quiescent Device  | $V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$ |       | 1.0  |       |                   | 1.0  |       | 30     |       |
|                 | Current           | $V_{DD} = 10V$ , $V_{IN} = V_{DD}$ or $V_{SS}$    |       | 2.0  |       |                   | 2.0  |       | 60     | μΑ    |
|                 |                   | $V_{DD} = 15V$ , $V_{IN} = V_{DD}$ or $V_{SS}$    |       | 4.0  |       |                   | 4.0  |       | 120    |       |
| V <sub>OL</sub> | LOW Level         | I <sub>O</sub>   < 1.0 μA                         |       |      |       |                   |      |       |        |       |
|                 | Output Voltage    | $V_{DD} = 5V$                                     |       | 0.05 |       |                   | 0.05 |       | 0.05   | v     |
|                 |                   | $V_{DD} = 10V$                                    |       | 0.05 |       |                   | 0.05 |       | 0.05   | v     |
|                 |                   | $V_{DD} = 15V$                                    |       | 0.05 |       |                   | 0.05 |       | 0.05   |       |
| √ <sub>ОН</sub> | HIGH Level        | I <sub>O</sub>   < 1.0 μA                         |       |      |       |                   |      |       |        |       |
|                 | Output Voltage    | $V_{DD} = 5V$                                     | 4.95  |      | 4.95  |                   |      | 4.95  |        | v     |
|                 |                   | $V_{DD} = 10V$                                    | 9.95  |      | 9.95  |                   |      | 9.95  |        | v     |
|                 |                   | $V_{DD} = 15V$                                    | 14.95 |      | 14.95 |                   |      | 14.95 |        |       |
| V <sub>IL</sub> | LOW Level         | I <sub>O</sub>   < 1.0 μA                         |       |      |       |                   |      |       |        |       |
|                 | Input Voltage     | $V_{DD}$ = 5V, $V_{O}$ = 0.5V or 4.5V             |       | 1.5  |       |                   | 1.5  |       | 1.5    | v     |
|                 |                   | $V_{DD} = 10V$ , $V_O = 1.0V$ or $9.0V$           |       | 3.0  |       |                   | 3.0  |       | 3.0    | v     |
|                 |                   | $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$    |       | 4.0  |       |                   | 4.0  |       | 4.0    |       |
| V <sub>IH</sub> | HIGH Level        | I <sub>O</sub>   < 1.0 μA                         |       |      |       |                   |      |       |        |       |
|                 | Input Voltage     | $V_{DD}$ = 5V, $V_{O}$ = 0.5V or 4.5V             | 3.5   |      | 3.5   |                   |      | 3.5   |        | v     |
|                 |                   | $V_{DD} = 10V, V_O = 1.0V \text{ or } 9.0V$       | 7.0   |      | 7.0   |                   |      | 7.0   |        | v     |
|                 |                   | $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$    | 11.0  |      | 11.0  |                   |      | 11.0  |        |       |
| OL              | LOW Level Output  | $V_{DD} = 5V, V_{O} = 0.4V$                       | 0.64  |      | 0.51  | 0.88              |      | 0.36  |        |       |
|                 | Current (Note 4)  | $V_{DD} = 10V, V_{O} = 0.5V$                      | 1.6   |      | 1.3   | 2.25              |      | 0.9   |        | mA    |
|                 |                   | $V_{DD} = 15V, V_{O} = 1.5V$                      | 4.2   |      | 3.4   | 8.8               |      | 2.4   |        |       |
| он              | HIGH Level Output | $V_{DD} = 5V, V_{O} = 4.6V$                       | -0.64 |      | -0.51 | -0.88             |      | -0.36 |        |       |
|                 | Current (Note 4)  | $V_{DD} = 10V, V_{O} = 9.5V$                      | -1.6  |      | -1.3  | -2.25             |      | -0.9  |        | mA    |
|                 |                   | $V_{DD} = 15V, V_{O} = 13.5V$                     | -4.2  |      | -3.4  | -8.8              |      | -2.4  |        |       |
| IN              | Input Current     | $V_{DD} = 15V, V_{IN} = 0V$                       |       | -0.1 |       | -10 <sup>-5</sup> | -0.1 |       | -1.0   | μA    |
|                 |                   | V <sub>DD</sub> = 15V, V <sub>IN</sub> = 15V      |       | 0.1  |       | 10 <sup>-5</sup>  | 0.1  |       | 1.0    | μΑ    |

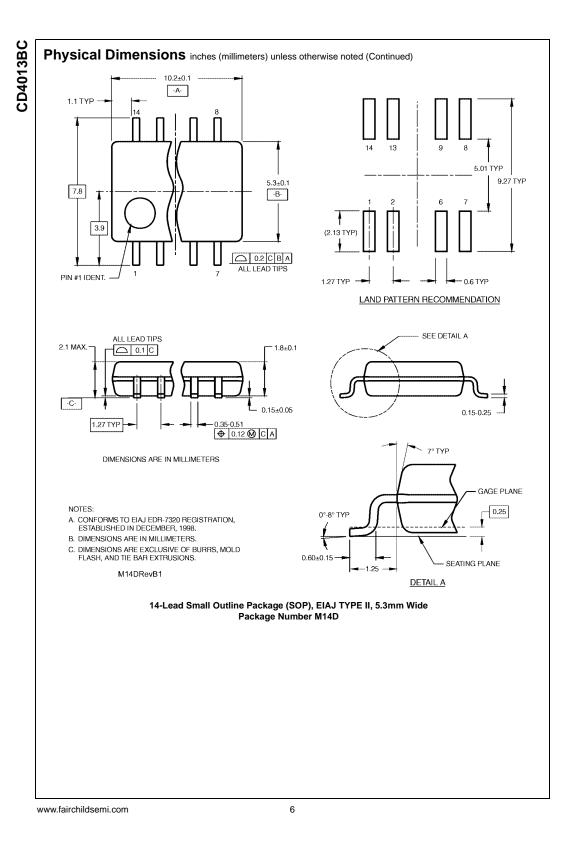
Note 4:  $I_{OH} \text{ and } I_{OL}$  are measured one output at a time.




| C        |
|----------|
| ш        |
| e        |
| <u> </u> |
| 0        |
| 4        |
|          |
| C        |
|          |


| Symbol                              | Parameter                 | Conditions     | Min | Тур  | Max | Units |
|-------------------------------------|---------------------------|----------------|-----|------|-----|-------|
| CLOCK OPERATI                       | ON                        |                |     |      |     |       |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Propagation Delay Time    | $V_{DD} = 5V$  |     | 200  | 350 |       |
|                                     |                           | $V_{DD} = 10V$ |     | 80   | 160 | ns    |
|                                     |                           | $V_{DD} = 15V$ |     | 65   | 120 |       |
| t <sub>THL</sub> , t <sub>TLH</sub> | Transition Time           | $V_{DD} = 5V$  |     | 100  | 200 |       |
|                                     |                           | $V_{DD} = 10V$ |     | 50   | 100 | ns    |
|                                     |                           | $V_{DD} = 15V$ |     | 40   | 80  |       |
| t <sub>WL</sub> , t <sub>WH</sub>   | Minimum Clock             | $V_{DD} = 5V$  |     | 100  | 200 |       |
|                                     | Pulse Width               | $V_{DD} = 10V$ |     | 40   | 80  | ns    |
|                                     |                           | $V_{DD} = 15V$ |     | 32   | 65  |       |
| t <sub>RCL</sub> , t <sub>FCL</sub> | Maximum Clock Rise and    | $V_{DD} = 5V$  |     |      | 15  |       |
|                                     | Fall Time                 | $V_{DD} = 10V$ |     |      | 10  | μs    |
|                                     |                           | $V_{DD} = 15V$ |     |      | 5   |       |
| t <sub>SU</sub>                     | Minimum Set-Up Time       | $V_{DD} = 5V$  |     | 20   | 40  |       |
|                                     |                           | $V_{DD} = 10V$ |     | 15   | 30  | ns    |
|                                     |                           | $V_{DD} = 15V$ |     | 12   | 25  |       |
| f <sub>CL</sub>                     | Maximum Clock             | $V_{DD} = 5V$  | 2.5 | 5    |     |       |
|                                     | Frequency                 | $V_{DD} = 10V$ | 6.2 | 12.5 |     | MHz   |
|                                     |                           | $V_{DD} = 15V$ | 7.6 | 15.5 |     |       |
| SET AND RESET                       | OPERATION                 | •              |     |      |     |       |
| t <sub>PHL(R)</sub> ,               | Propagation Delay Time    | $V_{DD} = 5V$  |     | 150  | 300 |       |
| t <sub>PLH(S)</sub>                 |                           | $V_{DD} = 10V$ |     | 65   | 130 | ns    |
|                                     |                           | $V_{DD} = 15V$ |     | 45   | 90  |       |
| t <sub>WH(R)</sub> ,                | Minimum Set and           | $V_{DD} = 5V$  |     | 90   | 180 |       |
| t <sub>WH(S)</sub>                  | Reset Pulse Width         | $V_{DD} = 10V$ |     | 40   | 80  | ns    |
|                                     |                           | $V_{DD} = 15V$ |     | 25   | 50  |       |
| CIN                                 | Average Input Capacitance | Any Input      |     | 5    | 7.5 | pF    |

Note 5: AC Parameters are guaranteed by DC correlated testing.


# **Switching Time Waveforms**



