

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Maxim Integrated MAX2363ETM+

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of Maxim Integrated: Excellent Integrated System Limited Datasheet of MAX2363ETM+ - IC TRANSMITTER QUAD 48TQFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

19-2013 · Rev 2 · 7/04

MIXIM **Complete Dual-Band** Quadrature Transmitters

General Description

The MAX2361 dual-band, triple-mode complete transmitter for cellular phones represents an integrated and architecturally advanced solution for this application. The device takes a differential I/Q baseband input and converts it up to IF through a quadrature modulator and IF variable-gain amplifier (VGA). The signal is then routed to an external bandpass filter and upconverted to RF through an image-reject mixer and RF VGA. The signal is further amplified with an on-chip PA driver. An IF synthesizer, an RF synthesizer, a local oscillator (LO) buffer, and a 3-wire programmable bus complete the basic functional blocks of this IC. The MAX2363 supports single-band, single-mode (PCS) operation. The MAX2365 supports single-band cellular dual-mode operation.

The MAX2361 enables architectural flexibility because of its two IF voltage-controlled oscillators (VCOs), two IF ports, two RF LO input ports, and three PA driver output ports. The devices allow the use of a single receive IF frequency and split-band PCS filters for optimum out-ofband noise performance. The low-noise PA drivers allow up to three RF SAW filters to be eliminated. Select a mode of operation by loading data on the SPI[™]/QSPI[™]/MICROWIRE[™]-compatible 3-wire serial bus. Charge-pump current, IF/RF gain balancing, standby, shutdown plus additional functions, are also controlled with the serial interface.

The MAX2361/MAX2363/MAX2365 come in a 48-pin TQFN-EP and QFN-EP package and are specified for the extended (-40°C to +85°C) temperature range.

> Applications CDMA, cdma2000[™], TDMA, W-CDMA, **GAIT Mobile Phones**

Satellite Phones

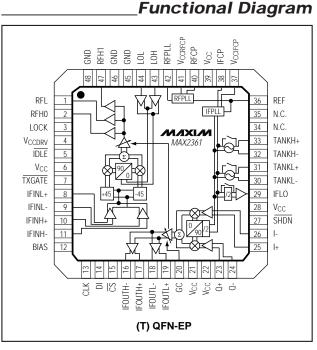
Wireless Data Links (WAN/LAN)

Wireless Local Area Networks (LANs)

High-Speed Data Modems

Pin Configurations appear at end of data sheet. Selector Guide appears at end of data sheet.

SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp. cdma2000 is a trademark of Telecommunications Industry Association.


Features

- Dual-Band, Triple-Mode Operation
- +9dBm Linear Output Power
- 100dB Power-Control Range
- Supply Current Drops as Output Power is Reduced
- Dual Synthesizer for IF and RF LO
- Dual On-Chip IF VCO
- QSPI/SPI/MICROWIRE-Compatible 3-Wire Bus
- Digitally Controlled Operational Modes
- Single Sideband Upconverter Eliminates SAW Filters
- Directly Drives Power Amplifier

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX2361EGM	-40°C to +85°C	48 QFN-EP*
MAX2361ETM	-40°C to +85°C	48 TQFN-EP*
MAX2363EGM	-40°C to +85°C	48 QFN-EP*
MAX2363ETM	-40°C to +85°C	48 TQFN-EP*
MAX2365EGM	-40°C to +85°C	48 QFN-EP*
MAX2365ETM	-40°C to +85°C	48 TQFN-EP*
*ED averaged may	d al l a	

EP = exposed paddle.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

- V_{CC} to GND-0.3V to +3.6V RFL, RFH0, RFH1,
- VCCIFCP, VCCRFCP, VCCDRV to GND......0.3V to +5.5V DI. CLK, CS, GC, SHDN, TXGATE,
- IDLE, LOCK to GND......0.3V to (V_{CC} + 0.3V)

 AC Input Pins (IFINL_, IFINH_, Q_, I_, TANKL_, TANKH_,
- REF, RFPLL, LOL, LOH).....1.0V peak

Digital Input Current (SHDN, TXGATE, IDLE, CLK, DI, CS)±10mA	
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
48-Pin QFN-EP (derate 27mW/°C above +70°C)2.1W	/
Operating Temperature Range40°C to +85°C	
Junction Temperature+150°C	
Storage Temperature Range65°C to +150°C	
Lead Temperature (soldering, 10s)+300°C	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(\textbf{MAX2361/MAX2365}, \textbf{MAX2365}, \textbf{SHDN} = \textbf{IDLE} = \textbf{TXGATE} = high, V_{GC} = 2.4V, R_{BIAS} = 10k\Omega, I_{CC}CTRL is in power-up state, no AC signals applied, V_{CC} = +2.7V to +3.3V, V_{BAT} = +2.7V to +4.5V, T_A = -40^{\circ}C to +85^{\circ}C, unless otherwise noted. Typical values are at V_{CC} = V_{BAT} = +2.8V, T_A = +25^{\circ}C, and operating modes are defined in Table 9.)$

PARAMETER		CONDITIO	MIN	ТҮР	MAX	UNITS	
Operating Supply Voltage	V _{CC}		2.7		3.3	N/	
Operating Supply voltage	VBAT		2.7		4.5	V	
		$V_{GC} = 0.6V$			50	82	
		$V_{GC} = 1.95V$			55	90	
			$P_{RFH0} = +5 dBm$		114		
	PCS mode	WPL = 0	$P_{RFH1} = +5dBm$		121		
			$P_{RFH0} = +8dBm$		137		
Operating Supply Voltage Vcc VBAT VBAT PCS m PCS m Operating Supply Current Cellula mode FM mo Addition IDLE = IDLE = IDLE = TXGAT Leakage Current SHDN Logic High - Logic Input Current GC GC Input Resistance During SHDN		WPL = 1	$P_{RFH1} = +8dBm$		146		
		$V_{GC} = 0.6V$			48	78	
Operating Cupply Current	Cellular	$V_{GC} = 1.95V$			53	86	
Operating Supply Current	mode	$MPL = 0, P_{RFL}$	= +5dBm		102		mA
		MPL = 1, P _{RFL}	= +8dBm		126		
		$V_{GC} = 1.95V$			75	85	
	FIVI mode	MPL = 1, P _{RFL}	= +11dBm		87		
	Addition for IF	LO buffer			3.4	7.7	
	$\frac{V_{CC}}{V_{BAT}}$ PCS mode	SS = 0			6	10	
	$\overline{IDLE} = Iow, P$	SS = 1			7.2	12.2	V MA MA MA MA V C V μA V V V V V V V V V V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17						
Leakage Current	$\overline{\text{SHDN}} = \text{Iow},$	RFH_, RFL, Vccdr	2V		0.5	20	μA
Logic High				0.7V _{CC}			V
Logic Low						0.3V _{CC}	V
Logic Input Current				-5		+5	μA
GC Input Current					6	11	μA
	$\overline{\text{SHDN}} = \text{Iow}$			215	340		kΩ
Operating Supply CurrentCellular modeFM modeFM modeAddition for IF IDLE = low, PIDLE = lo	load		V _{CC} - 0.	4		V	
Lock Indicator Low	100k Ω pullup	load				1.0	V

M/IXI/M

ELECTRICAL CHARACTERISTICS

(MAX2361/MAX2363/MAX2365 EV kit, 50Ω system, operating modes as defined in Table 9, TEMP_COMP = 10, input voltage at I and Q = 600mVP_P differential, 300kHz quadrature CW tones, RF and IF synthesizers locked, V_{REF} = 200mVP_P at 19.68MHz, V_{CC} = V_{BAT} = SHDN = IDLE = CS = TXGATE = 2.8V, LOH, LOL input power = -10dBm, f_{LOL} = 966.38MHz, f_{LOH} = 1750MHz, f_{RFH0} = f_{RFH1} = 1880.38MHz, f_{RFL} = 836MHz, T_A = $+25^{\circ}$ C, unless otherwise noted.)

PARAMETER								
MODULATOR, QUADRATURE MO	ODES (CDMA, PCS, FM_IQ)							
	$IF_SEL = 0$			120-235		N 41 1-		
IF Frequency Range	IF_SEL = 1			120-380		MHz		
I/Q Common-Mode Input Voltage	$V_{CC} = +2.7V \text{ to } +3.3V \text{ (N}$	otes 1, 2, 3)	1.35	V _{CC} / 2	V _{CC} - 1.25	V		
I_/Q_ Input Current	Common-mode voltage =	= 1.4V			6	μA		
IF Gain-Control Range	$V_{GC} = 0.6V$ to 2.4V, IFG	= 100		85		dB		
IF Output Power at IFOUTL and IFOUTH	IFG = 100, ACPR = -60d	Bc (Note 4)		-7		dBm		
Gain Variation Over Temperature	Relative to +25°C, T _A = -	40°C to +85°C (Note 1)	-1		+1	dB		
Carrier Suppression	$V_{GC} = 2.4V$, IFG = 100, f	IFOUTL = 130.38MHz (Note 1)	35	43		dB		
Sideband Suppression	$V_{GC} = 2.4V$, IFG = 100, f	IFOUTL = 130.38MHz (Note 1)	35	45		dB		
IF Output Noise	$V_{GC} = 2.4V$, noise measu	ured at 20MHz offset		-143		dBm/ Hz		
MODULATOR, FM MODE								
	V _{GC} = 2.4V, IFG = 100, I	/Q modulation		-9		-ID		
Output Power at IFOUTL	$V_{GC} = 2.4V$, IFG = 100, c	lirect VCO modulation		-4		dBm		
UPCONVERTER AND PREDRIVE	R							
IE Fraguency Dange	$IF_SEL = 0$			120–235		MHz		
IF Frequency Range	$IF_SEL = 1$			180–380		IVITIZ		
RFL Frequency Range	RFL port			800-1000)	MHz		
RFH_ Frequency Range	RFH0 and RFH1 ports			1700-2000	C	MHz		
LOL Frequency Range				800-1150)	MHz		
LOH Frequency Range				800-2360)	MHz		
LO Input Power	LOL, LOH		-10	-7		dBm		
RFPLL Frequency Range	PSS = 0				1300	MHz		
Kir EE frequency Kange	PSS = 1				2360			
	MPL = 0,	RFL		19.2				
	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	RFHO		18.9				
Conversion Gain		RFH1		17.6		dB		
	MPL = 1,	RFL		22.4		ab		
	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	RFHO		22.8				
		RFH1		21.4		dB		
RF Gain-Control Range	$V_{GC} = 0.6V \text{ to } 2.4V$			40				
Image Signal	At maximum output powe	er		-35		dBc		

ELECTRICAL CHARACTERISTICS (continued)

(MAX2361/MAX2365 EV kit, 50Ω system, operating modes as defined in Table 9, TEMP_COMP = 10, input voltage at I and $\Omega = 600 \text{mV}_{P-P}$ differential, 300kHz quadrature CW tones, RF and IF synthesizers locked, V_{REF} = 200mV_{P-P} at 19.68MHz, V_{CC} = V_{BAT} = SHDN = IDLE = CS = TXGATE = 2.8V, LOH, LOL input power = -10dBm, f_{LOL} = 966.38MHz, f_{LOH} = 1750MHz, f_{RFH0} = f_{RFH1} = 1880.38MHz, f_{RFL} = 836MHz, T_A = +25°C, unless otherwise noted.)

PARAMETER	CONDI	TIONS	MIN	ТҮР	MAX	UNITS
CASCADED MODULATOR, UPC	ONVERTER, AND PREDRIVE	R				
RFL Output Power	MPL = 1, T _A = -40°C to +85° specifications (Note 1)	°C, meets ACPR	6.8	9		dBm
RFH0 Output Power	$MPL = 1, T_A = -40^{\circ}C \text{ to } +85^{\circ}$ specifications (Note 1)	°C, meets ACPR	7.7	10.7		dBm
RFH1 Output Power	$MPL = 1, T_A = -40^{\circ}C \text{ to } +85^{\circ}$ specifications (Note 1)	°C, meets ACPR	6.6	9.7		dBm
RFL Adjacent Channel Power Ratio	f _{OFFSET} = ±885kHz in 30kHz	zbandwidth			-52	dBc
RFL Alternate Channel Power Ratio	foffset = ±1.98MHz in 30kHz	z bandwidth			-65	dBc
RFH_ Adjacent Channel Power Ratio	foffset = ±1.25MHz in 30kHz	z bandwidth			-52	dBc
RFH_ Alternate Channel Power Ratio	foffset = ±1.98MHz in 30kHz	z bandwidth			-68	dBc
	MPL =1, P _{RFL} = +8dBm	Noise measured at		-131	-128	
DY Dand Naiss Dawar (Nata 1)	MPL =0, $P_{RFL} = +5dBm$	+45MHz offset		-134	-131	dBm/
RX Band Noise Power (Note 1)	MPL =1, P_{RFH} = +8dBm	Noise measured at		-131	-128	Hz
	MPL =0, P_{RFH} = +5dBm	+80MHz offset		-133	-130	
Output Power Variation Over Temperature	Relative to +25°C, $T_A = -40^\circ$	C to +85°C		±1		dB
IF_PLL	·					
Reference Frequency			5		30	MHz
Reference Frequency Signal Level			0.1		0.6	V _{P-P}
IF Main Divide Ratio			256		16383	
IF Reference Divide Ratio			2		2047	
	VCO_SEL =0			240-470		N 41 1-
VCO Operating Range	VCO_SEL =1			240-760		MHz
	ICP = 00		114	139	178	
Charge-Pump Source/Sink	ICP = 01		158	192	246	
Current	ICP = 10		CPR 6.8 9 CPR 7.7 10.7 CPR 6.6 9.7 Sasured at offset -131 offset -133 State -133 State -131 offset -133 State -133 State -133 State -134 State -133 State -134 State -134<	278	356	μA
	ICP = 11		319	390	499	

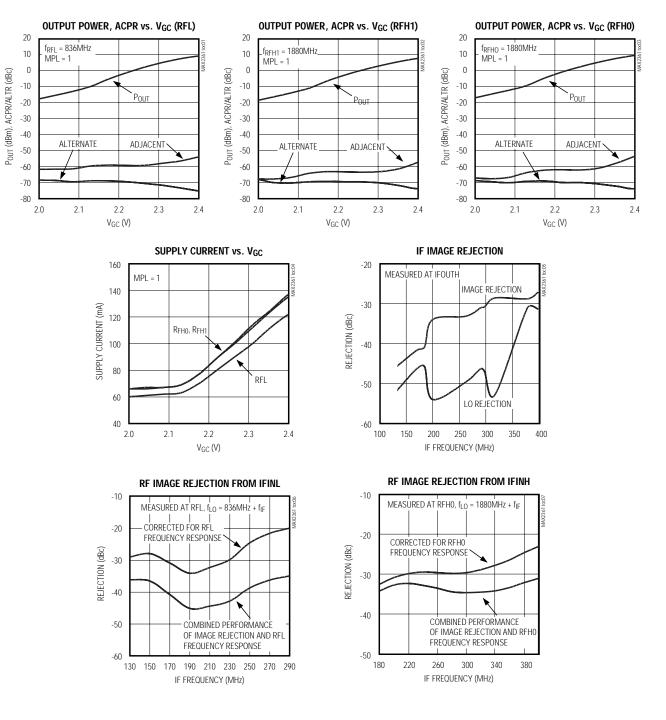
ELECTRICAL CHARACTERISTICS (continued)

 $(\textbf{MAX2361/MAX2365 EV kit}, 50\Omega system, operating modes as defined in Table 9, TEMP_COMP = 10, input voltage at I and <math>\Omega = \underline{600mV_{P-P}} differential, \underline{300kHz} quadrature CW tones, RF and IF synthesizers locked, VREF = 200mV_{P-P} at 19.68MHz, V_{CC} = V_{BAT} = \underline{SHDN} = \underline{IDLE} = \underline{CS} = \underline{TXGATE} = 2.8V, LOH, LOL input power = -10dBm, f_{LOL} = 966.38MHz, f_{LOH} = 1750MHz, f_{RFH0} = f_{RFH1} = 1880.38MHz, f_{RFL} = 836MHz, T_A = +25^{\circ}C, unless otherwise noted.)$

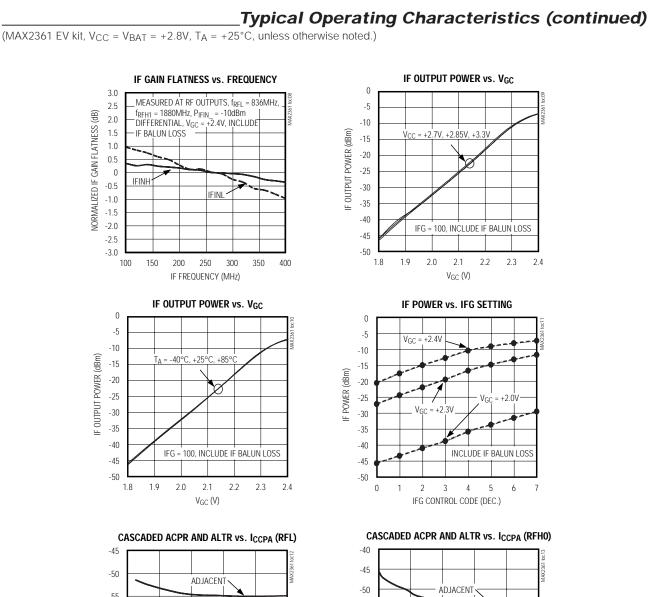
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Turbolock Boost Current	ICP_MAX = 1	632	774	987	μΑ
Charge-Pump Source/Sink Matching	All values of ICP, over specified compliance range			6	%
IF Charge-Pump Compliance		0.5		Vccifcp - 0.5	V
Charge-Pump High-Z Leakage	Over specified compliance range		20		рА
RF_PLL					
Reference Frequency		5		30	MHz
RF Main Divide Ratio		4096		262143	
RF Reference Divide Ratio		2		8191	
	RCP = 00	266	325	416	
Charge-Pump Source/Sink	RCP = 01	533	650	832	
Current	RCP = 10	605	738	945	μA
	RCP = 11	872	1063	1361	
Turbolock Boost Current	(Note 5)	1388	1694	2168	μA
Charge-Pump Source/Sink Matching	All values of RCP, over specified compliance range			6	%
RF Charge Pump Compliance		0.5		V _{CCRFCP} - 0.5	V
Phase Detector Noise Floor	RCP = 11, RCP_TURBO1 = RCP_TURBO2 = 0, 30kHz comparison frequency		-162		dBc/Hz
Charge-Pump High-Z Leakage	Over specified compliance range		20		рА
RFPLL Input Sensitivity		160			MV _{P-P}

Note 1: Guaranteed by design and characterization to 3 sigma (includes board and component variations).

Note 2: ACPR is met over the specified V_{CM} range.


Note 3: V_{CM} must be supplied by the I/Q baseband source with $\pm 8\mu A$ capability.

Note 4: $IQ_LEVEL = 0$, $VQ_ = VI_ = 87mV_{RMS}$ differential, IS98 reverse channel modulation at 415mVp-p differential with 0.1% 4.5dB peak-to-average ratio.


Note 5: When enabled with RCP_TURBO1 and RCP_TURBO2 (see Tables 2 and 3), the total charge-pump current is specified. For all values of RCP, the total turbolock current is 1.63 times the corresponding nonturbo current value.

Typical Operating Characteristics (MAX2361 EV kit, V_{CC} = V_{BAT} = +2.8V, T_A = +25°C, unless otherwise noted.)

ACPR, ALTR (dBc)

-55

-60

-65

-70

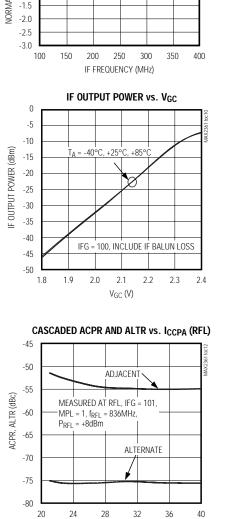
-75

-80 22 MEASURED AT RFHO, IFG = 101,

30

ALTERNATE

34

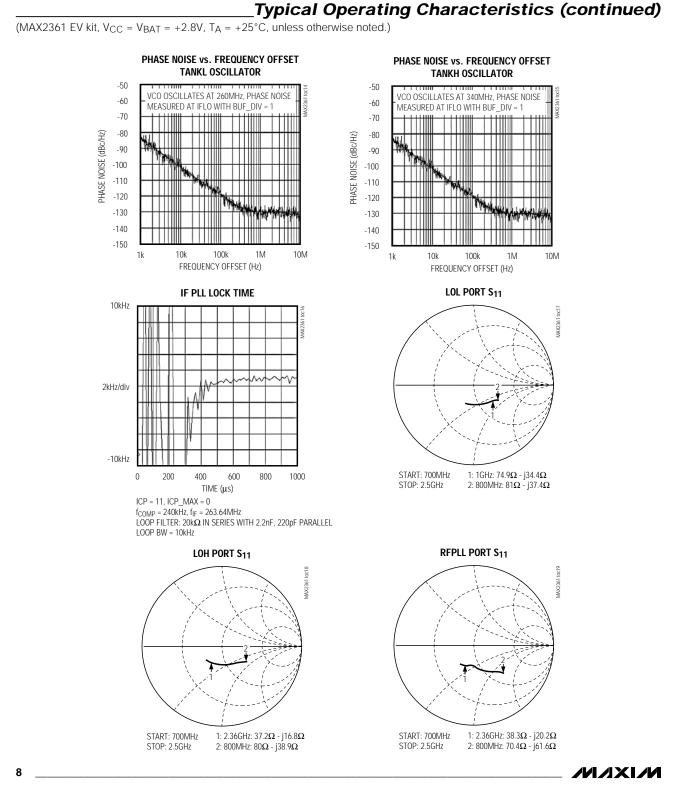

I_{CCPA} (mA)

38

42

MPL = 1, f_{RFH0} = 1880MHz P_{RFH0} = +8dBm

26


I_{CCPA} (mA)

M/IXI/M

7

MAX2361/MAX2363/MAX2365

Pin Description

	PIN		NAME	FUNCTION
MAX2361	MAX2363	MAX2365		FUNCTION
1	_	1	RFL	Transmitter RF Output for Cellular Band (800MHz to 1000MHz)—for both FM and digital modes. This open-collector output requires a pullup inductor to the supply voltage, which may be part of the output matching network and can be connected directly to the battery.
2	2		RFH0	Transmitter RF Output for PCS Band (1700MHz to 2000MHz). This open- collector output requires a pullup inductor to the supply voltage. The pullup inductor may be part of the output matching network and may be connected directly to the battery. For split band PCS application, use RFH0 for the 1880MHz–1910MHz range.
3	3	3	LOCK	Open-Collector Output Indicating Lock Status of the IF and/or the RF PLLs. Requires a pullup resistor. Control using configuration register bits LD_MODE.
4	4	4	Vccdrv	Supply Pin for the Driver Stage. May be connected directly to the battery. Bypass to PC board ground as close to the pin as possible. The ground vias for the bypass capacitor should not be shared by any other branch.
5	5	5	ĪDLE	Digital Input, Drive to Logic High for Normal Operation. A logic low on IDLE shuts down everything except the RF PLL and associated registers. A small R-C lowpass can be used to filter digital noise.
6	6	6	Vcc	Supply Pin for the Upconverter Stage. V_{CC} must be bypassed to system ground as close to the pin as possible. The ground vias for the bypass capacitor should not be shared by any other branch.
7	7	7	TXGATE	Digital Input, Drive to Logic High for Normal Operation. A logic low on TXGATE shuts down everything except the RF PLL, IF PLL, IF VCO, and serial bus and registers. This mode is used for gated transmission.
8, 9		8, 9	IFINL+, IFINL-	Differential Inputs to the RF Upconverter. These pins are internally biased. The input impedance for these ports is nominally 400Ω differential. The IF fil- ter should be AC-coupled to these ports. Keep the differential lines as short as possible to minimize stray pickup and shunt capacitance.
10, 11	10, 11		IFINH+, IFINH-	Differential Inputs to the RF Upconverter. These pins are internally biased. The input impedance for these ports is nominally 400Ω differential. The IF fil- ter should be AC-coupled to these ports. Keep the differential lines as short as possible to minimize stray pickup and shunt capacitance.
12	12	12	BIAS	Bias Resistor Pin. BIAS is internally biased to approximately 600mV. An external resistor between this pin to GND sets the bias current for the upconverters and PA driver stages. The nominal resistor value is $10k\Omega$. This value can be altered to optimize the linearity of the driver stage.
13, 14, 15	13, 14, 15	13, 14, 15	CLK, DI, CS	Input Pins from the 3-Wire Serial Bus (SPI/QSPI/MICROWIRE compatible)

Pin Description (continued)

	PIN			
MAX2361	MAX2363	MAX2365	NAME	FUNCTION
16, 17	16, 17	_	IFOUTH-, IFOUTH+	Differential IF Outputs. These ports are active when the register bit IF_SEL is 1. They do not support FM mode. These pins must be inductively pulled up to V _{CC} . A differential IF bandpass filter is connected between this port and IFINH+ or IFINH The pullup inductors can be part of the filter structure. The differential output impedance of this port is nominally 600Ω . The transmission lines from these pins should be short to minimize the pickup of spurious signals and noise.
18, 19	_	18, 19	IFOUTL-, IFOUTL+	Differential IF Outputs. These ports are active when the register bit IF_SEL is 0. These pins must be inductively pulled up to V_{CC} . A differential IF bandpass filter is connected between this port and IFINL+ and IFINL The pullup inductors can be part of the filter structure. The differential output impedance of this port is nominally 600Ω . The transmission lines from these pins should be short to minimize the pickup of spurious signals and noise.
20	20	20	GC	RF and IF Gain Control Analog Input. Apply 0.6V to 2.4V to control the gain of the RF and IF stages. An RC filter on this pin should be used to reduce DAC noise or PDM clock spurs from this line.
21	21	21	Vcc	Supply Pin for the IF VGA. Bypass with a capacitor as close to the pin as possible. The bypass capacitor must not share its ground vias with any other branches.
22	22	22	Vcc	Supply for the I/Q Modulator. Bypass with a capacitor as close to the pin as possible. The bypass capacitor must not share its ground vias with any other branches.
23, 24	23, 24	23, 24	Q+, Q-	Differential Q-Channel Baseband Inputs to the Modulator. These pins go directly to the bases of a differential pair and require an external common-mode bias voltage.
25, 26	25, 26	25, 26	+, -	Differential I-Channel Baseband Inputs to the Modulator. These pins go directly to the bases of a differential pair and require an external common-mode bias voltage.
27	27	27	SHDN	Shutdown Input, Drive to Logic High for Normal Operation. A logic low on SHDN shuts down the entire IC except the serial interface and retains the information in all registers. An R-C lowpass can be used to filter digital noise.
28	28	28	Vcc	Supply Pin to the VCO Section. Bypass as close to the pin as possible. The bypass capacitor should not share its vias with any other branches.
29	29	29	IFLO	Buffered LO Output. Control the output buffer using register bit BUF_EN and the divide ratio using the register bit BUF_DIV.
30, 31		30, 31	TANKL-, TANKL+	Differential Tank Pins for the Low-Frequency IF VCO. These pins are internally biased. VCO_SEL = 0 selects this IF VCO.

Pin Description (continued)

	PIN			FUNCTION
MAX2361	MAX2363	MAX2365	NAME	FUNCTION
32, 33	32, 33		TANKH-, TANKH+	Differential Tank Pins for the High-Frequency IF VCO. These pins are internally biased. VCO_SEL = 1 selects this IF VCO.
34, 35	1, 8, 9, 18, 19, 30, 31, 34, 35, 44	2, 10, 11, 16, 17, 32–35 43, 47	N.C.	No Connection. Make no connection to these pins.
36	36	36	REF	Reference Frequency Input. REF is internally biased and must be AC-coupled to the reference source. This is a high-impedance port ($25k\Omega$ $3pF$).
37	37	37	Vccifcp	Supply for the IF Charge Pump. This supply can differ from the system V_{CC} . Bypass as close to the pin as possible. The bypass capacitor must not share its vias with any other branches.
38	38	38	IFCP	High-Impedance Output of the IF Charge Pump. Connect to the tune input of the IF VCOs through the IF PLL loop filter. Keep the line from IFCP to the tune input as short as possible to prevent spurious pick-up, and connect the loop filter as close to the tune input as possible.
39	39	39	Vcc	Supply Pin for Digital Circuitry. Bypass as close to the pin as possible. The bypass capacitor must not share its vias with any other branch.
40	40	40	RFCP	High-Impedance Output of the RF Charge Pump. Connect to the tune input of the RF VCOs through the RF PLL loop filter. Keep the line from this pin to the tune input as short as possible to prevent spurious pickup, and connect the loop filter as close to the tune input as possible.
41	41	41	Vccrfcp	Supply for the RF Charge Pump. This supply can differ from the system V_{CC} . Bypass as close to the pin as possible. The bypass capacitor must not share its vias with any other branches.
42	42	42	RFPLL	RF PLL Input. AC-couple this port to the RF VCO. RFPLL is internally biased.
43	43		LOH	High-band RF LO Input Port. AC-couple to this port.
44		44	LOL	Low-band RF LO Input Port. AC-couple to this port.
45, 46, 48	45, 46, 48	45, 46, 48	GND	Isolation GND. No internal connection. Connect to PC board ground plane for better isolation.
47	47	_	RFH1	Transmitter RF Output for PCS Band (1700MHz to 2000MHz). This open-col- lector output requires a pullup inductor to the supply voltage. The pullup inductor may be part of the output matching network and can be connected directly to the battery. For split band PCS application, use RFH1 for the 1850MHz-1880MHz range.
EP	EP	EP	GND	DC and AC GND Return for the IC. Connect to PC board ground plane using multiple vias.

Detailed Description

The MAX2361 complete quadrature transmitter accepts differential I/Q baseband inputs with external commonmode bias. A modulator upconverts this to IF frequency in the 120MHz to 380MHz range. A gain-control voltage pin (GC) controls the gain of both the IF and RF VGAs simultaneously to achieve the best current consumption and linearity performance. The IF signal is brought off-chip for filtering, then fed to a single sideband upconverter followed by the RF VGA and PA driver. The RF upconverter requires an external VCO for operation. The IF PLL, RF PLL, and operating mode can be programmed by an SPI/QSPI/MICROWIRE-compatible 3-wire interface.

The following sections describe each block in the MAX2361 *Functional Diagram.*

I/Q Modulator

Differential in-phase (I) and quadrature-phase (Q) input pins are designed to be DC-coupled and biased with the baseband output from a digital-to-analog converter (DAC). I and Q inputs need a DC bias of V_{CC}/2 and a current-drive capability of 8µA. The I and Q inputs capacitance is typically 0.3pF differential. Commonmode voltage works within a 1.35V to (V_{CC} - 1.25V) range. The IF VCO output is fed into a divide-bytwo/quadrature generator block to derive quadrature LO components to drive the IQ modulator. The output of the modulator is fed into the VGA.

IF VCOs

There are two VCOs to support high IF and low IF frequencies. The VCOs oscillate at twice the desired IF frequency. Oscillation frequency is determined by external tank components (see *Applications Information*). Typical phase-noise performance for the tank is as shown in the *Typical Operating Characteristics*. The high-band and low-band VCOs can be selected independently of the IF port being used.

IFLO Output Buffer

IFLO provides a buffered LO output when BUF_EN is 1. The IFLO output frequency is equal to the VCO frequency when BUF_DIV is 0, and half the VCO frequency when BUF_DIV is 1. The output power is -12dBm. This output is intended for applications where the receive IF is the same frequency as the transmit IF.

IF/RF PLL The IF/RF PLL uses a charge-pump output to drive a loop filter. The loop filter typically is passive secondorder lead lag filter. Outside the filter's bandwidth, phase noise is determined by the tank components. The two components that contribute most significantly to phase noise are the inductor and varactor. Use high-Q inductors and varactors to maximize equivalent par-IF_TURBO_CHARGE, resistance. The allel RCP_TURBO1, and RCP_TURBO2 bits can be set to enable turbo mode. Turbo mode provides maximum charge-pump current during frequency acquisition. Turbo mode is disabled after frequency acquisition is achieved. When turbo mode is disabled, charge-pump current returns to the programmed levels as set by ICP and RCP bits in the CONFIG register (Table 3).

The PSS bit selects the RFPLL prescaler speed independent of the MODE bits. This enables PCS band VCO locking when transmitting in the cellular band. For VCO frequency above 1300MHz, set PSS to 1.

IF VGA

The IF VGA allows varying an IF output level that is controlled by GC voltage. The voltage range on GC of 0.6V to 2.4V provides a gain-control range of 85dB. There are two differential IF output ports from the VGA. IFOUTL+/IFOUTL- are optimized for low IF operation (120MHz to 235MHz); IFOUTH+/IFOUTH- support high IF operation (120MHz to 380MHz). IFOUTL supports FM mode by providing higher IF output level when MODE is set to 00.

Single Sideband Mixer

The RF transmit mixer uses a single sideband architecture to eliminate an off-chip RF filter. The single sideband mixer has IF input stages that correspond to IF output ports of the VGA. The mixer is followed by the RF VGA. The RF VGA is controlled by the same GC pin as the IF VGA to provide optimum current consumption and linearity performance. The total power-control range is >100dB.

PA Driver

MIXIM

The MAX2361 includes three power-amplifier (PA) drivers. Each is optimized for the desired operating frequency. RFL is optimized for cellular-band operation. RFH0 and RFH1 are optimized for split-band PCS operation. Use RFH0 in single high-band output such as TDMA or W-CDMA. The PA drivers have open-collector outputs and require pullup inductors. The pullup inductors can act as the shunt element in a shunt series match.

12

Programmable Registers

The MAX2361/MAX2363/MAX2365 include eight programmable registers consisting of four divide registers, a configuration register, an operational control register, a current control register, and a test register. Each register consists of 24 bits. The 4 least significant bits (LSBs) are the register's address. The 20 most significant bits (MSBs) are used for register data. All registers contain some "don't care" bits. These can be either a "0" or a "1" and will not affect operation (Figure 1). Data is shifted in MSB first, followed by the 4-bit address. When $\overline{\text{CS}}$ is low, the clock is active and data is shifted with the rising edge of the clock. When \overline{CS} transitions to high, the shift register is latched into the register selected by the contents of the address bits. Power-up defaults for the eight registers are shown in Table 1. The dividers and control registers are programmed from the SPI/QSPI/MICROWIRE-compatible serial port.

The RFM register sets the main frequency divide ratio for the RF PLL. The RFR register sets the reference frequency divide ratio. The RF VCO frequency can be determined by the following:

RF VCO frequency = $f_{REF} \times (RFM / RFR)$

IFM and IFR registers are similar:

IF VCO frequency = $f_{REF} \times (IFM / IFR)$

where fREF is the external reference frequency.

The operational control register (OPCTRL) controls the state of the MAX2361/MAX2363/MAX2365. See Table 2 for the function of each bit.

The configuration register (CONFIG) sets the configuration for the RF/IF PLL and the baseband I/Q input levels. See Table 3 for a description of each bit.

The current control register modifies the bias current to accommodate different operation modes. In the high-power mode, MPL = 1 sets the bias current and conversion gain to deliver a minimum of +8dBm output

Complete Dual-Band Quadrature Transmitters

power from the PA drivers. In the low-power mode, MPL = 0 sets the bias current and conversion gain to deliver a minimum of +5dBm output power from the PA drivers. I_MULT sets the current multiplication factor for the PA driver stages according to Table 5. THROT-TLE_BACK sets the rate of bias current changes when the output power changes according to Table 6. For example, when THROTTLE_BACK = 011 (default), the PA driver bias current reduces by 1dBmA for every 1dB reduction in output power. THROTTLE_BACK = 000 setting gives a more aggressive current reduction (1.3dBmA/dB power) at the expense of linearity. THROTTLE_BACK setting does not affect the bias current at maximum power level.

The test register has to be 100hex for normal operation. The best way to ensure this is to program the test regiser to 100hex.

Power Management

Bias control is distributed among several functional sections and can be controlled to accommodate many different power-down modes as shown in Table 8.

The serial interface remains active during shutdown. Setting SHDN_BIT = 0 or \overline{SHDN} = GND powers down the device. In either case, PLL programming and register information is retained.

Signal Flow Control

Table 9 shows an example of key registers for triplemode operation, assuming half-band PCS and IF frequencies of 228.6MHz/263.6MHz.

Applications Information

The MAX2361 is designed for use in dual-band, triplemode systems. It is recommended for triple-mode handsets (Figure 2). The MAX2363 is designed for use in CDMA PCS handset or W-CDMA systems (Figure 3). The MAX2365 is designed for use in dual-mode cellular systems (Figure 4).

REGISTER	DEFAULT	ADDRESS	FUNCTION
RFM	32214 dec	0000b	RF M divider count
RFR	656 dec	0001 _b	RF R divider count
IFM	6519 dec	0010 _b	IF M divider count
IFR	0492 dec	0011 _b	IF R divider count
OPCTRL	090F hex	0100 _b	Operational control settings
CONFIG	D03F hex	0101 _b	Configuration and setup control
I _{CC} CTRL	0038 hex	0110 _b	Current multiplication factor, PLL band
TEST	100 hex	0111 _b	Test-mode control

	MSE	3									24 B	IT RE	GIST	ER										_SB	
									DA	TA 2	0 BIT	ſS									ADD	RES	S 4 E	ITS	
	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	33	B2	B1	BO	A3	A2	A1	A0	
									R	FM D	IVIDE	RAT	0 (18)									RESS		
RFM DIVIDE REGISTER	X	Х	B17	B16	B15	B14	B13	B12				B8	<u> </u>		B5	B4	33	B2	B1	BO	0	0	0	0	
													~ ~ ~ ~												
RFR DIVIDE REGISTER														DE RA									RESS		
	Х	Х	Х	Х	Х	Х	Х	B12	B11	B10	B9	B8	B7	B6	B5	B4	33	B2	B1	BO	0	0	0	1	
											IF	M DI	VIDE	RATIC) (14)							ADD	RESS		
IFM DIVIDE REGISTER	Х	Х	Х	Х	Х	Х	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	33	B2	B1	BO	0	0	1	0	
													150			FIG (4									
IFR DIVIDE REGISTER	-													DIVID		- Ì	<u> </u>		2.1				RESS		
IFR DIVIDE REGISTER	Х	Х	Х	Х	Х	Х	Х	Х	Х	B10	B9	B8	B7	B6	B5	B4	33	B2	B1	BO	0	0	1	1	
									() PER	ATION	I CON	ITROL	BITS	(16)							ADD	RESS		
CONTROL REGISTER	Х	Х	Х	Х	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	33	B2	B1	BO	0	1	0	0	
										<u> </u>		IDAT		ITS (1	6)						ADDRESS				
CONFIGURATION REGISTER	X	Х	Х	X	B15	B14	B13	B12	B11			B8			<u> </u>	B4	33	B2	B1	BO	0	1	0	1	
												-													
CURRENT CONTROL REGISTER										CUR	RENT	CON	TROL	BITS	(16)							ADDI	RESS		
CURRENT CONTROL REGISTER	Х	Х	Х	Х	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	33	B2	B1	B0	0	1	1	0	
															TEST	BITS	(0)					مم	RESS		
TEST REGISTER		Х	X	X	Х	X	X	Х	Х	X	Х	B8	B7				<u> </u>	B2	B1	BO	0	1	1	1	
	Х	~			~			~			~		57												
	Х	= DO	N'T C	CARE																					

Figure 1. Register Configuration

Cascaded Performance

Tables 11 and 12 show the typical cascaded performance for TDMA and W-CDMA systems.

3-Wire Interface

Figure 5 shows the 3-wire interface timing diagram. The 3-wire bus is SPI/QSPI/MICROWIRE compatible.

Electromagnetic Compliance Considerations

Two major concepts should be employed to produce a low-spur and EMC-compliant transmitter: minimize circular current-loop area to reduce H-field radiation. To minimize circular current-loop area, bypass as close to the part as possible and use the distributed capacitance of a ground plane. To minimize voltage drops, make V_{CC} traces short and wide, and make RF traces short.

Program only the necessary bits in any register to minimize clock cycles. RC filtering can also be used to slow the clock edges on the 3-wire interface, reducing highfrequency spectral content. RC filtering also provides for transient protection against IEC802 testing by shunting high frequencies to ground, while the series resistance attenuates the transients for error-free operation. The same applies to the logic input pins (SHDN, TXGATE, IDLE).

BIT NAME	POWER-UP STATE	BIT LOCATION (0 = LSB)	FUNCTION			
LO_SEL	0	15	0 selects LOL input port; 1 selects LOH port.			
RCP_TURBO1	0	14	Works in conjunction with RCP_TURBO2 (CONFIG register) to set the turbo- charge pump mode. (See Table 7)			
ICP_MAX	0	13	1 keeps IF turbo-mode current active even when frequency acquisition is achieved. This mode is used when high operating IF charge-pump current is needed.			
MODE	01	12, 11	Sets operating mode according to the following: 00 = FM mode 01 = Cellular digital mode, RFL is selected 10 = Lower half-band PCS mode, RFH1 is selected 11 = Upper half-band PCS, RFH0 is selected			
IF_SEL	0	10	1 selects IFINH and IFOUTH; 0 selects IFINL and IFOUTL. For FM mode (MODE = 00), set IF_SEL to 0.			
VCO_SEL	0	9	1 selects high-band IF VCO; 0 selects low-band IF VCO.			
IFG	100	8, 7, 6	3-Bit IF gain Control. Alters IF gain by approximately 2dB per LSB (0 to 14dB). Provides a means for adjusting balance between RF and IF gain for optimized linearity.			
SIDE_BAND	0	5	When this bit is 1, the upper sideband is selected (LO below RF). When this bit is 0, the lower sideband is selected (LO above RF).			
BUF_EN	0	4	0 turns IFLO buffer off; 1 turns IFLO buffer on.			
MOD_TYPE	1 3 0 selects direct VCO modulation. (IF VCO is externally modulator is bypassed); 1 selects quadrature modulation.		0 selects direct VCO modulation. (IF VCO is externally modulated and the I/Q modulator is bypassed); 1 selects quadrature modulation.			
STBY	1	2	0 shuts down everything except registers and serial interface.			
TXSTBY	1	1	0 shuts down modulator and upconverter, leaving PLLs locked and registers active. This is the programmable equivalent to the TXGATE pin.			
SHDN_BIT	1	0	0 shuts down everything except serial interface, and also retains all register settings.			

Table 2. Operation Control Register (OPCTRL)

BIT NAME	POWER-UP STATE	BIT LOCATION (0 = LSB)	FUNCTION			
IF_PLL_SHDN	1	15	0 shuts down the IF PLL. This mode is used with an external IF PLL.			
RF_PLL_ SHDN	1	14	0 shuts down the RF PLL. This mode is used with an external RF PLL.			
ZERO_BIAS	0	13	0 for normal operation, 1 turns off the bias current to RFH0 output driver.			
IQ_LEVEL	1	12	1 selects 200mV _{RMS} input mode; 0 selects 100mV _{RMS} input mode.			
BUF_DIV	0	11	1 selects ÷2 on IFLO port; 0 bypasses the divider.			
VCO_BYPASS	0	10	1 bypasses IF VCO and enables a buffered input for external VCO use.			
ICP	00	9, 8	A 2-bit register sets the IF charge-pump current as follows: 00 = 139μA 01 = 192μA 10 = 278μA 11 = 390μA			
RCP	00	7, 6	A 2-bit register sets the RF charge-pump current as follows: 00 = 325μA 01 = 650μA 10 = 738μA 11 = 1063μA			
IF_PD_POL	1	5	IF phase-detector polarity: 1 selects positive polarity (increasing tuning voltage on the VCO produces increasing frequency); 0 selects negative polarity (increasing tuning voltage on the VCO produces decreasing frequency).			
RF_PD_POL	1	4	RF phase-detector polarity; 1 selects positive polarity (increasing tuning voltage on the VCO produces increasing frequency); 0 selects negative polarity (increasing voltage on the VCO produces decreasing frequency).			
IF_TURBO_ CHARGE			1 activates turbocharge feature, providing an additional IF charge-pump current during frequency acquisition.			
RCP_TURBO2	1	2	Works in conjunction with RCP_TURBO1 (OPCTRL register) to set the turbo- charge current mode. (See Table 7).			
LD_MODE	11	1, 0	Determines output mode for LOCK detector pin as follows: 00 = test mode, LD_MODE cannot be 00 for normal operation 01 = IF PLL lock detector 10 = RF PLL lock detector 11 = logical AND of IF PLL and RF PLL lock detectors			

Table 3. Configuration Register (CONFIG)

M/X/M

BIT NAME	POWER- UP STATE	BIT LOCATION (0 = LSB)	FUNCTION
RESERVED	00	15, 14	Must be set to 00 for normal operation.
PSS	0	13	Prescaler speed select. 0 selects the lower frequency band RFPLL prescaler. 1 selects the higher frequency band prescaler.
RESERVED	0	12	Must be set to 0 for normal operation.
MPL	0	11	Sets the maximum output power level. 0 selects +6.5dBm, 1 selects +10dBm output power modes.
TEMP_COMP	00	10, 9	Sets current scale factor to compensate temperature variations. Set to 10 for best linearity over temperature.
RESERVED	0	8	Must be set to 0 for normal operation.
MOD_BYPASS	0	7	1 routes differential signal at pins 30 and 31 directly to the IF VGA and bypasses the IF modulator. This mode is used with external modulator.
THROTTLE_BACK	011	6, 5, 4	Throttle back rate (Table 6)
I_MULT	1000	3, 2, 1, 0	Sets current scale factor for PA drivers (Table 5)

Table 4. Current Control Register (ICCCTRL)

Table 5. Current Scale Factors SetBy I_MULT Bits

BIT NAME	BITS	CURRENT SCALE
	0000	0.50
	0001	0.56
	0010	0.62
	0011	0.69
	0100	0.75
	0101	0.81
	0110	0.88
	0111	0.94
I_MULT	1000 (default)	1.00
	1001	1.13
	1010	1.25
	1011	1.38
	1100	1.50
	1101	1.63
	1110	1.75
	1111	1.88

Table 6. Throttle-Back Rate Set By THROTTLE_BACK Bits

BIT NAME	BITS	RATE	UNIT
	000	1.3	
	001	1.2	
	010	1.1	
THROTTLE_BACK	011 (default)	1.0	dBmA/dB
INKUITLE_BACK	100	0.9	UDITIA/UD
	101	0.8	
	110	0.7	
	111	0.6	

Table 7. RF Turbo Charge-Pump Current Setting

RCP_TURBO1	RCP_TURBO2			
0	0	No turbo current. Charge-pump current is set by RCP bits.		
0	1	Turbo current turns on every time RFPLL is reprogrammed. Turbo current is automatically turned off after RFPLL is locked.		
1	0	Turbo current is always on.		
1	1	Turbo current is turned on every time RFPLL is out of lock.		

Table 8. Power-Down Modes

POWER-DOWN MODE	COMMENTS	UPCONVERTER	MODULATOR	RFPLL	IF VCO	IF_PLL
SHDN Pin	Ultra-low shutdown current	Х	Х	Х	Х	Х
IDLE Pin	RX only mode	Х	Х		Х	Х
TXGATE Pin	For punctured TX mode	Х	Х			
RF PLL SHDN	For external RF PLL use			Х		
IF PLL SHDN	For external IF PLL use					Х
TXSTBY Bit	TX is OFF, but IF and RF LOs stay locked	Х	Х			

X = Off

Table 9. Register and Control Pin States for Key Operating Modes

		OPCTRL REGISTER							CONFIG REGISTER		CONTROL PINS			
MODE	DESCRIPTION	LO_SEL	MODE	IF_SEL	VCO_SEL	MOD_TYPE	STBY	TXSTBY	SHDN_BIT	IF_PLL_SHDN	RF_PLL_SHDN	IDLE	TXGATE	SHDN
PCS High	PCS upper half-band, RFH0 selected	1	11	1	1	1	1	1	1	1	1	Н	Н	Н
PCS Low	PCS lower half-band, RFH1 selected	1	10	1	1	1	1	1	1	1	1	Н	Н	Н
Cellular Digital	RFL selected	0	01	0	0	1	1	1	1	1	1	Н	Н	Н
FM	Direct VCO modulation, RFL selected	0	00	0	0	0	1	1	1	1	1	Н	Н	Н
PCS Idle	Listen for pages RX ON, TX OFF	1	1X	1	1	1	1	Х	1	Х	1	L	Н	Н
Cellular Idle	Listen for pages RX ON, TX OFF	0	0X	0	0	Х	1	Х	1	Х	1	L	Н	Н
PCS TXGATE	Gated transmission, PCS	1	1X	1	1	1	1	Х	1	1	1	Н	L	Н
Cellular TXGATE	Gated transmission, cellular digital	0	01	0	0	1	1	Х	1	1	1	Н	L	Н
Sleep	Ultra-Low Current	Х	ΧХ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	L

X = Don't care

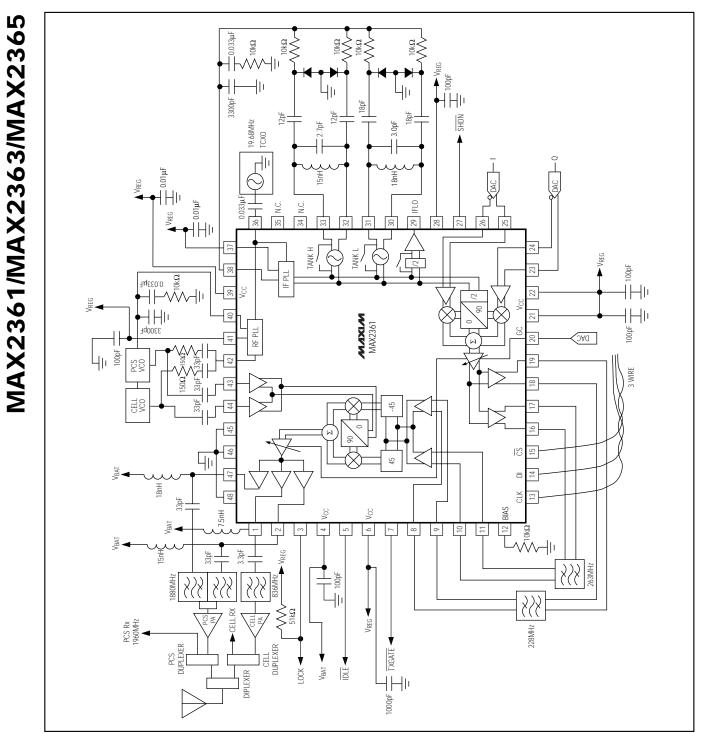


Figure 2. MAX2361 Typical Application Circuit

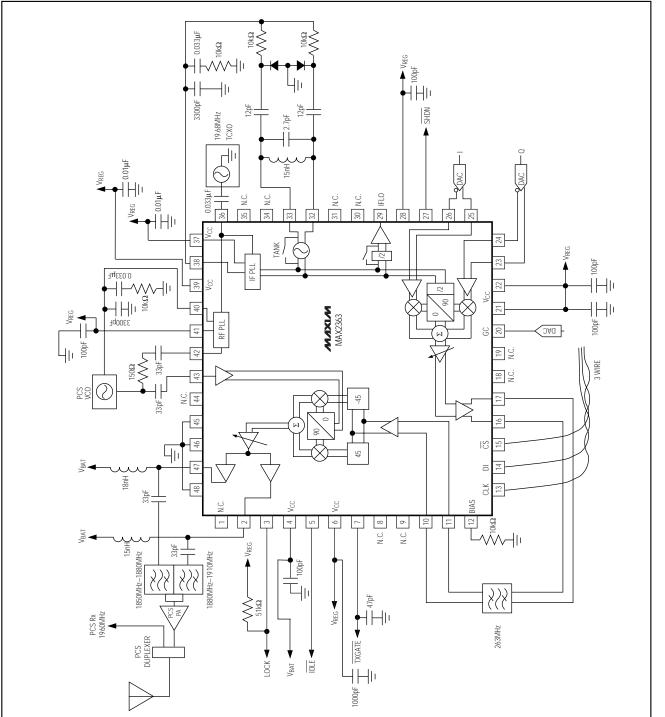


Figure 3. MAX2363 Typical Application Circuit

MAX2361/MAX2363/MAX2365

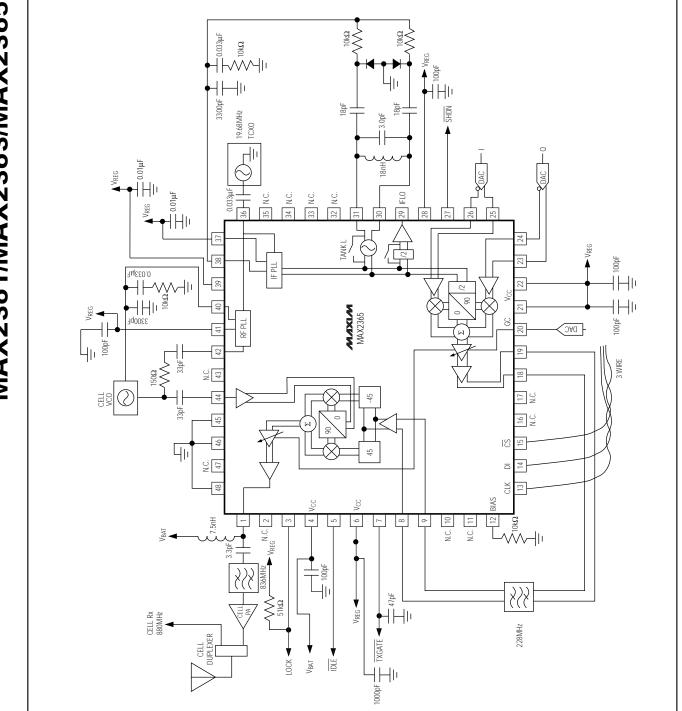


Figure 4. MAX2365 Typical Application Circuit

MIXXIM

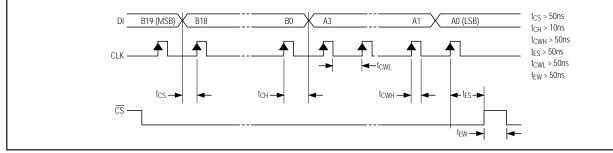


Figure 5. 3-Wire Interface Diagram

High-frequency bypass capacitors are required close to the pins with a dedicated via to ground. The 48-pin QFN-EP package provides minimal inductance ground by using an exposed paddle under the part. Provide at least five low-inductance vias under the paddle to ground, to minimize ground inductance. Use a solid ground plane wherever possible. Any cutout in the ground plane may act as slot radiator and reduce its shield effectiveness.

Keep the RF LO traces as short as possible to reduce LO radiation and susceptibility to interference.

IF Tank Design

The low-band tank (TANKL+, TANKL-) and high-band tank (TANKH+, TANKH-) are fully differential. The external tank components are shown in Figure 6. The frequency of oscillation is determined by the following equation:

$$f_{OSC} = \frac{1}{2\pi \sqrt{(C_{INT} + C_{CENT} + C_{VAR} + C_{PAR}) L}}$$

$$C_{VAR} = \frac{C_D \times C_C}{2 (C_D + C_C)}$$

C_{INT} = Internal capacitance of TANK port

C_D = Capacitance of varactor

C_{VAR} = Equivalent variable tuning capacitance

 C_{PAR} = Parasitic capacitance due to PC board pads and traces

 $\label{eq:CENT} \mbox{CENT} = \mbox{External capacitor for centering oscillation frequency}$

C_C = External coupling capacitor to the varactor

Table 10 shows possible component values for various oscillation frequencies.

Internal to the IC, the charge pump will have a leakage of less than 10nA. This is equivalent to a 300M $\!\Omega$ shunt

M/X/W

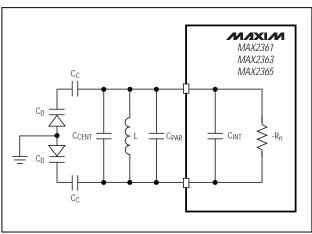


Figure 6. Tank Port Oscillator

resistor. The charge-pump output must see an extremely high DC resistance of greater than $300M\Omega$. This minimizes charge-pump spurs at the comparison frequency. Make sure there is no solder flux under the varactor or loop filter.

Layout Issues

The MAX2361/MAX2363/MAX2365 EV kit can be used as a starting point for layout. For best performance, take into consideration power-supply issues as well as the RF, LO, and IF layout.

Power-Supply Layout

To minimize coupling between different sections of the IC, the ideal power-supply layout is a star configuration, which has a large decoupling capacitor at a central V_{CC} node. The V_{CC} traces branch out from this node, each going to a separate V_{CC} node in the MAX2361/MAX2363/MAX2365 circuit. At the end of each trace is a bypass capacitor with impedance to ground less than 1Ω at the frequency of interest. This arrangement pro-

Table 10. Suggested Component Values for the IF Oscillators

	OSC. FREQ. (MHz)	L (nH)	C _{CENT} (pF)	C _C (pF)	CD
	260.76	39	2.4	18	SMV1763-079
TANKL	400.0	30	3.3	18	SMV1763-079
	457.2	18	3.0	18	SMV1763-079
	330.0	22	4.3	12	SMV1763-079
TANKH	527.2	15	2.7	12	SMV1763-079
	760.0	11	1.2	9	SMV1763-079

Table 11. Cascaded TDMA Performance

(From I/Q input to PA driver output, IQ_LEVEL = 0, $V_{I_{-}} = V_{Q_{-}} = 104 \text{mV}_{\text{RMS}}$, IS136 NADC modulation or 415mV_{P-P} differential with 0.1% 3dB peak-average ratio.)

PARAMETER	CONDITION	VALUE	UNITS
IFL Frequency	IF_SEL = 0	228.6	MHz
IFH Frequency	IF_SEL = 1	263.6	MHz
RFL Frequency Range		824-849	MHz
RFH0 Frequency Range		1850–1910	MHz
LOL Frequency Range		1052.6-1077.6	MHz
LOH Frequency Range		2113.6-2173.6	MHz
LO Input Level	LOL or LOH	-7	dBm
RFL Output Power	$V_{GC} = 2.4V, MPL = 0$	+7	dBm
KFL Oulpul Power	$V_{GC} = 2.4V, MPL = 1$	+10	UDIII
	$V_{GC} = 2.4V, MPL = 0$	+6	dBm
RFH0 Output Power	$V_{GC} = 2.4V, MPL = 1$	+10	UDIII
Adjacent Channel Power Ratio	$f_{OFFSET} = \pm 30 kHz$ in 25kHz BW	-33	dBc
Alternate Channel Power Ratio	$f_{OFFSET} = \pm 60 kHz$ in 25kHz BW	-52	dBc
	MPL = 0, P_{RFH0} = +6dBm, f_{RFH0} = 1910MHz, measured at 1930MHz	-134	
Receive Band Noise	MPL = 1, P_{RFH0} = +10dBm, f_{RFH0} = 1910MHz, measured at 1930MHz	-131	dBm/Hz
Power	MPL = 0, P_{RFL} = +7dBm, f_{RFL} = 849MHz, measured at 869MHz	-134	GDH (FIZ
	MPL = 1, P_{RFL} = +10dBm, f_{RFL} = 849MHz, measured at 869MHz	-131	

Table 12. Cascaded WCDMA Performance.

(From I/Q input to PA driver output, IQ_LEVEL = 1, $V_{I_{-}} = V_{Q_{-}} = 146 \text{mV}_{\text{RMS}}$, uplink 3GPP modulation or 600mVp-p differential with 0.1% 3.25dB peak-average ratio.)

PARAMETER	CONDITIONS	VALUE	UNITS
Intermediate Frequency	IF_SEL = 1	380	MHz
RFH0 Frequency Range		1920–1980	MHz
LOH Frequency Range		2300-2360	MHz
LO Input Level	LOH	-7	dBm
Maximum RFH0 Output Power	V _{GC} = 2.4V, MPL = 1	8	dBm
Minimum RFH0 Output Power	ZERO_BIAS = 1, SNR = 20dB	-75	dBm
Zero Bias Gain Step	From ZERO_BIAS = 1 to ZERO_BIAS = 0, V_{GC} = 2.0V	27	dB
	f _{OFFSET} = ±3.5MHz in 30kHz BW	-60	
Adjacent Channel Power Ratio	$f_{OFFSET} = \pm 5 MHz$ in 3.84MHz BW	-45	dBc
Kato	f _{OFFSET} = ±10MHz in 3.84MHz BW	-58	
Receive Band Noise Power	MPL= 1, P_{RFH0} = +8dBm, f_{RFH0} = 1950MHz, measured at 2140MHz	-134	dBm/Hz

vides local decoupling at each V_{CC} pin. Use at least one via per bypass capacitor for a low-inductance ground connection. Also, connect the exposed paddle to PC board GND with multiple vias to provide the lowest inductance possible.

The layout of a matching network can be very sensitive

to parasitic circuit elements. To minimize parasitic

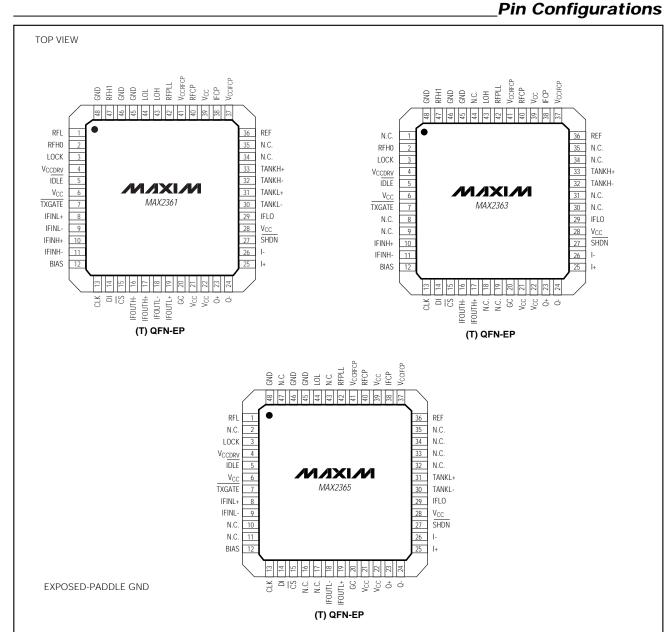
inductance, keep all traces short and place compo-

nents as close to the IC as possible. To minimize parasitic capacitance, a cutout in the ground plane (and

Matching Network Layout

any other planes) below the matching network components can be used.

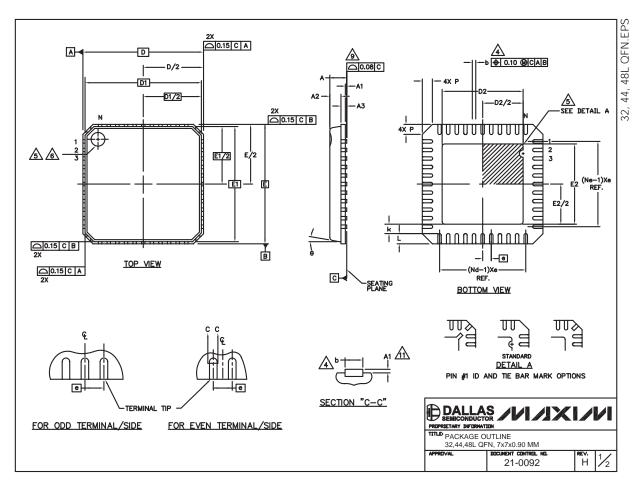
On the high-impedance ports (e.g., IF inputs and outputs), keep traces short to minimize shunt capacitance.


Tank Layout

Keep the traces coming out of the tank short to reduce series inductance and shunt capacitance. Keep the inductor pads and coupling capacitor pads small to minimize stray shunt capacitance.

Selector Guide

PART	IF RANGE (MHz)	RF LO RANGE (MHz)	RF RANGE (MHz)
	120 to 235	800 to 1150	800 to 1000
MAX2361	120 to 380	1400 to 2360	1700 to 2000
MAX2363	120 to 380	1400 to 2360	1700 to 2000
MAX2365	120 to 235	800 to 1150	800 to 1000

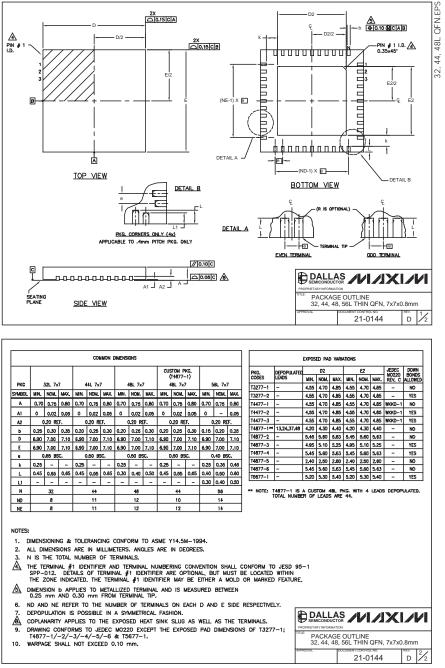


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)


KG A A1 A2 A3 b	MIN. 0.80 0.00 0.00	32L 7×7 NDM. 0.90	7 MAX.							
A A1 A2 A3 b	0.80	0.90	MAX.		44L 7x	7		48L 7×7	7	
A1 A2 A3 b	0.00			MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	
A2 A3 b			1.00	0.80	0.90	1.00	0.80	0.90	1.00	
A3 b	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05	
b		0.00 0.65 1.00			0.00 0.65 1.00			0.00 0.65 1.00		
		0.20 REF			0.20 REF	-		0.20 RE	F	
	0.23	0.28	0.35	0.18	0.23	0.30	0.18	0.23	0.30	
D	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10	
D1		5.75 BSC			6.75 BS	-		6.75 BS	í –	
E	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10	
E1	6.75 BSC			6.75 BSC			6.75 BSC 0.50 BSC			
e		0.65 BSC			0.50 BSC		0.05		Ī	
<u>k</u>	0.25	-	-	0.25	_	-	0.25	- 0.40	0.50	
L N	0.35	0.55	0.75	0.35	0.55 44	0.75	0.30	48	1 0.50	
		32			11			12		
Nd Ne		8			11			12		
P	0.00	0.42	0.60	0.00	0.42	0.60	0.00	0.42	0.60	
<u>י</u> ט	0-		12-	0-		12-	0-		12-	
	DIE THI DIMENS N IS DIMENS DIMENS DIMENS DIMENS DENTIF EXACT ALL DIM PACKAG APPLIEL EXCLUD	Ioning a The Num The Num Ion & AF I DE BY US IER IS O SHAPE A MENSIONS IE WARPA O FOR EX E EMBED	t TOLER IBER OF PPLIES INTIFIER SING INI PTIONAL ND SIZ ARE II AGE MA (POSED DED PA	ANCES (TERMIN TERMIN TO PLAT MUST I DENTATIO BUT IN E OF TH N MILLIN X 0.08m PAD AN RT OF I	ALS IN X ED TERMI EXIST ON IN MARK IUST BE IS FEATU IETERS. IM. D TERMIN EXPOSED	TO ASM -DIRECT NAL ANE THE TOI OR INK/ LOCATED IRE IS OF HALS. PAD FRO	IE Y14. ION & D IS ME P SURF (LASER WITHII PTIONAL	5M. — 1 No IS TI CASURED CACE OF MARKED N ZONE L.	994. HE NUM BETWEI THE . DETA	
Δ	APPLY	ONLY FO	OR TERI	VINAL.	DIMENSION				PED SI	

M/IXI/M

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

Printed USA

© 2004 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products.

29