

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor NTR3161NT1G

For any questions, you can email us directly: sales@integrated-circuit.com

NTR3161N

Power MOSFET

20 V, 3.3 A, Single N-Channel, SOT-23

Features

- Low R_{DS(on)}
- Low Gate Charge
- Low Threshold Voltage
- Halide-Free
- This is a Pb-Free Device

Applications

- DC-DC Conversion
- Battery Management
- Load/Power Switch

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

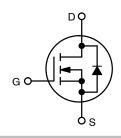
Parame	Symbol	Value	Unit			
Drain-to-Source Voltage			V _{DSS}	20	V	
Gate-to-Source Voltage			V _{GS}	±8	V	
Continuous Drain	t < 30 s	T _A = 25°C		3.3		
Current (Note 1)	1 ≥ 30 5	T _A = 85°C	I _D	2.3	Α	
	t ≤ 10 s	T _A = 25°C		4.0		
Power Dissipation (Note 1)			P _D	0.82	W	
	t ≤ 10 s			1.25		
Pulsed Drain Current	t _p =	10 μs	I _{DM}	6.4	Α	
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to 150	ů	
Source Current (Body Diode)			IS	0.65	Α	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C	

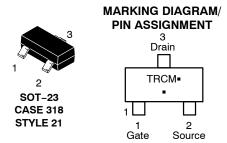
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	260	°C/W
Junction-to-Ambient - t ≤ 30 s	$R_{\theta JA}$	153	°C/W
Junction-to-Ambient - t < 10 s (Note 1)	$R_{\theta JA}$	100	°C/W

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
20 V	50 mΩ @ 4.5 V	3.3 A
	63 mΩ @ 2.5 V	3.0 A
	87 mΩ @ 1.8 V	2.5 A

SIMPLIFIED SCHEMATIC - N-CHANNEL

TRC = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTR3161NT1G	SOT-23 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Distributor of ON Semiconductor: Excellent Integrated System Limited

Datasheet of NTR3161NT1G - MOSFET N-CH 20V 3.3A SOT-23

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTR3161N

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions Min		Тур	Max	Units	
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	20			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 250 μA, Reference to 25°C		16.2		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 16 V, T _J = 25°C V _{GS} = 0 V, V _{DS} = 16 V, T _J = 125°C			1.0 10	μΑ	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			100	nA	
ON CHARACTERISTICS (Note 2)				•	•	•	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$	0.4	0.6	1.0	V	
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J		·			mV/°C	
Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 3.3 \text{ A}$		38	50	mΩ	
		V _{GS} = 2.5 V, I _D = 3.0 A		44	63	7	
		V _{GS} = 1.8 V, I _D = 2.5 A		52	87		
Forward Transconductance	9FS	$V_{DS} = 5.0 \text{ V}, I_D = 3.3 \text{ A}$		10.5		S	
CHARGES, CAPACITANCES AND GA	ATE RESISTA	NCE		•	•	•	
Input Capacitance	C _{iss}			540		pF	
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 10 \text{ V}$		80			
Reverse Transfer Capacitance	C _{rss}	, DS		62			
Total Gate Charge	$Q_{G(TOT)}$			7.3		nC	
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 10 V,		0.4			
Gate-to-Source Charge	Q_{GS}	I _D = 3.3 A		0.8			
Gate-to-Drain Charge	Q_{GD}			1.6			
Gate Resistance	R_{G}			2.4		Ω	
SWITCHING CHARACTERISTICS (No	ote 3)						
Turn-On Delay Time	t _{d(on)}			6.7		ns	
Rise Time	t _r	V _{GS} = 4.5 V, V _{DD} = 10 V,		11.6			
Turn-Off Delay Time	t _{d(off)}	$I_D = 3.3 \text{ A}, R_G = 6 \Omega$		18.6			
Fall Time	t _f			23.2		1	
DRAIN-SOURCE DIODE CHARACTE	RISTICS			•	•	•	
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 1.0 A, T _J = 25°C		0.65	1.0	V	
Reverse Recovery Time	t _{RR}			14.7		ns	
Charge Time	t _a	V _{GS} = 0 V, I _S = 1.0 A,		5.2			
Discharge Time	t _b	$dI_{SD}/d_t = 100 \text{ A}/\mu\text{s}$		9.5			
Reverse Recovery Charge	Q _{RR}			3.3		nC	

- Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

NTR3161N

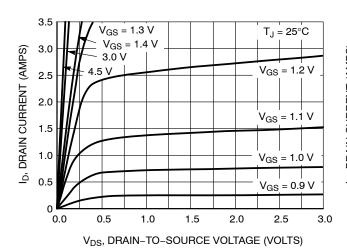


Figure 1. On-Region Characteristics

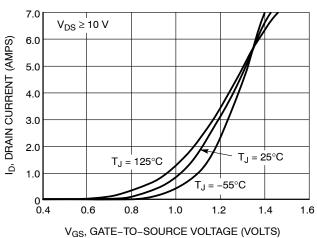


Figure 2. Transfer Characteristics

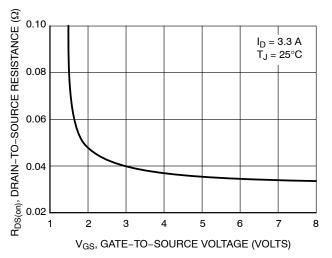


Figure 3. On–Resistance versus Gate–to–Source Voltage

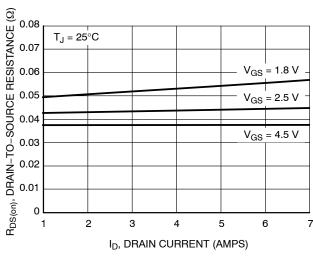


Figure 4. On-Resistance versus Drain Current and Gate Voltage

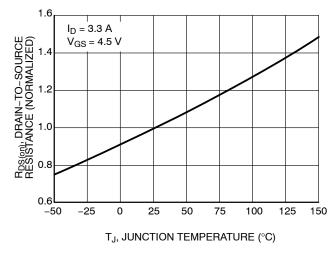
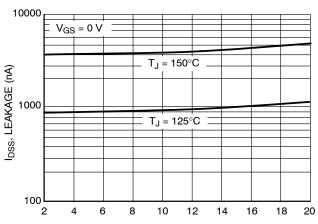



Figure 5. On–Resistance Variation with Temperature

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 6. Drain-to-Source Leakage

Current versus Voltage

NTR3161N

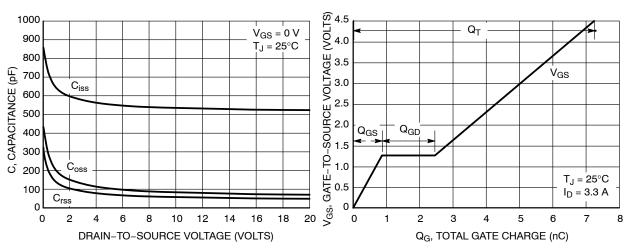


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

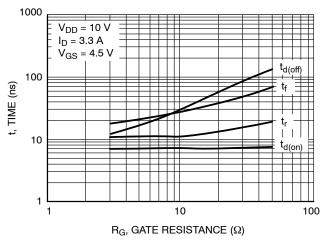


Figure 9. Resistive Switching Time Variation versus Gate Resistance

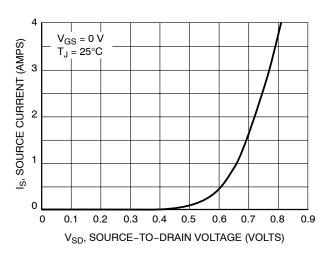
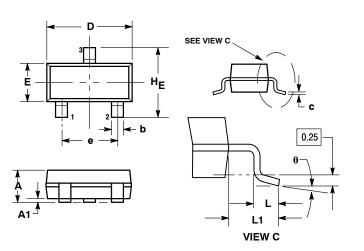


Figure 10. Diode Forward Voltage versus Current

Distributor of ON Semiconductor: Excellent Integrated System Limited


Datasheet of NTR3161NT1G - MOSFET N-CH 20V 3.3A SOT-23

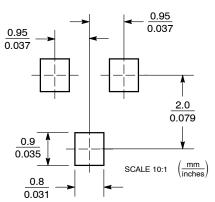
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTR3161N

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 ISSUE AN

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI
 VIA 5M 1000
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH
- 2. GONTHOLING BINICHOSON, INC.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 318-01 THRU -07 AND -09 OBSOLETE, NEW STANDARD 318-08.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.89	1.00	1.11	0.035	0.040	0.044	
A1	0.01	0.06	0.10	0.001	0.002	0.004	
b	0.37	0.44	0.50	0.015	0.018	0.020	
С	0.09	0.13	0.18	0.003	0.005	0.007	
D	2.80	2.90	3.04	0.110	0.114	0.120	
E	1.20	1.30	1.40	0.047	0.051	0.055	
е	1.78	1.90	2.04	0.070	0.075	0.081	
L	0.10	0.20	0.30	0.004	0.008	0.012	
L1	0.35	0.54	0.69	0.014	0.021	0.029	
HE	2.10	2.40	2.64	0.083	0.094	0.104	

STYLE 21: PIN 1. 0 2. S

- IN 1. GATE 2. SOURCE
- 3. DRAIN

SOLDERING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typicall' parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative