

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Texas Instruments AM26LV31ESDREP

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of AM26LV31ESDREP - IC QUAD DIFF LINE DVR 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

AM26LV31E-EP

www.ti.com

SLLS947-NOVEMBER 2008

LOW-VOLTAGE HIGH-SPEED QUADRUPLE DIFFERENTIAL LINE DRIVER WITH ±15-kV IEC ESD PROTECTION

FEATURES

- Meets or Exceeds Standards TIA/EIA-422-B and ITU Recommendation V.11
- Operates From a Single 3.3-V Power Supply
- ESD Protection for RS422 Bus Pins
 - ±15-kV Human-Body Model (HBM)
 - ±8-kV IEC61000-4-2, Contact Discharge
- ±15-kV IEC61000-4-2, Air-Gap Discharge
- Switching Rates up to 32 MHz
- Propagation Delay Time . . . 8 ns Typ
- Pulse Skew Time . . . 500 ps Typ
- High Output-Drive Current . . . ±30 mA
- Controlled Rise and Fall Times ... 5 ns Typ
- Differential Output Voltage With 100-Ω Load . . . 2.6 V Typ
- Accepts 5-V Logic Inputs With 3.3-V Supply
- I_{off} Supports Partial-Power-Down Mode Operation
- Driver Output Short-Protection Circuit
- Glitch-Free Power-Up/Power-Down Protection

SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS

- Controlled Baseline
- One Assembly/Test Site
- One Fabrication Site
- Available in Extended (-55°C/105°C) Temperature Range⁽¹⁾
- Extended Product Life Cycle
- Extended Product-Change Notification
- Product Traceability

1A 1 16 V _{CC} 1Y 2 15 4A 1Z 3 14 4Y G 4 13 4Z	D PACKAGE (TOP VIEW)								
22 5 12 G 2Y 6 11 3Z 2A 7 10 3Y GND 8 9 3A	1Y [1Z [2Z [2Y [2A [1 2 3 4 5 6 7	U	16 15 14 13 12 11 10] V _{CC}] 4A] 4Y] 4Z] G] 3Z] 3Y				

(1) Additional temperature ranges are available – contact factory

DESCRIPTION/ORDERING INFORMATION

The AM26LV31E is a quadruple differential line driver with 3-state outputs. This driver has \pm 15-kV ESD (HBM and IEC61000-4-2, Air-Gap Discharge) and \pm 8-kV ESD (IEC61000-4-2, Contact Discharge) protection. This device is designed to meet TIA/EIA-422-B and ITU Recommendation V.11 drivers with reduced supply voltage.

The device is optimized for balanced-bus transmission at switching rates up to 32 MHz. The outputs have high current capability for driving balanced lines, such as twisted-pair transmission lines, and provide a high impedance in the power-off condition.

The AM26LV31ES is characterized for operation from -55°C to 105°C.

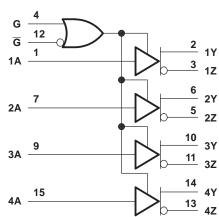
ORDERING INFORMATION

T _A	PAC	(AGE ⁽¹⁾⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
–55°C to 105°C	SOIC – D	Tape and reel	AM26LV31ESDREP	A26LV31ESP	

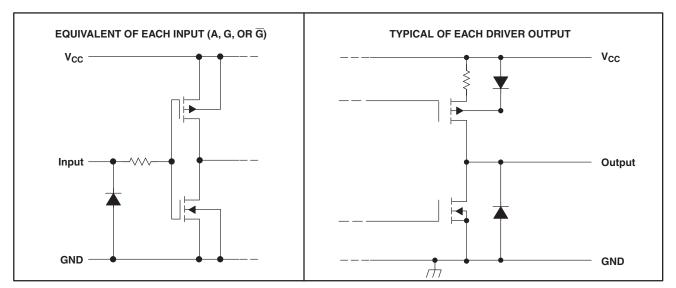
(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


SLLS947-NOVEMBER 2008

www.ti.com


FUNCTION TABLE ⁽¹⁾								
INPUT	ENABLES		OUT	PUTS				
Α	G	G	Y	Z				
Н	Н	х	Н	L				
L	Н	х	L	н				
Н	Х	L	н	L				
L	Х	L	L	Н				
Х	L	Н	Z	Z				

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off)

LOGIC DIAGRAM

SCHEMATIC

Texas

INSTRUMENTS

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of AM26LV31ESDREP - IC QUAD DIFF LINE DVR 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com AM26LV31E-EP

www.ti.com

SLLS947-NOVEMBER 2008

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT
V _{CC}	Supply voltage range ⁽²⁾		-	-0.5	6	V
VI	Input voltage range		-	-0.5	6	V
Vo	Output voltage range		-	-0.5	6	V
I _{IK}	Input clamp current	V ₁ < 0			-20	mA
I _{OK}	Output clamp current	V _O < 0			-20	mA
lo	Continuous output current				±150	mA
	Continuous current through V _{CC} or GND				±200	mA
TJ	Operating virtual junction temperature				150	°C
θ_{JA}	A Package thermal impedance ⁽³⁾⁽⁴⁾				73	°C/W
T _A	Operating free-air temperature range			-55	105	°C
T _{stg}	Storage temperature range			-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating" conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values except differential input voltage are with respect to the network GND. (2)

Maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. Selecting the maximum of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. (3)

(4)

Texas Instruments

SLLS947-NOVEMBER 2008

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	3	3.3	3.6	V
VI	Input voltage	0		5.5	V
VIH	High-level input voltage	2			V
V _{IL}	Low-level input voltage			0.8	V
I _{OH}	High-level output current			-30	mA
I _{OL}	Low-level output current			30	mA
T _A	Operating free-air temperature	-55		105	°C

ELECTRICAL CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{OH}	High-level output voltage	$V_{IH} = 2 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OH} = -20 \text{ mA}$	2.4	3		V
V _{OL}	Low-level output voltage	$V_{IH} = 2 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OL} = 20 \text{ mA}$		0.2	0.4	V
V _{OD1}	Differential output voltage	$I_0 = 0 \text{ mA}$	2		4	V
V _{OD2}	Differential output voltage	$R_L = 100 \Omega$ (see Figure 1) ⁽²⁾	2	2.6		V
$\Delta V_{OD} $	Change in magnitude of differential output voltage	$R_L = 100 \Omega$ (see Figure 1) ⁽²⁾			±0.4	V
V _{OC}	Common-mode output voltage	$R_L = 100 \Omega$ (see Figure 1) ⁽²⁾		1.5	2	V
$\Delta V_{OC} $	Change in magnitude of common-mode output voltage	$R_L = 100 \Omega$ (see Figure 1) ⁽²⁾			±0.4	V
I _{O(OFF)}	Output current with power off	V_{CC} = 0, V_{O} = –0.25 V or 5.5 V			±127	μA
I _{OZ}	High-impedance state output current	$V_{O} = -0.25$ V or 5.5 V, G = 0.8 V or $\overline{G} = 2$ V			±127	μA
l _l	Input current	$V_{CC} = 0 \text{ or } 3.6 \text{ V}, \text{ V}_{I} = 0 \text{ or } 5.5 \text{ V}$			±10	μA
I _{OS}	Short-circuit output current	$V_O = V_{CC} \text{ or } GND^{(3)}$	-30		-150	mA
I _{CC}	Supply current (total package)	$V_{I} = V_{CC}$ or GND, No load, enable			100	μA
C _{pd}	Power dissipation capacitance	No load ⁽⁴⁾		160		pF

All typical values are at V_{CC} = 3.3 V, T_A = 25°C. Refer to TIA-EIA-422-B for exact conditions. (1)

(2) (3)

Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

(4) C_{pd} determines the no-load dynamic current consumption: $I_S = C_{pd} \times V_{CC} \times f + I_{CC}$

Texas

INSTRUMENTS

www.ti.com

SLLS947-NOVEMBER 2008

SWITCHING CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{PHL}	Propagation delay time, high- to low-level output		4	8	12	ns
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 2	3.5	8	12	ns
tt	Transition time (t _r or t _f)	See Figure 2		5	10	ns
t _{PZH}	Output-enable time to high level	See Figure 3		10	20	ns
t _{PZL}	Output-enable time to low level	See Figure 4		10	20	ns
t _{PHZ}	Output-disable time from high level	See Figure 3		10	20	ns
t _{PLZ}	Output-disable time from low level	See Figure 4		10	20	ns
t _{sk(p)}	Pulse skew			0.5	3	ns
t _{sk(o)}	Skew limit (pin to pin)	See Figure 2 ⁽²⁾⁽³⁾			1.5	ns
t _{sk(lim)}	Skew limit (device to device)				3	ns
f _(max)	Maximum operating frequency	See Figure 2		32		MHz

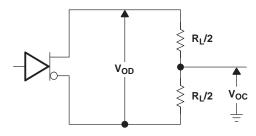
(1)

All typical values are at V_{CC} = 3.3 V, T_A = 25°C. Pulse skew is defined as the $|t_{PLH} - t_{PHL}|$ of each channel of the same device. (2)

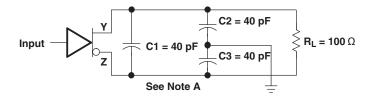
Skew limit (device to device) is the maximum difference in propagation delay times between any two channels of any two devices. (3)

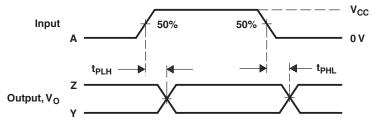
ESD PROTECTION

PARAMETER	TEST CONDITIONS	TYP	UNIT
	НВМ	±15	
Driver output	IEC61000-4-2, Air-Gap Discharge		kV
	IEC61000-4-2, Contact Discharge	±8	

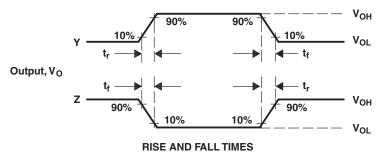


SLLS947-NOVEMBER 2008




www.ti.com

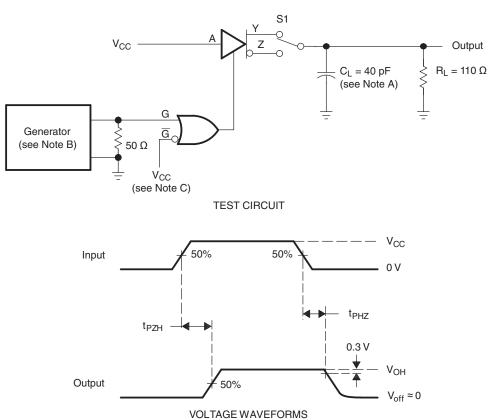
PARAMETER MEASUREMENT INFORMATION



PROPAGATION DELAY TIMES

- NOTES: A. CL includes probe and jig capacitance.
 - B. The input pulse is supplied by a generator having the following characteristics: PRR = 32 MHz, 50% duty cycle, t_r and $t_f \le 2$ ns.

Figure 2. Test Circuit and Voltage Waveforms, t_{PHL} and t_{PLH}



INSTRUMENTS

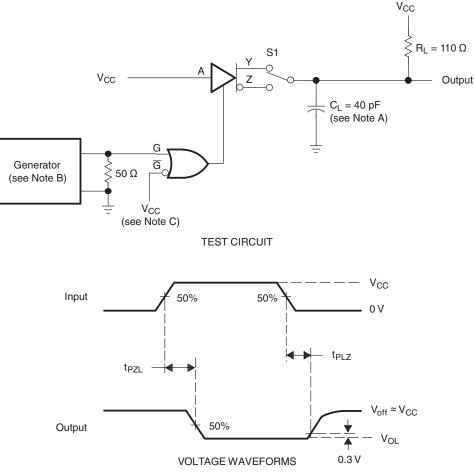
www.ti.com

SLLS947-NOVEMBER 2008

A. C_L includes probe and jig capacitance.

- B. The input pulse is supplied by a generator having the following characteristics: PRR = 10 MHz, duty cycle = 50%, $t_r = t_f \le 2ns$.
- C. To test the active-low enable \overline{G} , ground G and apply an inverted waveform \overline{G} .

Figure 3. Test Circuit and Voltage Waveforms, t_{PZH} and t_{PHZ}


Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of AM26LV31ESDREP - IC QUAD DIFF LINE DVR 16-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SLLS947-NOVEMBER 2008

www.ti.com

- A. C_L includes probe and jig capacitance.
- B. The input pulse is supplied by a generator having the following characteristics: PRR = 10 MHz, duty cycle = 50%, $t_r = t_f \le 2ns$.
- C. To test the active-low enable \overline{G} , ground G and apply an inverted waveform \overline{G} .

Figure 4. Test Circuit and Voltage Waveforms, t_{PZL} and t_{PLZ}

www.ti.com

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
AM26LV31ESDREP	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 105	A26LV31ESP	Samples
V62/09603-01XE	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 105	A26LV31ESP	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF AM26LV31E-EP :

Addendum-Page 1

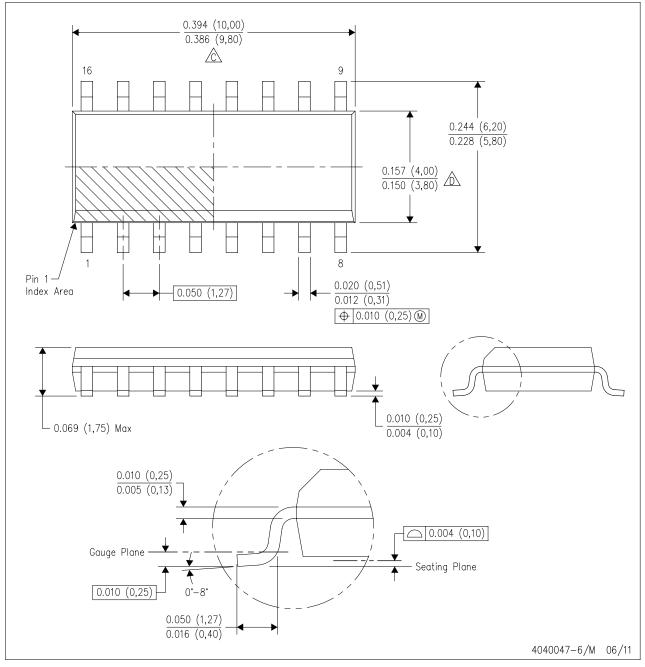
/.ti.com

11-Apr-2013

Catalog: AM26LV31E

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product


Addendum-Page 2

MECHANICAL DATA

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated