

# **Excellent Integrated System Limited**

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Texas Instruments</u> <u>CAVCH4T245MRSVREP</u>

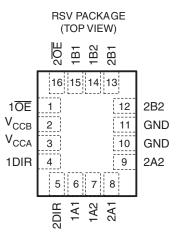
For any questions, you can email us directly: sales@integrated-circuit.com



SN74AVCH4T245-EP

www.ti.com SCES771 – DECEMBER 2008

# 4-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS


#### **FEATURES**

- Control Inputs V<sub>IH</sub>/V<sub>IL</sub> Levels Are Referenced to V<sub>CCA</sub> Voltage
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2-V to 3.6-V Power-Supply Range
- I/Os Are 4.6-V Tolerant
- I<sub>off</sub> Supports Partial Power-Down-Mode Operation
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Max Data Rates
  - 380 Mbps (1.8-V to 3.3-V Translation)
  - 200 Mbps (<1.8-V to 3.3-V Translation)</li>
  - 200 Mbps (Translate to 2.5 V or 1.8 V)
  - 150 Mbps (Translate to 1.5 V)
  - 100 Mbps (Translate to 1.2 V)

- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
  - 8000-V Human-Body Model (A114-A)
  - 200-V Machine Model (A115-A)
  - 1000-V Charged-Device Model (C101)

# SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS

- Controlled Baseline
- One Assembly/Test Site
- One Fabrication Site
- Available in Military (–55°C/125°C)
   Temperature Range<sup>(1)</sup>
- Extended Product Life Cycle
- Extended Product-Change Notification
- Product Traceability
- (1) Additional temperature ranges are available contact factory



#### **DESCRIPTION/ORDERING INFORMATION**

This 4-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track  $V_{CCA}$ .  $V_{CCA}$  accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track  $V_{CCB}$ .  $V_{CCB}$  accepts any supply voltage from 1.2 V to 3.6 V. The SN74AVCH4T245 is optimized to operate with  $V_{CCA}/V_{CCB}$  set at 1.4 V to 3.6 V. It is operational with  $V_{CCA}/V_{CCB}$  as low as 1.2 V. This allows for universal low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Datasheet of CAVCH4T245MRSVREP - IC BUS TXRX 4BIT DUAL 3ST 16-QFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN74AVCH4T245-EP



SCES771-DECEMBER 2008 www.ti.com

#### **DESCRIPTION/ORDERING INFORMATION (CONTINUED)**

The SN74AVCH4T245 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable  $(\overline{OE})$  input activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports is always active and must have a logic HIGH or LOW level applied to prevent excess  $I_{CC}$  and  $I_{CGZ}$ .

The SN74AVCH4T245 is designed so that the control pins (1DIR, 2DIR, 1OE, and 2OE) are supplied by V<sub>CCA</sub>.

This device is fully specified for partial-power-down applications using  $I_{off}$ . The  $I_{off}$  circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

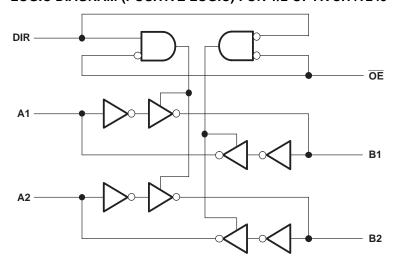
The  $V_{CC}$  isolation feature ensures that if either  $V_{CC}$  input is at GND, then both ports are in the high-impedance state. The bus-hold circuitry on the powered-up side always stays active.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

To ensure the high-impedance state during power up or power down,  $\overline{OE}$  should be tied to  $V_{CC}$  through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

#### ORDERING INFORMATION(1)

| T <sub>A</sub> | PACKA     | GE <sup>(2)</sup> | ORDERABLE PART NUMBER | TOP-SIDE MARKING |
|----------------|-----------|-------------------|-----------------------|------------------|
| -55°C to 125°C | QFN - RSV | Tape and reel     | CAVCH4T245MRSVREP     | SODM             |


- (1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at <a href="https://www.ti.com/sc/nackage">www.ti.com/sc/nackage</a>.
- (2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

#### FUNCTION TABLE<sup>(1)</sup> (EACH 2-BIT SECTION)

| CONTRO | L INPUTS | OUTPUT ( | CIRCUITS | OPERATION       |
|--------|----------|----------|----------|-----------------|
| OE     | DIR      | A PORT   | B PORT   | OPERATION       |
| L      | L        | Enabled  | Hi-Z     | B data to A bus |
| L      | Н        | Hi-Z     | Enabled  | A data to B bus |
| Н      | Χ        | Hi-Z     | Hi-Z     | Isolation       |

(1) Input circuits of the data I/Os are always active.

#### LOGIC DIAGRAM (POSITIVE LOGIC) FOR 1/2 OF AVCH4T245



Submit Documentation Feedback

Copyright © 2008, Texas Instruments Incorporated

Datasheet of CAVCH4T245MRSVREP - IC BUS TXRX 4BIT DUAL 3ST 16-QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN74AVCH4T245-EP



www.ti.com SCES771-DECEMBER 2008

#### Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

|                  |                                                                         |                    | MIN  | MAX                    | UNIT |
|------------------|-------------------------------------------------------------------------|--------------------|------|------------------------|------|
| V <sub>CCA</sub> | Supply voltage range                                                    |                    | -0.5 | 4.6                    | V    |
|                  |                                                                         | I/O ports (A port) | -0.5 | 4.6                    |      |
| $V_{I}$          | Input voltage range (2)                                                 | I/O ports (B port) | -0.5 | 4.6                    | V    |
|                  |                                                                         | Control inputs     | -0.5 | 4.6                    |      |
| V                | Voltage range applied to any output                                     | A port             | -0.5 | 4.6                    | V    |
| Vo               | in the high-impedance or power-off state (2)                            | B port             | -0.5 | 4.6                    | V    |
| V                | Voltage range continued to any output in the high or law state (2)(3)   | A port             | -0.5 | V <sub>CCA</sub> + 0.5 | V    |
| Vo               | Voltage range applied to any output in the high or low state (2)(3)     | B port             | -0.5 | V <sub>CCB</sub> + 0.5 | V    |
| I <sub>IK</sub>  | Input clamp current                                                     | V <sub>I</sub> < 0 |      | -50                    | mA   |
| I <sub>OK</sub>  | Output clamp current                                                    | V <sub>O</sub> < 0 |      | <b>-</b> 50            | mA   |
| Io               | Continuous output current                                               |                    |      | ±50                    | mA   |
|                  | Continuous current through V <sub>CCA</sub> , V <sub>CCB</sub> , or GND |                    |      | ±100                   | mA   |
| $\theta_{JA}$    | Package thermal impedance                                               |                    |      | 184                    | °C/W |
| T <sub>stg</sub> | Storage temperature range                                               |                    | -65  | 150                    | °C   |

<sup>(1)</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

<sup>(2)</sup> The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

<sup>3)</sup> The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

Datasheet of CAVCH4T245MRSVREP - IC BUS TXRX 4BIT DUAL 3ST 16-QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SN74AVCH4T245-EP



SCES771-DECEMBER 2008 www.ti.com

# Recommended Operating Conditions (1)(2)(3)(4)(5)

|                 |                             |                                                      | V <sub>CCI</sub> | V <sub>cco</sub> | MIN                     | MAX                     | UNIT |
|-----------------|-----------------------------|------------------------------------------------------|------------------|------------------|-------------------------|-------------------------|------|
| $V_{CCA}$       | Supply voltage              |                                                      |                  |                  | 1.2                     | 3.6                     | V    |
| $V_{CCB}$       | Supply voltage              |                                                      |                  |                  | 1.2                     | 3.6                     | V    |
|                 |                             |                                                      | 1.2 V to 1.95 V  |                  | $V_{CCI} \times 0.65$   |                         |      |
| $V_{IH}$        | High-level input voltage    | Data inputs <sup>(4)</sup>                           | 1.95 V to 2.7 V  |                  | 1.6                     |                         | V    |
|                 | input voltago               |                                                      | 2.7 V to 3.6 V   |                  | 2                       |                         |      |
|                 |                             |                                                      | 1.2 V to 1.95 V  |                  |                         | V <sub>CCI</sub> × 0.35 |      |
| $V_{IL}$        | Low-level<br>input voltage  | Data inputs <sup>(4)</sup>                           | 1.95 V to 2.7 V  |                  |                         | 0.7                     | V    |
|                 | input voltago               |                                                      | 2.7 V to 3.6 V   |                  |                         | 0.8                     |      |
|                 |                             |                                                      | 1.2 V to 1.95 V  |                  | V <sub>CCA</sub> × 0.65 |                         |      |
| $V_{IH}$        | High-level<br>input voltage | DIR (referenced to V <sub>CCA</sub> ) <sup>(5)</sup> | 1.95 V to 2.7 V  |                  | 1.6                     |                         | V    |
|                 | input voltage               | (referenced to V <sub>CCA</sub> )                    | 2.7 V to 3.6 V   |                  | 2                       |                         |      |
|                 |                             |                                                      | 1.2 V to 1.95 V  |                  |                         | V <sub>CCA</sub> × 0.35 |      |
| $V_{IL}$        | Low-level<br>input voltage  | DIR (referenced to V <sub>CCA</sub> ) <sup>(5)</sup> | 1.95 V to 2.7 V  |                  |                         | 0.7                     | V    |
|                 | input voltage               | (referenced to V <sub>CCA</sub> )                    | 2.7 V to 3.6 V   |                  |                         | 8.0                     |      |
| VI              | Input voltage               |                                                      |                  |                  | 0                       | 3.6                     | V    |
| .,              | Output valtage              | Active state                                         |                  |                  | 0                       | V <sub>cco</sub>        | V    |
| Vo              | Output voltage              | 3-state                                              |                  |                  | 0                       | 3.6                     | V    |
|                 |                             |                                                      |                  | 1.2 V            |                         | -3                      |      |
|                 |                             |                                                      |                  | 1.4 V to 1.6 V   |                         | -6                      |      |
| I <sub>OH</sub> | High-level output cur       | rent                                                 |                  | 1.65 V to 1.95 V |                         | -8                      | mA   |
|                 |                             |                                                      |                  | 2.3 V to 2.7 V   |                         | <b>-9</b>               |      |
|                 |                             |                                                      |                  | 3 V to 3.6 V     |                         | -12                     |      |
|                 |                             |                                                      |                  | 1.2 V            |                         | 3                       |      |
|                 |                             |                                                      |                  | 1.4 V to 1.6 V   |                         | 6                       |      |
| I <sub>OL</sub> | Low-level output curr       | rent                                                 |                  | 1.65 V to 1.95 V |                         | 8                       | mA   |
|                 |                             |                                                      |                  | 2.3 V to 2.7 V   |                         | 9                       |      |
|                 |                             |                                                      |                  | 3 V to 3.6 V     |                         | 12                      |      |
| Δt/Δν           | Input transition rise of    | or fall rate                                         |                  |                  |                         | 5                       | ns/V |
| T <sub>A</sub>  | Operating free-air ter      | mperature                                            |                  |                  | <b>–</b> 55             | 125                     | °C   |

 $V_{CCI}$  is the  $V_{CC}$  associated with the input port.  $V_{CCO}$  is the  $V_{CC}$  associated with the output port. All unused data inputs of the device must be held at  $V_{CCI}$  or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

 <sup>(4)</sup> For V<sub>CCI</sub> values not specified in the data sheet, V<sub>IH</sub> min = V<sub>CCI</sub> x 0.7 V, V<sub>IL</sub> max = V<sub>CCI</sub> x 0.3 V.
 (5) For V<sub>CCA</sub> values not specified in the data sheet, V<sub>IH</sub> min = V<sub>CCA</sub> x 0.7 V, V<sub>IL</sub> max = V<sub>CCA</sub> x 0.3 V.

Datasheet of CAVCH4T245MRSVREP - IC BUS TXRX 4BIT DUAL 3ST 16-QFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



w.ti.com SCES771-DECEMBER 2008

## Electrical Characteristics (1)(2)

over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER                        | TEST CONF                | ITIONE                 | V                | V                | Т   | <sub>A</sub> = 25°C |       | –55°C to 12            | 5°C  | UNIT |  |
|----------------------------------|--------------------------|------------------------|------------------|------------------|-----|---------------------|-------|------------------------|------|------|--|
| PARAMETER                        | TEST COND                | IIIONS                 | V <sub>CCA</sub> | V <sub>CCB</sub> | MIN | TYP                 | MAX   | MIN                    | MAX  | UNII |  |
|                                  | $I_{OH} = -100  \mu A$   |                        | 1.2 V to 3.6 V   | 1.2 V to 3.6 V   |     |                     |       | V <sub>CCO</sub> - 0.2 |      |      |  |
|                                  | $I_{OH} = -3 \text{ mA}$ |                        | 1.2 V            | 1.2 V            |     | 0.95                |       |                        |      |      |  |
| V                                | $I_{OH} = -6 \text{ mA}$ | V V                    | 1.4 V            | 1.4 V            |     |                     |       | 1.05                   |      | V    |  |
| $V_{OH}$                         | $I_{OH} = -8 \text{ mA}$ | $V_I = V_{IH}$         | 1.65 V           | 1.65 V           |     |                     |       | 1.2                    |      | V    |  |
|                                  | $I_{OH} = -9 \text{ mA}$ |                        | 2.3 V            | 2.3 V            |     |                     |       | 1.75                   |      |      |  |
|                                  | I <sub>OH</sub> = -12 mA |                        | 3 V              | 3 V              |     |                     |       | 2.3                    |      |      |  |
|                                  | I <sub>OL</sub> = 100 μA |                        | 1.2 V to 3.6 V   | 1.2 V to 3.6 V   |     |                     |       |                        | 0.2  |      |  |
|                                  | $I_{OL} = 3 \text{ mA}$  |                        | 1.2 V            | 1.2 V            |     | 0.15                |       |                        |      |      |  |
| V                                | I <sub>OL</sub> = 6 mA   | $V_I = V_{IL}$         | 1.4 V            | 1.4 V            |     |                     |       |                        | 0.35 | V    |  |
| $V_{OL}$                         | I <sub>OL</sub> = 8 mA   | VI = VIL               | 1.65 V           | 1.65 V           |     |                     |       |                        | 0.45 | V    |  |
|                                  | $I_{OL} = 9 \text{ mA}$  |                        | 2.3 V            | 2.3 V            |     |                     |       |                        | 0.55 |      |  |
|                                  | $I_{OL}$ = 12 mA         |                        | 3 V              | 3 V              |     |                     |       |                        | 0.7  |      |  |
| I <sub>I</sub> DIR input         | $V_I = V_{CCA}$ or GN    | ND                     | 1.2 V to 3.6 V   | 1.2 V to 3.6 V   |     | ±0.025              | ±0.25 |                        | ±1   | μΑ   |  |
|                                  | V <sub>I</sub> = 0.42 V  |                        | 1.2 V            | 1.2 V            |     | 25                  |       |                        |      |      |  |
|                                  | V <sub>I</sub> = 0.49 V  |                        | 1.4 V            | 1.4 V            |     |                     |       | 15                     |      |      |  |
| I <sub>BHL</sub> <sup>(3)</sup>  | $V_{I} = 0.58 \text{ V}$ | $V_1 = 0.58 \text{ V}$ |                  | 1.65 V           |     |                     |       | 25                     |      | μΑ   |  |
|                                  | V <sub>I</sub> = 0.7 V   |                        | 2.3 V            | 2.3 V            |     |                     |       | 45                     |      |      |  |
|                                  | V <sub>I</sub> = 0.8 V   |                        | 3.3 V            | 3.3 V            |     |                     |       | 100                    |      |      |  |
|                                  | V <sub>I</sub> = 0.78 V  |                        | 1.2 V            | 1.2 V            |     | -25                 |       |                        |      |      |  |
|                                  | V <sub>I</sub> = 0.91 V  |                        | 1.4 V            | 1.4 V            |     |                     |       | -15                    |      |      |  |
| I <sub>BHH</sub> <sup>(4)</sup>  | V <sub>I</sub> = 1.07 V  |                        | 1.65 V           | 1.65 V           |     |                     |       | -25                    |      | μΑ   |  |
|                                  | V <sub>I</sub> = 1.6 V   |                        | 2.3 V            | 2.3 V            |     |                     |       | -45                    |      |      |  |
|                                  | V <sub>I</sub> = 2 V     |                        | 3.3 V            | 3.3 V            |     |                     |       | -100                   |      |      |  |
|                                  |                          |                        | 1.2 V            | 1.2 V            |     | 50                  |       |                        |      |      |  |
|                                  |                          |                        | 1.6 V            | 1.6 V            |     |                     |       | 125                    |      |      |  |
| I <sub>BHLO</sub> (5)            | $V_I = 0$ to $V_{CCI}$   |                        | 1.95 V           | 1.95 V           |     |                     |       | 200                    |      | μΑ   |  |
|                                  |                          |                        | 2.7 V            | 2.7 V            |     |                     |       | 300                    |      |      |  |
|                                  |                          |                        | 3.6 V            | 3.6 V            |     |                     |       | 500                    |      |      |  |
|                                  |                          | -                      | 1.2 V            | 1.2 V            |     | -50                 |       |                        |      |      |  |
|                                  |                          |                        | 1.6 V            | 1.6 V            |     |                     |       | -125                   |      |      |  |
| I <sub>BHHO</sub> <sup>(6)</sup> | $V_I = 0$ to $V_{CCI}$   |                        | 1.95 V           | 1.95 V           |     |                     |       | -200                   |      | μΑ   |  |
|                                  |                          | 2.7 V                  | 2.7 V            |                  |     |                     | -300  |                        |      |      |  |
|                                  |                          | 3.6 V                  | 3.6 V            |                  |     |                     | -500  |                        |      |      |  |

<sup>(1)</sup>  $V_{CCO}$  is the  $V_{CC}$  associated with the output port.

SN74AVCH4T245-EP

<sup>(2)</sup> V<sub>CCI</sub> is the V<sub>CC</sub> associated with the input port.

<sup>(3)</sup> The bus-hold circuit can sink at least the minimum low sustaining current at V<sub>IL</sub> max. I<sub>BHL</sub> should be measured after lowering V<sub>IN</sub> to GND and then raising it to V<sub>IL</sub> max.

<sup>(4)</sup> The bus-hold circuit can source at least the minimum high sustaining current at V<sub>IH</sub> min. I<sub>BHH</sub> should be measured after raising V<sub>IN</sub> to V<sub>CC</sub> and then lowering it to V<sub>IH</sub> min.

<sup>(5)</sup> An external driver must source at least I<sub>BHLO</sub> to switch this node from low to high.

<sup>(6)</sup> An external driver must sink at least I<sub>BHHO</sub> to switch this node from high to low.

Datasheet of CAVCH4T245MRSVREP - IC BUS TXRX 4BIT DUAL 3ST 16-QFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



SCES771-DECEMBER 2008 www.ti.com

#### Electrical Characteristics (1)(2)

over recommended operating free-air temperature range (unless otherwise noted) (continued)

| DA                  | DAMETER            | TEST COMPLE                                    | TONG                 | V                | V                | T <sub>A</sub> | = 25° | С    | −55°C to | 125°C | UNIT |
|---------------------|--------------------|------------------------------------------------|----------------------|------------------|------------------|----------------|-------|------|----------|-------|------|
| PA                  | RAMETER            | TEST CONDIT                                    | IONS                 | V <sub>CCA</sub> | V <sub>CCB</sub> | MIN            | TYP   | MAX  | MIN      | MAX   | UNII |
|                     | A port             | $V_1$ or $V_0 = 0$ to 3.6 \                    | ı                    | 0 V              | 0 V to 3.6 V     |                | ±0.1  | ±1   |          | ±13   | ^    |
| l <sub>off</sub>    | B port             | $V_1 \cup V_0 = 0 \cup 3.6 V_1$                | 1                    | 0 V to 3.6 V     | 0 V              |                | ±0.1  | ±1   |          | ±13   | μΑ   |
| I <sub>OZ</sub> (3) | A or B port        | $V_O = V_{CCO}$ or GND, $V_I = V_{CCI}$ or GND | OE = V <sub>IH</sub> | 3.6 V            | 3.6 V            |                | ±0.5  | ±2.5 |          | ±5    | ^    |
| IOZ(°)              | B port             | $V_O = V_{CCO}$ or                             | OE =                 | 0 V              | 3.6 V            |                |       |      |          | ±14   | μΑ   |
|                     | A port             | GND,<br>$V_I = V_{CCI}$ or GND                 | don't<br>care        | 3.6 V            | 0 V              |                |       |      |          | ±5    |      |
|                     |                    |                                                |                      | 1.2 V to 3.6 V   | 1.2 V to 3.6 V   |                |       |      |          | 8     |      |
| I <sub>CCA</sub>    |                    | $V_I = V_{CCI}$ or GND,                        | $I_O = 0$            | 0 V              | 3.6 V            |                |       |      |          | -2    | μΑ   |
|                     |                    |                                                |                      | 3.6 V            | 0 V              |                |       |      |          | 8     |      |
|                     |                    |                                                |                      | 1.2 V to 3.6 V   | 1.2 V to 3.6 V   |                |       |      |          | 8     |      |
| I <sub>CCB</sub>    |                    | $V_I = V_{CCI}$ or GND,                        | $I_O = 0$            | 0 V              | 3.6 V            |                |       |      |          | 8     | μΑ   |
|                     |                    |                                                |                      | 3.6 V            | 0 V              |                |       |      |          | -2    |      |
| I <sub>CCA</sub> +  | · I <sub>CCB</sub> | $V_I = V_{CCI}$ or GND,                        | I <sub>O</sub> = 0   | 1.2 V to 3.6 V   | 1.2 V to 3.6 V   |                |       |      |          | 16    | μΑ   |
| C <sub>i</sub>      | Control inputs     | V <sub>I</sub> = 3.3 V or GND                  |                      | 3.3 V            | 3.3 V            |                | 3.5   |      |          | 4.5   | pF   |
| C <sub>io</sub>     | A or B port        | V <sub>O</sub> = 3.3 V or GND                  |                      | 3.3 V            | 3.3 V            |                | 6     |      |          | 7     | pF   |

#### **Switching Characteristics**

over recommended operating free-air temperature range,  $V_{CCA} = 1.2 \text{ V}$  (see Figure 1)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CCB</sub> = 1.2 V | V <sub>CCB</sub> = 1.5 V<br>± 0.1 V | V <sub>CCB</sub> = 1.8 V<br>± 0.15 V | V <sub>CCB</sub> = 2.5 V<br>± 0.2 V | V <sub>CCB</sub> = 3.3 V<br>± 0.3 V | UNIT |   |   |   |   |   |   |   |   |   |   |   |     |     |   |     |     |    |
|------------------|-----------------|----------------|--------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|------|---|---|---|---|---|---|---|---|---|---|---|-----|-----|---|-----|-----|----|
|                  | (INPUT)         | (001701)       | TYP                      | TYP                                 | TYP                                  | TYP                                 | TYP                                 |      |   |   |   |   |   |   |   |   |   |   |   |     |     |   |     |     |    |
| t <sub>PLH</sub> | Α               | В              | 3.4                      | 2.9                                 | 2.7                                  | 2.6                                 | 2.8                                 | 20   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |     |     |    |
| t <sub>PHL</sub> | A               | Ь              | 3.4                      | 2.9                                 | 2.7                                  | 2.6                                 | 2.8                                 | ns   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |     |     |    |
| t <sub>PLH</sub> | В               | Α              | 3.6                      | 3.1                                 | 2.8                                  | 2.6                                 | 2.6                                 | 20   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |     |     |    |
| t <sub>PHL</sub> | Б               | A              | 3.6                      | 3.1                                 | 2.8                                  | 2.6                                 | 2.6                                 | ns   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |     |     |    |
| t <sub>PZH</sub> | ŌĒ              | Α              | 5.6                      | 4.7                                 | 4.3                                  | 3.9                                 | 3.7                                 | 20   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |     |     |    |
| t <sub>PZL</sub> | OE              | A              | 5.6                      | 4.7                                 | 4.3                                  | 3.9                                 | 3.7                                 | ns   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |     |     |    |
| t <sub>PZH</sub> | ŌĒ              | В              | 5                        | 4.3                                 | 3.9                                  | 3.6                                 | 3.6                                 |      |   |   |   |   |   |   |   |   |   |   |   |     |     |   |     |     |    |
| t <sub>PZL</sub> | OE              | В              | 5                        | 4.3                                 | 3.9                                  | 3.6                                 | 3.6                                 | ns   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |     |     |    |
| t <sub>PHZ</sub> | ŌĒ              | Α              | 6.2                      | 5.2                                 | 5.2                                  | 4.3                                 | 4.8                                 | 20   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |     |     |    |
| t <sub>PLZ</sub> | OE              | A              | 6.2                      | 5.2                                 | 5.2                                  | 4.3                                 | 4.8                                 | ns   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |     |     |    |
| t <sub>PHZ</sub> | ŌĒ              | В              | 5.9                      | 5.1                                 | 5                                    | 4.7                                 | 5.5                                 | 20   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |     |     |    |
| t <sub>PLZ</sub> | OE .            | OE B           | В                        | В                                   | В                                    | В                                   | В                                   | В    | В | В | В | В | В | В | В | В | В | В | В | 5.9 | 5.1 | 5 | 4.7 | 5.5 | ns |

 $V_{CCO}$  is the  $V_{CC}$  associated with the output port.  $V_{CCI}$  is the  $V_{CC}$  associated with the input port. For I/O ports, the parameter  $I_{OZ}$  includes the input leakage current.

www.ti.com

## **Distributor of Texas Instruments: Excellent Integrated System Limited**

Datasheet of CAVCH4T245MRSVREP - IC BUS TXRX 4BIT DUAL 3ST 16-QFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



SCES771-DECEMBER 2008

SN74AVCH4T245-EP

#### **Switching Characteristics**

over recommended operating free-air temperature range,  $V_{CCA}$  = 1.5 V ± 0.1 V (see Figure 1)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CCB</sub> = 1.2 V | V <sub>CCB</sub> = ± 0.1 |      | V <sub>CCB</sub> = ± 0.1 |      | V <sub>CCB</sub> = ± 0.2 |      | V <sub>CCB</sub> = ± 0. |      | UNIT |     |      |    |
|------------------|-----------------|----------------|--------------------------|--------------------------|------|--------------------------|------|--------------------------|------|-------------------------|------|------|-----|------|----|
|                  | (INPUT)         | (001701)       | TYP                      | MIN                      | MAX  | MIN                      | MAX  | MIN                      | MAX  | MIN                     | MAX  |      |     |      |    |
| t <sub>PLH</sub> | Α               | В              | 3.2                      | 0.3                      | 10.3 | 0.3                      | 9.2  | 0.4                      | 8.2  | 0.4                     | 8.2  | 20   |     |      |    |
| t <sub>PHL</sub> | A               | Ь              | 3.2                      | 0.3                      | 10.3 | 0.3                      | 9.2  | 0.4                      | 8.2  | 0.4                     | 8.2  | ns   |     |      |    |
| t <sub>PLH</sub> | В               | ^              | 3.3                      | 0.7                      | 10.3 | 0.5                      | 10   | 0.4                      | 9.7  | 0.3                     | 9.6  |      |     |      |    |
| t <sub>PHL</sub> | Б               | Α              | 3.3                      | 0.7                      | 10.3 | 0.5                      | 10   | 0.4                      | 9.7  | 0.3                     | 13.6 | ns   |     |      |    |
| t <sub>PZH</sub> | ŌĒ              | Α              | 4.9                      | 1.4                      | 13.6 | 1.1                      | 13.5 | 0.7                      | 13.4 | 0.4                     | 13.4 |      |     |      |    |
| t <sub>PZL</sub> | OE              | A              | 4.9                      | 1.4                      | 13.6 | 1.1                      | 13.5 | 0.7                      | 13.4 | 0.4                     | 13.4 | ns   |     |      |    |
| t <sub>PZH</sub> | ŌĒ              | В              | 4.5                      | 1.4                      | 14.6 | 1.1                      | 11.7 | 0.9                      | 9.8  | 0.9                     | 9.6  |      |     |      |    |
| t <sub>PZL</sub> | OE              | В              | 4.5                      | 1.4                      | 14.6 | 1.1                      | 11.7 | 0.9                      | 9.8  | 0.9                     | 9.6  | ns   |     |      |    |
| t <sub>PHZ</sub> | ŌĒ              | ^              | 5.6                      | 1.8                      | 14.2 | 1.5                      | 14.2 | 1.3                      | 14.2 | 1.6                     | 14.2 |      |     |      |    |
| t <sub>PLZ</sub> | OE              | Α              | 5.6                      | 1.8                      | 14.2 | 1.5                      | 14.2 | 1.3                      | 14.2 | 1.6                     | 14.2 | ns   |     |      |    |
| t <sub>PHZ</sub> | <del>OF</del>   | В              | 5.2                      | 1.9                      | 14.3 | 1.9                      | 13.1 | 1.4                      | 11.4 | 1.2                     | 11.6 |      |     |      |    |
| t <sub>PLZ</sub> | ŌĒ              | ŌE             | ŌĒ                       | OE                       | В    | 5.2                      | 1.9  | 14.3                     | 1.9  | 13.1                    | 1.4  | 11.4 | 1.2 | 11.6 | ns |

#### **Switching Characteristics**

over recommended operating free-air temperature range,  $V_{CCA}$  = 1.8 V  $\pm$  0.15 V (see Figure 1)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CCB</sub> = 1.2 V | V <sub>CCB</sub> = ± 0.1 |      | V <sub>CCB</sub> = ± 0.1 | : 1.8 V<br>I5 V | V <sub>CCB</sub> = ± 0.2 |      | V <sub>CCB</sub> = ± 0.3 |      | UNIT |      |
|------------------|-----------------|----------------|--------------------------|--------------------------|------|--------------------------|-----------------|--------------------------|------|--------------------------|------|------|------|
|                  | (INPUT)         | (001701)       | TYP                      | MIN                      | MAX  | MIN                      | MAX             | MIN                      | MAX  | MIN                      | MAX  |      |      |
| t <sub>PLH</sub> | Α               | В              | 2.9                      | 0.1                      | 10   | 0.1                      | 8.9             | 0.1                      | 7.9  | 0.3                      | 7.9  | 20   |      |
| t <sub>PHL</sub> | A               | Ь              | 2.9                      | 0.1                      | 10   | 0.1                      | 8.9             | 0.1                      | 7.9  | 0.3                      | 7.9  | ns   |      |
| t <sub>PLH</sub> | В               | Α              | 3                        | 0.6                      | 9.3  | 0.5                      | 8.9             | 0.3                      | 8.6  | 0.3                      | 8.5  | ns   |      |
| t <sub>PHL</sub> | ь               | A              | 3                        | 0.6                      | 9.3  | 0.5                      | 8.9             | 0.3                      | 8.6  | 0.3                      | 8.5  | 115  |      |
| t <sub>PZH</sub> | ŌĒ              | Α              | 4.4                      | 1                        | 13.4 | 1                        | 11.3            | 0.6                      | 11.3 | 0.4                      | 11.2 | 20   |      |
| t <sub>PZL</sub> | OE              | A              | 4.4                      | 1                        | 13.4 | 1                        | 11.3            | 0.6                      | 11.3 | 0.4                      | 11.2 | ns   |      |
| t <sub>PZH</sub> | <del></del>     | ŌĒ             | В                        | 4.1                      | 1.2  | 14.4                     | 1               | 12.4                     | 0.8  | 9.3                      | 0.8  | 8.6  | 20   |
| t <sub>PZL</sub> | OE              | Ь              | 4.1                      | 1.2                      | 14.4 | 1                        | 12.4            | 0.8                      | 9.3  | 0.8                      | 8.6  | ns   |      |
| t <sub>PHZ</sub> | ŌE<br>ŌE        | ^              | 5.4                      | 1.6                      | 12.6 | 1.8                      | 12.7            | 1.3                      | 12.7 | 1.6                      | 12.7 | 20   |      |
| t <sub>PLZ</sub> |                 | A              | 5.4                      | 1.6                      | 12.6 | 1.8                      | 12.7            | 1.3                      | 12.7 | 1.6                      | 12.7 | ns   |      |
| t <sub>PHZ</sub> |                 | В              | 5                        | 1.7                      | 13.9 | 1.6                      | 12.7            | 1.2                      | 10.9 | 1                        | 10.9 | nc   |      |
| t <sub>PLZ</sub> |                 | ŌĒ             | ŌĒ                       | ם                        | 5    | 1.7                      | 13.9            | 1.6                      | 12.7 | 1.2                      | 10.9 | 1    | 10.9 |

Datasheet of CAVCH4T245MRSVREP - IC BUS TXRX 4BIT DUAL 3ST 16-QFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



SCES771-DECEMBER 2008 www.ti.com

#### **Switching Characteristics**

over recommended operating free-air temperature range,  $V_{CCA}$  = 2.5 V ± 0.2 V (see Figure 1)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CCB</sub> = 1.2 V | V <sub>CCB</sub> = ± 0.7 |      | V <sub>CCB</sub> = ± 0.1 |      | V <sub>CCB</sub> = ± 0.2 |      | V <sub>CCB</sub> = ± 0.3 |      | UNIT |     |     |    |
|------------------|-----------------|----------------|--------------------------|--------------------------|------|--------------------------|------|--------------------------|------|--------------------------|------|------|-----|-----|----|
|                  | (INPUT)         | (001701)       | TYP                      | MIN                      | MAX  | MIN                      | MAX  | MIN                      | MAX  | MIN                      | MAX  |      |     |     |    |
| t <sub>PLH</sub> | Α               | В              | 2.8                      | 0.1                      | 9.7  | 0.1                      | 8.6  | 0.2                      | 7.5  | 0.1                      | 7.6  | 20   |     |     |    |
| t <sub>PHL</sub> | A               | Ь              | 2.8                      | 0.1                      | 9.7  | 0.1                      | 8.6  | 0.2                      | 7.5  | 0.1                      | 7.6  | ns   |     |     |    |
| t <sub>PLH</sub> | В               | Α              | 2.7                      | 0.6                      | 8.2  | 0.4                      | 7.9  | 0.2                      | 7.4  | 0.2                      | 7.3  |      |     |     |    |
| t <sub>PHL</sub> | Б               | A              | 2.7                      | 0.6                      | 8.2  | 0.4                      | 7.9  | 0.2                      | 7.4  | 0.2                      | 7.3  | ns   |     |     |    |
| t <sub>PZH</sub> | ŌĒ              | ^              | 4                        | 0.7                      | 10.5 | 0.7                      | 9.2  | 0.6                      | 8.8  | 0.4                      | 8.8  |      |     |     |    |
| t <sub>PZL</sub> | OE              | Α              | 4                        | 0.7                      | 10.5 | 0.7                      | 9.2  | 0.6                      | 8.8  | 0.4                      | 8.8  | ns   |     |     |    |
| t <sub>PZH</sub> | ŌĒ              | В              | 3.8                      | 0.9                      | 14.8 | 0.8                      | 12   | 0.6                      | 9.8  | 0.6                      | 9    |      |     |     |    |
| t <sub>PZL</sub> | OE              | В              | 3.8                      | 0.9                      | 14.8 | 0.8                      | 12   | 0.6                      | 9.8  | 0.6                      | 9    | ns   |     |     |    |
| t <sub>PHZ</sub> | <del>or</del>   | ^              | 4.7                      | 1                        | 12.4 | 1                        | 12.4 | 1                        | 10.2 | 1                        | 10.6 |      |     |     |    |
| t <sub>PLZ</sub> | ŌĒ              | A              | 4.7                      | 1                        | 12.4 | 1                        | 12.4 | 1                        | 10.2 | 1                        | 10.6 | ns   |     |     |    |
| t <sub>PHZ</sub> | ŌĒ              | ŌĒ             | ŌĒ                       | ŌĒ                       | В    | 4.5                      | 1.5  | 13.4                     | 1.3  | 12.2                     | 1.1  | 10.2 | 0.9 | 9.2 |    |
| t <sub>PLZ</sub> |                 |                |                          |                          | В    | 4.5                      | 1.5  | 12.8                     | 1.3  | 12.2                     | 1.1  | 10.2 | 0.9 | 9.2 | ns |

#### **Switching Characteristics**

over recommended operating free-air temperature range,  $V_{CCA}$  = 3.3 V ± 0.3 V (see Figure 1)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CCB</sub> = 1.2 V | V <sub>CCB</sub> = ± 0.1 |      | V <sub>CCB</sub> = ± 0.1 |      | V <sub>CCB</sub> = ± 0.2 |      | V <sub>CCB</sub> = ± 0.3 |      | UNIT |      |    |
|------------------|-----------------|----------------|--------------------------|--------------------------|------|--------------------------|------|--------------------------|------|--------------------------|------|------|------|----|
|                  | (INPUT)         | (001701)       | TYP                      | MIN                      | MAX  | MIN                      | MAX  | MIN                      | MAX  | MIN                      | MAX  |      |      |    |
| t <sub>PLH</sub> | Α               | В              | 2.9                      | 0.1                      | 9.6  | 0.1                      | 8.5  | 0.1                      | 7.3  | 0.1                      | 6.9  | 20   |      |    |
| t <sub>PHL</sub> | A               | ь              | 2.9                      | 0.1                      | 9.6  | 0.1                      | 8.5  | 0.1                      | 7.3  | 0.1                      | 6.9  | ns   |      |    |
| t <sub>PLH</sub> | В               | Α              | 2.6                      | 0.6                      | 8.2  | 0.4                      | 7.4  | 0.2                      | 7    | 0.1                      | 6.8  | 20   |      |    |
| t <sub>PHL</sub> | ь               | A              | 2.6                      | 0.6                      | 8.2  | 0.4                      | 7.4  | 0.2                      | 7    | 0.1                      | 6.8  | ns   |      |    |
| t <sub>PZH</sub> | ŌĒ              | Α              | 3.8                      | 0.6                      | 12.7 | 0.6                      | 9.2  | 0.6                      | 7.8  | 0.4                      | 7.8  | 20   |      |    |
| t <sub>PZL</sub> | OE              | A              | 3.8                      | 0.6                      | 12.7 | 0.6                      | 9.2  | 0.6                      | 7.8  | 0.4                      | 7.8  | ns   |      |    |
| t <sub>PZH</sub> | <del>or</del>   | ŌĒ             | В                        | 3.7                      | 0.8  | 14.7                     | 0.6  | 11.8                     | 0.5  | 9.7                      | 0.5  | 8.8  | 20   |    |
| t <sub>PZL</sub> | OE              | ь              | 3.7                      | 0.8                      | 14.7 | 0.6                      | 11.8 | 0.5                      | 9.7  | 0.5                      | 8.8  | ns   |      |    |
| t <sub>PHZ</sub> | <del>0</del> -  | ^              | 4.8                      | 0.7                      | 13.3 | 0.7                      | 12.3 | 0.7                      | 9.6  | 0.7                      | 10.6 | 20   |      |    |
| t <sub>PLZ</sub> | OE              | ŌE A           | 4.8                      | 0.7                      | 13.3 | 0.7                      | 12.3 | 0.7                      | 9.6  | 0.7                      | 10.6 | ns   |      |    |
| t <sub>PHZ</sub> | ŌĒ              | В              | 5.3                      | 1.4                      | 13.3 | 1.2                      | 12.1 | 1                        | 10.4 | 0.8                      | 10.2 | nc   |      |    |
| t <sub>PLZ</sub> | ŌĒ              | ŌĒ             | OĒ                       | В                        | 5.3  | 1.4                      | 13.3 | 1.2                      | 12.1 | 1                        | 10.4 | 8.0  | 10.2 | ns |

Submit Documentation Feedback

Copyright © 2008, Texas Instruments Incorporated

Datasheet of CAVCH4T245MRSVREP - IC BUS TXRX 4BIT DUAL 3ST 16-QFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



www.ti.com SCES771-DECEMBER 2008

#### **Operating Characteristics**

 $T_A = 25^{\circ}C$ 

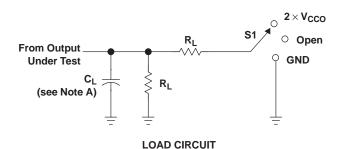
| F                               | PARAME                                                                                                                                        | TER              | TEST<br>CONDITIONS                               | V <sub>CCA</sub> = V <sub>CCB</sub> = 1.2 V | V <sub>CCA</sub> = V <sub>CCB</sub> = 1.5 V | V <sub>CCA</sub> = V <sub>CCB</sub> = 1.8 V | V <sub>CCA</sub> = V <sub>CCB</sub> = 2.5 V | V <sub>CCA</sub> = V <sub>CCB</sub> = 3.3 V | UNIT |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|------|
|                                 | A to B                                                                                                                                        | Outputs enabled  |                                                  | 1                                           | 1                                           | 1                                           | 1.5                                         | 2                                           |      |
| C (1)                           | AIOB                                                                                                                                          | Outputs disabled | $C_L = 0,$                                       | 1                                           | 1                                           | 1                                           | 1                                           | 1                                           | n.E  |
| C <sub>pdA</sub> <sup>(1)</sup> | B to A                                                                                                                                        |                  | $f = 10 \text{ MHz},$ $t_r = t_f = 1 \text{ ns}$ | 12                                          | 12.5                                        | 13                                          | 14                                          | 15                                          | pF   |
|                                 | B to A                                                                                                                                        | Outputs disabled |                                                  | 1                                           | 1                                           | 1                                           | 1                                           | 1                                           |      |
|                                 | A 4- D                                                                                                                                        | Outputs enabled  |                                                  | 12                                          | 12.5                                        | 13                                          | 14                                          | 15                                          |      |
| <b>o</b> (1)                    | A to B Output disable  B to A Output enable | Outputs disabled | $C_L = 0,$                                       | 1                                           | 1                                           | 1                                           | 1                                           | 1                                           |      |
| ∪ <sub>pdB</sub> (*/            |                                                                                                                                               | Outputs enabled  | f = 10  MHz,<br>$t_r = t_f = 1 \text{ ns}$       | 1                                           | 1                                           | 1                                           | 1                                           | 2                                           | pF   |
|                                 |                                                                                                                                               | Outputs disabled |                                                  | 1                                           | 1                                           | 1                                           | 1                                           | 1                                           |      |

<sup>(1)</sup> Power dissipation capacitance per transceiver

SN74AVCH4T245-EP

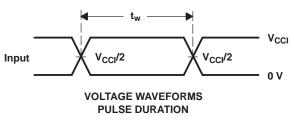
SN74AVCH4T245-EP

#### Distributor of Texas Instruments: Excellent Integrated System Limited


Datasheet of CAVCH4T245MRSVREP - IC BUS TXRX 4BIT DUAL 3ST 16-QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

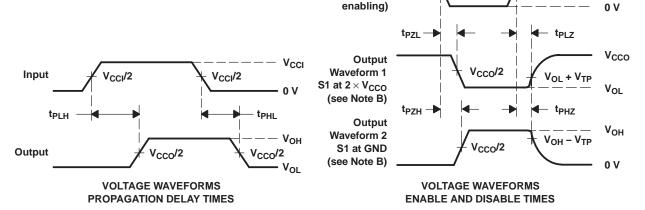
TEXAS INSTRUMENTS

VCCA


SCES771-DECEMBER 2008 www.ti.com

#### PARAMETER MEASUREMENT INFORMATION




| TEST                                                                                        | <b>S</b> 1                        |
|---------------------------------------------------------------------------------------------|-----------------------------------|
| t <sub>pd</sub><br>t <sub>PLZ</sub> /t <sub>PZL</sub><br>t <sub>PHZ</sub> /t <sub>PZH</sub> | Open<br>2×V <sub>CCO</sub><br>GND |





V<sub>CCA</sub>/2

V<sub>CCA</sub>/2



Output Control

(low-level

NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_O = 50 \Omega$ ,  $dv/dt \geq$  1 V/ns,  $dv/dt \geq$  1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t<sub>PLZ</sub> and t<sub>PHZ</sub> are the same as t<sub>dis</sub>.
- F.  $t_{PZL}$  and  $t_{PZH}$  are the same as  $t_{en}$ .
- G.  $t_{PLH}$  and  $t_{PHL}$  are the same as  $t_{pd}$ .
- H. V<sub>CCI</sub> is the V<sub>CC</sub> associated with the input port.
- I.  $V_{CCO}$  is the  $V_{CC}$  associated with the output port.

Figure 1. Load Circuit and Voltage Waveforms



#### **Distributor of Texas Instruments: Excellent Integrated System Limited** Datasheet of CAVCH4T245MRSVREP - IC BUS TXRX 4BIT DUAL 3ST 16-QFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

24-Jan-2013

#### **PACKAGING INFORMATION**

| Orderable Device  | Status | Package Type | Package | Pins | Package Qty | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Top-Side Markings | Samples |
|-------------------|--------|--------------|---------|------|-------------|----------------------------|------------------|--------------------|--------------|-------------------|---------|
|                   | (1)    |              | Drawing |      |             | (2)                        |                  | (3)                |              | (4)               |         |
| CAVCH4T245MRSVREP | ACTIVE | UQFN         | RSV     | 16   | 3000        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | SODM              | Samples |
| V62/09618-01XE    | ACTIVE | UQFN         | RSV     | 16   | 3000        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -55 to 125   | SODM              | Samples |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): Ti's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF SN74AVCH4T245-EP:

Catalog: SN74AVCH4T245

Addendum-Page 1



# **Distributor of Texas Instruments: Excellent Integrated System Limited**Datasheet of CAVCH4T245MRSVREP - IC BUS TXRX 4BIT DUAL 3ST 16-QFN

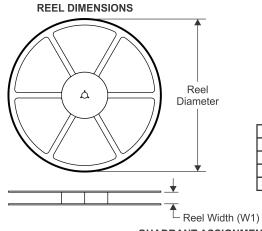
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

Www.ti.com 24-Jan-2013

NOTE: Qualified Version Definitions:

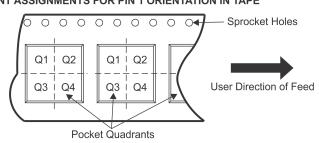
Catalog - TI's standard catalog product


Datasheet of CAVCH4T245MRSVREP - IC BUS TXRX 4BIT DUAL 3ST 16-QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



### **PACKAGE MATERIALS INFORMATION**

www.ti.com 22-Nov-2012


#### TAPE AND REEL INFORMATION



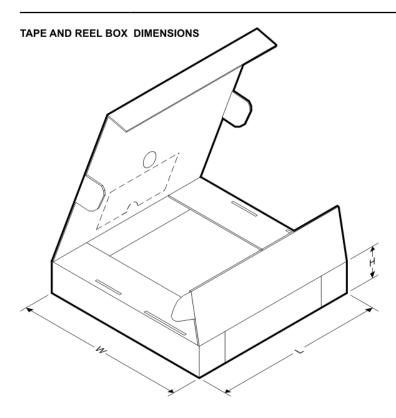
# TAPE DIMENSIONS + K0 + P1 + B0 W Cavity - A0 +

|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
|    | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



#### \*All dimensions are nominal

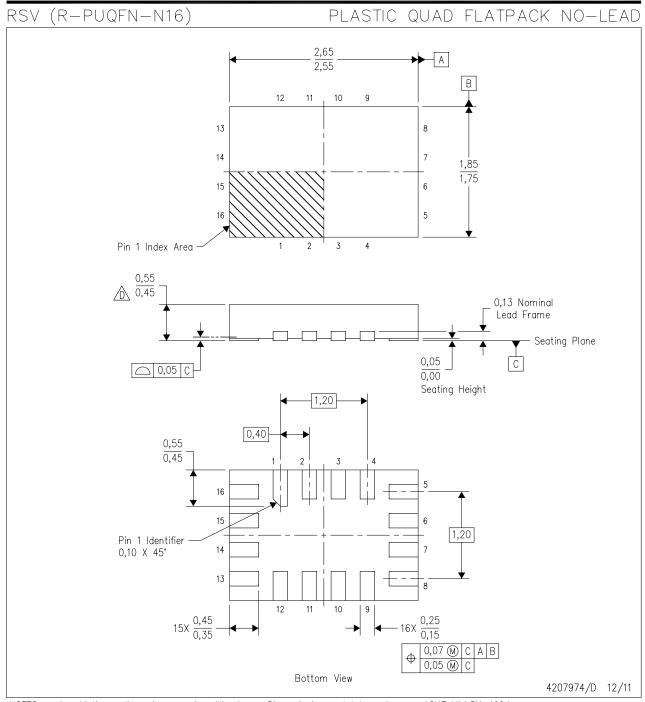

| Device            | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| CAVCH4T245MRSVREP | UQFN            | RSV                | 16 | 3000 | 180.0                    | 12.4                     | 2.1        | 2.9        | 0.75       | 4.0        | 12.0      | Q1               |

Datasheet of CAVCH4T245MRSVREP - IC BUS TXRX 4BIT DUAL 3ST 16-QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



## **PACKAGE MATERIALS INFORMATION**

www.ti.com 22-Nov-2012




#### \*All dimensions are nominal

| Device            | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| CAVCH4T245MRSVREP | UQFN         | RSV             | 16   | 3000 | 203.0       | 203.0      | 35.0        |



#### **MECHANICAL DATA**

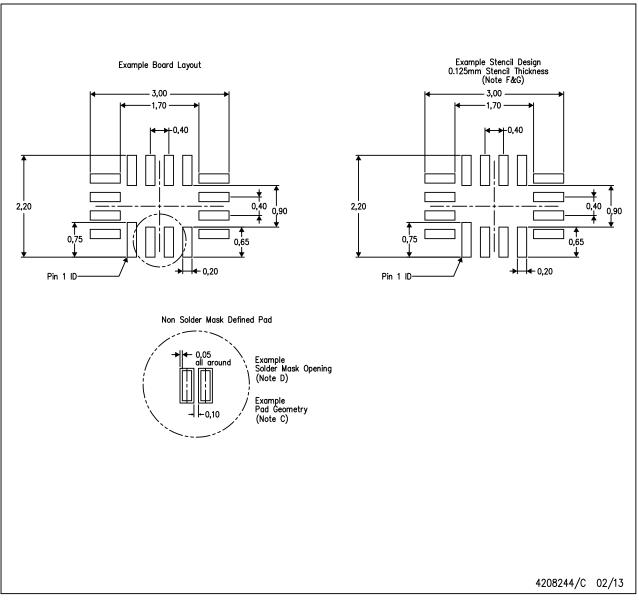


NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

B. This drawing is subject to change without notice.

C. QFN (Quad Flatpack No-Lead) package configuration.

This package complies to JEDEC MO-288 variation UFHE, except minimum package thickness.






#### **LAND PATTERN DATA**

#### RSV (R-PUQFN-N16)

#### PLASTIC QUAD FLATPACK NO-LEAD



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.





# Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of CAVCH4T245MRSVREP - IC BUS TXRX 4BIT DUAL 3ST 16-QFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

www.ti.com/audio Audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Industrial

 Clocks and Timers
 www.ti.com/clocks
 Industrial
 www.ti.com/industrial

 Interface
 interface.ti.com
 Medical
 www.ti.com/medical

 Logic
 logic.ti.com
 Security
 www.ti.com/security

Power Mgmt Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors <a href="https://www.ti.com/omap">www.ti.com/omap</a> TI E2E Community <a href="https://e2e.ti.com">e2e.ti.com</a>

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated