

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

IXYS Corporation DHG10I1200PM

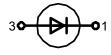
For any questions, you can email us directly: sales@integrated-circuit.com

DHG 10 I 1200PM

 $V_{RRM} = 1200 V$

advanced

10 A


75 ns

Sonic-FRD

High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode

Part number

DHG 10 I 1200PM

Backside: isolated

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:

- Power dissipation within the diode

- Turn-on loss in the commutating switch

Applications:

- · Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode

- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package:

TO-220FPAC

- Industry standard outline
- Plastic overmolded tab for electrical isolation
- Epoxy meets UL 94V-0
- RoHS compliant

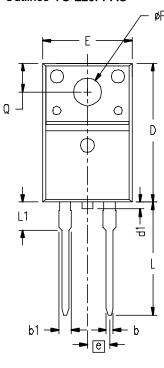
Ratings

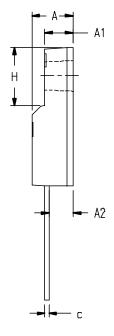
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		T _{VJ} = 25 °C			1200	V
I _R	reverse current	V _R = 1200 V	T _{vJ} = 25 °C			15	μA
		V _R = 1200 V	T_{VJ} = 125 °C			1.5	mΑ
V _F	forward voltage	I _F = 10 A	T _{vJ} = 25 °C			2.69	V
		$I_F = 20 A$				3.56	V
		I _F = 10 A	T _{vJ} = 125 °C			2.38	V
		I _F = 20 A				3.33	V
I _{FAV}	average forward current	rectangular, d = 0.5	T _c = 30 °C			10	А
V _{F0}	threshold voltage } for power loss	T _{VJ} = 150 °C			1.60	V	
r _F	slope resistance	calculation only	culation only			73.6	mΩ
R_{thJC}	thermal resistance junction to case					4.00	K/W
T_{VJ}	virtual junction temperature			-55		150	°C
P _{tot}	total power dissipation		$T_c = 25 ^{\circ}C$			31	W
I _{FSM}	max. forward surge current	$t_p = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	$T_{VJ} = 45 ^{\circ}C$			70	Α
I _{RM}	max. reverse recovery current	I _F = 10 A;	$T_{VJ} = 25 ^{\circ}C$		8.5		А
t _{rr}	reverse recovery time	·	T_{VJ} = 125 °C				Α
		$-di_{F}/dt = 350 \text{ A/}\mu\text{s}$	$T_{VJ} = 25 ^{\circ}C$		75		ns
		$V_{R} = 800 \text{ V}$	T_{VJ} = 125 °C				ns
CJ	junction capacitance	V _R = 600 V; f = 1 MHz	T _{VJ} = 25 °C		tbd		pF
E _{AS}	non-repetitive avalanche energy	$I_{AS} = \text{tbd A}; L = 100 \mu\text{H}$	T _{VJ} = 25 °C			tbd	mJ
I _{AR}	repetitive avalanche current	$V_A = 1.5 \cdot V_R \text{ typ.; } f = 10 \text{ kHz}$				tbd	Α

Distributor of IXYS Corporation: Excellent Integrated System Limited

Datasheet of DHG10I1200PM - DIODE GEN PURP 1.2KV 10A TO220FP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


DHG 10 I 1200PM


advanced

				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin*			35	Α	
R _{thCH}	thermal resistance case to heatsink			0.50		K/W	
M_{D}	mounting torque		0.4		0.6	Nm	
Fc	mounting force with clip		20		60	N	
T _{stg}	storage temperature		-55		150	°C	
Weight				2		g	

^{*} Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.
In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-220FPAC

MYZ	INCH	IES .	MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.177	.193	4.50	4.90	
A1	.092	.108	2.34	2.74	
A2	.101	.117	2.56	2.96	
b	.028	.035	0.70	0.90	
b1	.050	.058	1.27	1.47	
С	.018	.024	0.45	0.60	
D	.617	.633	15.67	16.07	
d1	0	.043	0	1.10	
E	.392	.408	9,96	10.36	
е	.100 BSC		2.54 BSC		
Н	.255	.271	6,48	6.88	
L	.499	.523	12.68	13.28	
<u>L</u> 1	.119	.135	3.03	3,43	
ØΡ	.121	.129	3.08	3.28	
Q	.126	.134	3,20	3,40	

NOTE:

 All metal surface are matte pure tin plated except trimmed area.