Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Bergquist SPK10-0.006-00-05

For any questions, you can email us directly: sales@integrated-circuit.com

Distributor of Bergquist: Excellent Integrated System Limited

Datasheet of SPK10-0.006-00-05 - THERMAL PAD TO-3 .006" K10

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Sil-Pad® K-10

The High Performance Kapton®-Based Insulator

Features and Benefits

- Thermal impedance: 0.41°C-in²/W (@50 psi)
- Tough dielectric barrier against cut-through
- High performance film
- Designed to replace ceramic insulators

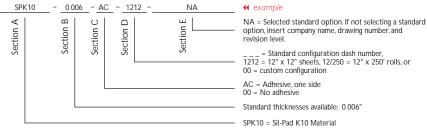
Sil-Pad K-10 is a high performance insulator. It combines special film with a filled silicone rubber. The result is a product with good cut-through properties and excellent thermal performance.

Sil-Pad K-10 is designed to replace ceramic insulators such as Beryllium Oxide, Boron Nitride and Alumina. Ceramic insulators are expensive and they break easily. Sil-Pad K-10 eliminates breakage and costs much less than ceramics.

TYPICAL PROPERTIES OF SIL-PAD K-10						
PROPERTY	IMPERIAL VALUE		METRIC VALUE		TEST METHOD	
Color	Beige		Beige		Visual	
Reinforcement Carrier	Kapton		Kapton		_	
Thickness (inch) / (mm)	0.006		0.152		ASTM D374	
Hardness (Shore A)	90		90		ASTM D2240	
Breaking Strength (lbs/inch) / (kN/m)	30		5		ASTM D1458	
Elongation (%)	40		40		ASTM D412	
Tensile Strength (psi) / (MPa)	5000		34		ASTM D412	
Continuous Use Temp (°F) / (°C)	-76 to 356		-60 to 180		_	
ELECTRICAL						
Dielectric Breakdown Voltage (Vac)	6000		6000		ASTM D149	
Dielectric Constant (1000 Hz)	3.7		3.7		ASTM D150	
Volume Resistivity (Ohm-meter)	10 ¹²		10 ¹²		ASTM D257	
Flame Rating	VTM-O		VTM-O		U.L.94	
THERMAL						
Thermal Conductivity (W/m-K)	1.3		1.3		ASTM D5470	
THERMAL PERFORMANCE vs PRESSURE						
Press	sure (psi)	10	25	50	100	200
TO-220 Thermal Performance (°C/W)		2.35	2.19	2.01	1.87	1.76
Thermal Impedance (°C-in²/W) (1)		0.86	0.56	0.41	0.38	0.33
1) The ASTM D5470 test fixture was used. The recor	ded value inclu	udes interfacia	l thermal resis	tance. These v	alues are prov	ided for

1) The ASTM D5470 test fixture was used. The recorded value includes interfacial thermal resistance. These values are provided for reference only. Actual application performance is directly related to the surface roughness, flatness and pressure applied.

Typical Applications Include:


- Power supplies
- Motor controls
- Power semiconductors

Configurations Available:

- Sheet form, die-cut parts and roll form
- With or without pressure sensitive adhesive

Building a Part Number

Standard Options

Note: To build a part number, visit our website at www.bergquistcompany.com.

Sil-Pad®: U.S. Patents 4,574,879; 4,602,125; 4,602,678; 4,685,987; 4,842,911 and others.

Kapton® is a registered trademark of DuPont.

www.bergquistcompany.com