

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Texas Instruments
TPD4S012DRYR

For any questions, you can email us directly: sales@integrated-circuit.com

Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPD4S012

SLVS928B - MARCH 2009 - REVISED AUGUST 2014

TPD4S012 4-Channel ESD Solution for USB-HS/USB OTG/USB Charger Interface

1 Features

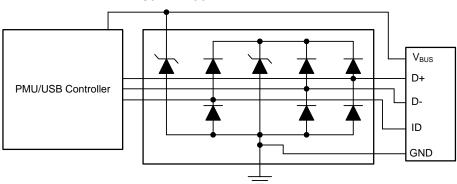
- · Integrated ESD Clamps on all Pins
- USB Signal Pins (D+, D-, ID)
 - 0.8-pF Line Capacitance
- Supports Data Rates in Excess of 480 Mbps
- IEC 61000-4-2 ESD Protection (Level 4 Contact)
 - ±10-kV IEC 61000-4-2 Contact Discharge
- IEC 61000-4-5 Surge
 - 3 Amps Peak Pulse Current

2 Applications

- Cellular Phones
- Digital Cameras
- Global Positioning Systems (GPS)
- Portable Digital Assistants (PDA)
- Portable Computers

3 Description

The TPD4S012 is a four-channel Transient Voltage Suppressor (TVS) based Electrostatic Discharge (ESD) protection diode array for USB chargers and USB On-The-Go (OTG) interfaces.


The TPD4S012 provides IEC 61000-4-2 system level ESD Protection featuring 15 V tolerance on the V_{BUS} line. The device is ideal for providing circuit protection for USB charger and OTG applications due to its high-voltage tolerance at the V_{BUS} line and small flow-through package.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPD4S012	SON (6)	1.45 mm x 1.00 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Typical Application Schematic

Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPD4S012

SLVS928B -MARCH 2009-REVISED AUGUST 2014

www.ti.com

_		_	_		
Тэ	hla	Ωŧ	Co	nta	nte
10	ME	OI.	\mathbf{c}	III.C	

8
Nodes9
lementation 10
ion 10
10
mendations 12
12
12
12
ntation Support 13
13
arge Caution13
ng, and Orderable
13
al Mmp mat on om nes nen

4 Revision History

Changes from Revision A (November 2009) to Revision B

Page

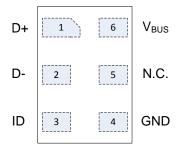
 Added Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

Product Folder Links: TPD4S012

Submit Documentation Feedback

Copyright © 2009–2014, Texas Instruments Incorporated

Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


www.ti.com

TPD4S012

SLVS928B -MARCH 2009-REVISED AUGUST 2014

5 Pin Configurations and Functions

DRY PACKAGE (TOP VIEW)

N.C. - Not internally connected

D+, D-, and ID pins are exact equivalent ESD clamp circuits. Any of these pins can be connected to any other D+,

D-, or ID pin if it becomes easier to route the traces from the USB connector.

Pin Functions

F	PIN				
DRY PIN NO.	NAME	TYPE	DESCRIPTION		
1	D+	ESD clamp	Provides ESD protection to the high-speed differential data lines		
2	D-	ESD clamp	Provides ESD protection to the high-speed differential data lines		
3	ID	ESD clamp	Provides ESD protection to the high-speed differential data lines		
4	GND	PWR	Ground		
5	N.C.	_	Not internally connected		
6	V _{BUS}	ESD clamp	ESD clamp for high-voltage tolerant V _{BUS} line(s)		

Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPD4S012

SLVS928B - MARCH 2009 - REVISED AUGUST 2014

www.ti.com

Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)

	PARAMETER		MIN	MAX	UNIT
	V _{BUS} voltage tolerance	V _{BUS} pin	-0.3	20	V
	IO voltage tolerance	D+, D-, ID pins	-0.3	6	V
T_A	Operating free-air temperature range		-40	85	°C
	IEC 61000-4-2 Contact Discharge	D+, D-, ID		±10	kV
		V _{BUS} pin		±10	kV
	IEC 61000-4-2 Air-Gap Discharge	D+, D-, ID		±10	kV
		V _{BUS} pin		±9	kV
IFC (4000 4 F Curre (4 9/20 up)		Peak pulse Power (All pins)		60	W
	IEC 61000-4-5 Surge ($t_p = 8/20 \mu s$)	Peak pulse current (All Pins)		3	А

6.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	ge	-65	125	°C
V	V Elements to the land	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)		2.5	kV
V _(ESD) Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	-1	1	KV	

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

PARAMETER		MIN	MAX	UNIT
T _A Operating free-air Temperature Range		-40	85	°C
Operating Voltage	V _{BUS} Pin	0	15	V
	D+, D-, ID Pins	0	5.5	

6.4 Thermal Information

		TPD4S012	
	THERMAL METRIC ⁽¹⁾	DRY	UNIT
		6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	461.3	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	219.6	
$R_{\theta JB}$	Junction-to-board thermal resistance	343.7	°C/W
ΨЈТ	Junction-to-top characterization parameter	162.5	
ΨЈВ	Junction-to-board characterization parameter	343.7	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

www.ti.com

Distributor of Texas Instruments: Excellent Integrated System Limited

Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPD4S012

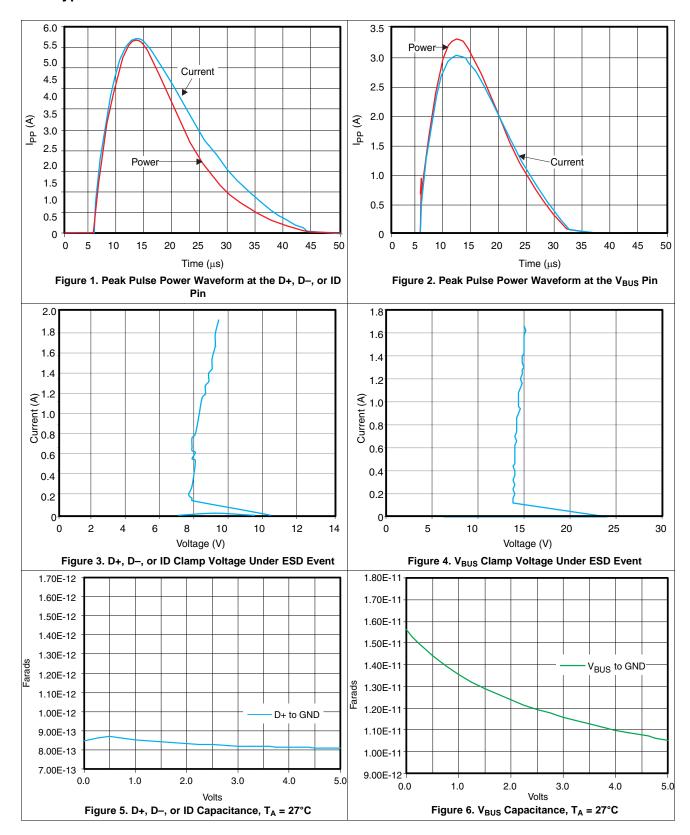
SLVS928B - MARCH 2009 - REVISED AUGUST 2014

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TES	T CONDITIONS	MIN	TYP	MAX	UNIT
I _{VBUS}	V _{BUS} operating current	V _{BUS} = 19 V	D+, D-, ID pins open		0.1	0.5	μA
I _{IO}	IO port current	V _{IO} = 2.5 V, V _{BUS} = 5 V	D+, D-, ID pins		0.1	0.5	μΑ
V_D	Diode forward voltage	I _{IO} = 8 mA	D+, D-, ID pins (lower clamp diode)	0.6	0.8	0.95	V
C _{VBUS}	V _{BUS} pin capacitance	V _{BUS} = 5 V			11	15	pF
C _{IO}	IO capacitance	V _{IO} = 2.5 V	D+, D-, ID pins		0.8	1	pF
D	Donasti rasidana	I _{IO} = 1.5 A	D+, D-, ID, and V _{BUS} pins, including central clamp dioded during positive ESD pulse		1.2		0
R _{DYN}	Dynamic resistance	I _{IO} = 1 A	D+, D-, ID, and V _{BUS} pins, including central clamp diode during negative ESD pulse		1		Ω
1/	Drag alcdown valte as	1 1 1	D+, D-, ID pins	6	9		M
V _{BR} Breakdown volta	Breakdown voltage	I _{IO} = 1 mA	V _{BUS} pin(s)	20	24		V

Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



TPD4S012

SLVS928B - MARCH 2009 - REVISED AUGUST 2014

www.ti.com

6.6 Typical Characteristics

Product Folder Links: TPD4S012

Submit Documentation Feedback

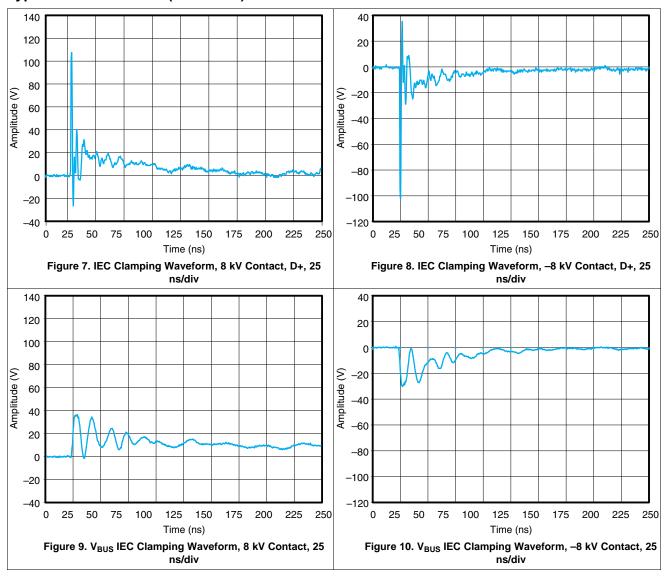
Copyright © 2009–2014, Texas Instruments Incorporated

6

www.ti.com

Distributor of Texas Instruments: Excellent Integrated System Limited

Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



INSTRUMENTS

TPD4S012

SLVS928B-MARCH 2009-REVISED AUGUST 2014

Typical Characteristics (continued)

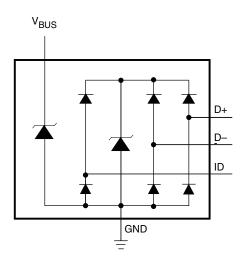
Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TEXAS INSTRUMENTS

TPD4S012

SLVS928B-MARCH 2009-REVISED AUGUST 2014

www.ti.com


7 Detailed Description

7.1 Overview

The TPD4S012 is a four-channel Transient Voltage Suppressor (TVS) based Electrostatic Discharge (ESD) protection diode array for USB chargers and USB On-The-Go (OTG) interfaces.

The TPD4S012 provides IEC 61000-4-2 system level ESD Protection featuring 15 V tolerance on the V_{BUS} line. The device is ideal for providing circuit protection for USB charger and OTG applications due to its high-voltage tolerance at the V_{BUS} line and small flow-through package.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Integrated ESD Clamps

Integrated ESD Clamps on the D+, D-, V_{BUS} , and ID pins provide single-chip ESD protection for USB High Speed, USB-OTG, and USB charger interfaces.

7.3.2 USB Signal Pins

D+, D- and ID USB Signal pins have low capacitance (0.8 pF Typ).

7.3.3 V_{BUS} Line

The V_{BUS} line has a 11 pF (Typ) capacitance.

7.3.4 Supports Data Rates in Excess of 480 Mbps

The low capacitance (0.8 pF Typ) of the data lines supports speeds in excess of 480 Mbps.

7.3.5 IEC 61000-4-2 (Level 4 Contact)

IEC 61000-4-2 (Level 4 contact) system level ESD compliance measured at the D+, D- and ID pins is rated for ±10 kV contact and air-gap discharge.

7.3.6 IEC 61000-4-5 Surge

IEC 61000-4-5 system level surge compliance measured at D+, D-, ID, and V_{BUS} pins rated to 3 A of peak pulse current.

Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPD4S012

SLVS928B-MARCH 2009-REVISED AUGUST 2014

www.ti.com

7.4 Device Functional Modes

The TPD4S012 is a passive integrated circuit that triggers when voltages are above V_{BR} or below the lower diode's V_f . During ESD events, voltages as high as ± 10 kV (contact) can be directed to ground via the internal diode network. Once the voltages on the protected line fall below the trigger levels of TPD4S012 (usually within 10's of nano-seconds), the device reverts to passive.

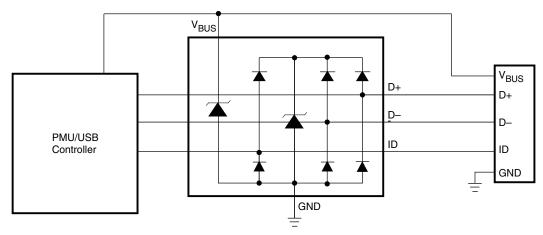
Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPD4S012

SLVS928B-MARCH 2009-REVISED AUGUST 2014

www.ti.com


Applications and Implementation

8.1 Application Information

The TPD4S012 is a four-channel Transient Voltage Suppressor (TVS) based Electrostatic Discharge (ESD) protection diode array for USB chargers and USB On-The-Go (OTG) interfaces.

The TPD4S012 provides IEC 61000-4-2 system level ESD Protection featuring 15 V tolerance on the V_{BUS} line. The device is ideal for providing circuit protection for USB charger and OTG applications due to its high-voltage tolerance at the V_{BUS} line and small flow-through package.

8.2 Typical Application

If the ID pin is not used, it can be left floating.

Figure 11. Typical Application Schematic

8.2.1 Design Requirements

For this design example, a single TPD4S012 is used to protect all pins of a micro/mini USB connector. Given the USB application, the following parameters are known.

DESIGN PARAMETER	VALUE
Signal range on D+, D-, and ID	0 V to 5 V
Signal range on V _{BUS}	0 V to 5 V
Operating Frequency	240 MHz

8.2.2 Detailed Design Procedure

To begin the design process, some parameters must be decided upon; the designer needs to know the following:

- Signal range on all the protected lines
- Operating frequency

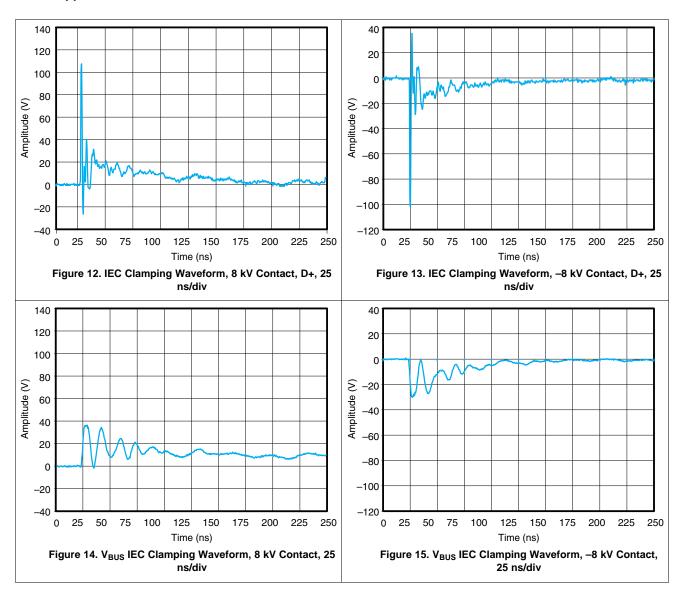
8.2.2.1 Signal Range on D+, D-, ID and V_{BUS} pins

The TPD4S012 has 3 pins which support 0 to 5.5 V signals, these are suited for the D+, D-, and ID pins. The V_{BUS} pin is suitable for the VBUS line, and has the benefit of being tolerant of voltages up to 16 V

8.2.2.2 Operating Frequency

The 0.8 pF (Typ) of the TPD4S012 support data rates in excess of 480 Mbps.

www.ti.com


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPD4S012

SLVS928B - MARCH 2009 - REVISED AUGUST 2014

8.2.3 Application Curve

Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPD4S012

SLVS928B-MARCH 2009-REVISED AUGUST 2014

www.ti.com

9 Power Supply Recommendations

This family of devices are passive ESD protection devices and there is no need to power them. Care should be taken to not violate the maximum voltage specification to ensure that the device functions properly. The V_{BUS} TVS diode can tolerate up to a 15 V signal. The D+, D-, and ID pins tolerate up to a 5.5 V signal.

10 Layout

10.1 Layout Guidelines

- The optimum placement is as close to the connector as possible.
 - EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures.
 - The PCB designer needs to minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are between the TVS and the connector.
- Route the protected traces as straight as possible.
- Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded corners with the largest radii possible.
 - Electric fields tend to build up on corners, increasing EMI coupling.

10.2 Layout Example

This application is typical of a mobile USB platform with an ID pin in addition to the D+, D-, and V_{BUS} pins.

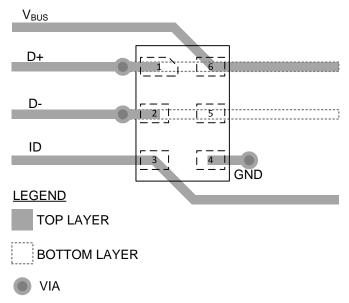


Figure 16. Using DRY Package

Product Folder Links: TPD4S012

12

Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TPD4S012

SLVS928B-MARCH 2009-REVISED AUGUST 2014

www.ti.com

11 Device and Documentation Support

11.1 Trademarks

All trademarks are the property of their respective owners.

11.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

2-Jul-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPD4S012DRYR	ACTIVE	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	3B	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): Ti's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
- (6) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "-" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release

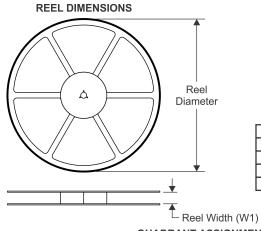
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

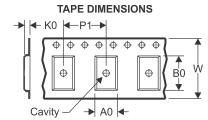
Addendum-Page 1

Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com
PACKAGE OPTION ADDENDUM

2-Jul-2014

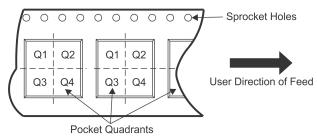
Addendum-Page 2


Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



PACKAGE MATERIALS INFORMATION

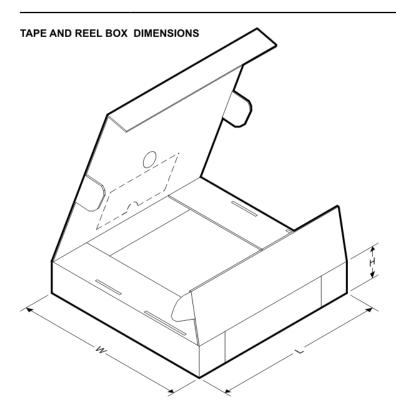
www.ti.com 2-Jul-2014


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

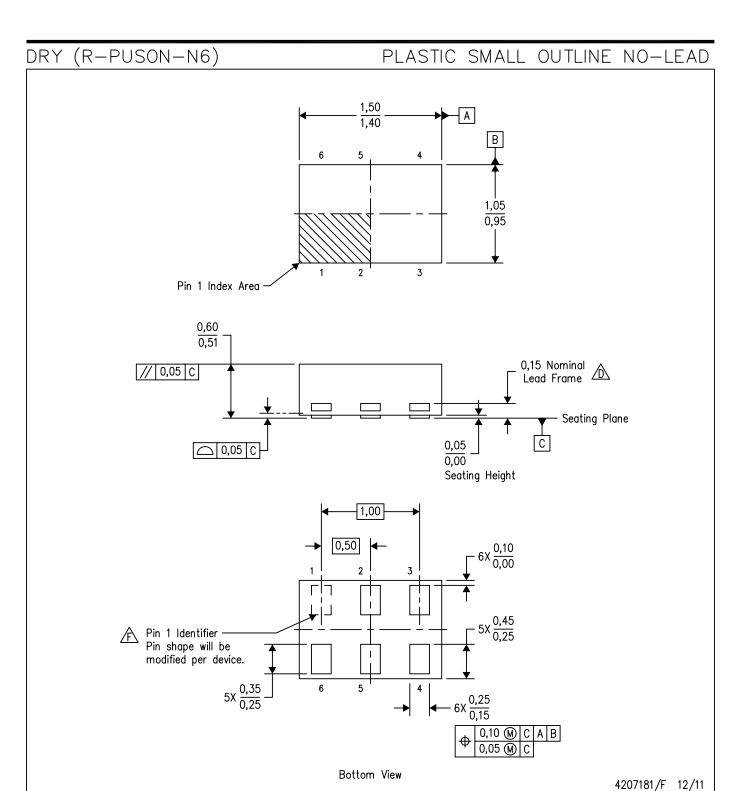
*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPD4S012DRYR	SON	DRY	6	5000	179.0	8.4	1.2	1.65	0.7	4.0	8.0	Q1

Datasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE MATERIALS INFORMATION

www.ti.com 2-Jul-2014



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPD4S012DRYR	SON	DRY	6	5000	203.0	203.0	35.0

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

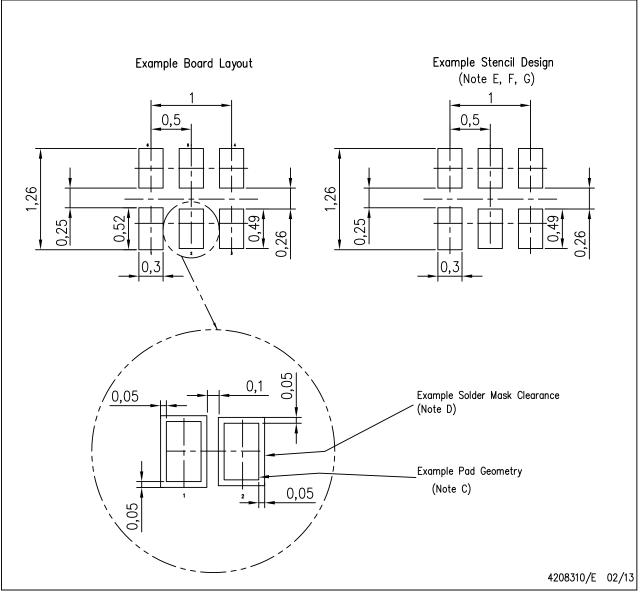
MECHANICAL DATA

NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- This drawing is subject to change without notice.
- SON (Small Outline No-Lead) package configuration.

The exposed lead frame feature on side of package may or may not be present due to alternative lead frame designs.

- This package complies to JEDEC MO-287 variation UFAD.
- FX See the additional figure in the Product Data Sheet for details regarding the pin 1 identifier shape.



LAND PATTERN DATA

DRY (R-PUSON-N6)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

Distributor of Texas Instruments: Excellent Integrated System LimitedDatasheet of TPD4S012DRYR - IC 4CH ESD SOLUTION W/CLAMP 6SON

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals www.ti.com/computers **Data Converters** dataconverter.ti.com **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy

 Clocks and Timers
 www.ti.com/clocks
 Industrial
 www.ti.com/industrial

 Interface
 interface.ti.com
 Medical
 www.ti.com/medical

 Logic
 logic.ti.com
 Security
 www.ti.com/security

Power Mgmt Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated