

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[Texas Instruments](#)

[TPS22906YZVR](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

TPS22906 Ultra-Small, Low-Input Voltage, Low r_{ON} Load Switch

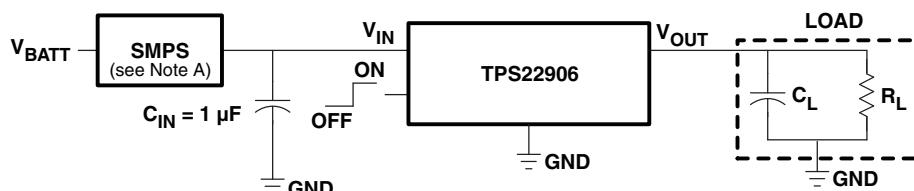
1 Features

- Low-Input Voltage: 1.0 V to 3.6 V
- Ultra-Low ON-State Resistance
 - $r_{ON} = 90 \text{ m}\Omega$ at $V_{IN} = 3.6 \text{ V}$
 - $r_{ON} = 100 \text{ m}\Omega$ at $V_{IN} = 2.5 \text{ V}$
 - $r_{ON} = 114 \text{ m}\Omega$ at $V_{IN} = 1.8 \text{ V}$
 - $r_{ON} = 172 \text{ m}\Omega$ at $V_{IN} = 1.2 \text{ V}$
- 500-mA Maximum Continuous Switch Current
- Ultra-Low Quiescent Current: 82 nA at 1.8 V
- Ultra-Low Shutdown Current: 44 nA at 1.8 V
- Low Control Input Thresholds Enable Use of 1.2-V/1.8-V/2.5-V/3.3-V Logic
- Controlled Slew Rate to Avoid Inrush Current: $220 \mu\text{s} t_r$
- ESD Performance Tested Per JESD 22
 - 2000-V Human Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
- Four-Terminal Wafer-Chip-Scale Package (WCSP)
 - 0.9 mm x 0.9 mm, 0.5-mm Pitch, 0.5-mm Height

2 Applications

- Personal Digital Assistants (PDAs)
- Cellular Phones
- GPS Devices
- MP3 Players
- Digital Cameras
- Peripheral Ports
- Portable Instrumentation
- RF Modules

3 Description


TPS22906 device is an ultra-small, low ON-state resistance (r_{ON}) load switch with controlled turn on. The device contains a P-channel MOSFET that operates over an input voltage range of 1.0 V to 3.6 V. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low-voltage control signals. A 120- Ω on-chip load resistor is added for output quick discharge when the switch is turned off. TPS22906 is available in a space-saving 4-terminal WCSP with 0.5-mm pitch (YZV). The device is characterized for operation over the free-air temperature range of -40°C to 85°C .

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS22906	DSBGA (4)	0.90 mm x 0.90 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Schematic

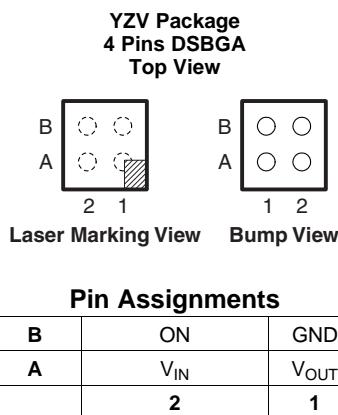
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1	Features	1	8	Parameter Measurement Information	13
2	Applications	1	9	Detailed Description	14
3	Description	1	9.1	Overview	14
4	Revision History	2	9.2	Functional Block Diagram	14
5	Device Options	3	9.3	Feature Description	14
6	Pin Configuration and Functions	3	9.4	Device Functional Modes	14
7	Specifications	3	10	Application and Implementation	15
7.1	Absolute Maximum Ratings	3	10.1	Application Information	15
7.2	ESD Ratings	4	10.2	Typical Application	15
7.3	Recommended Operating Conditions	4	11	Power Supply Recommendations	17
7.4	Thermal Information	4	12	Layout	17
7.5	Electrical Characteristics	4	12.1	Layout Guidelines	17
7.6	Switching Characteristics – $V_{IN} = 1.1$ V	5	12.2	Layout Example	17
7.7	Switching Characteristics – $V_{IN} = 1.2$ V	5	13	Device and Documentation Support	18
7.8	Switching Characteristics – $V_{IN} = 1.8$ V	6	13.1	Community Resources	18
7.9	Switching Characteristics – $V_{IN} = 2.5$ V	6	13.2	Trademarks	18
7.10	Switching Characteristics – $V_{IN} = 3$ V	6	13.3	Electrostatic Discharge Caution	18
7.11	Switching Characteristics – $V_{IN} = 3.6$ V	7	13.4	Glossary	18
7.12	Typical Characteristics	8	14	Mechanical, Packaging, and Orderable Information	18

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (March 2009) to Revision A	Page
• Added <i>Pin Configuration and Functions</i> section, <i>ESD Ratings</i> table, <i>Feature Description</i> section, <i>Device Functional Modes</i> , <i>Application and Implementation</i> section, <i>Power Supply Recommendations</i> section, <i>Layout</i> section, <i>Device and Documentation Support</i> section, and <i>Mechanical, Packaging, and Orderable Information</i> section	1
• Deleted Ordering Information table.	1

5 Device Options

DEVICE	r_{ON} at 1.8 V (TYP)	SLEW RATE (TYP at 1.8 V)	QUICK OUTPUT DISCHARGE ⁽¹⁾	MAX OUTPUT CURRENT	ENABLE
TPS22906	114 mΩ	220 µs	Yes	500 mA	Active high

(1) This feature discharges the output of the switch to ground through a 120-Ω resistor, preventing the output from floating.

6 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.		
V_{OUT}	A1	O	Switch output
V_{IN}	A2	I	Switch input, bypass this input with a ceramic capacitor to ground
GND	B1	—	Ground
ON	B2	I	Switch control input, active high

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V_{IN}	Input voltage	-0.3	4	V
V_{OUT}	Output voltage		$V_{IN} + 0.3$	V
V_{ON}	Input voltage	-0.3	4	V
P_D	Power dissipation at $T_A = 25^\circ\text{C}$		0.48	W
I_{MAX}	Maximum continuous switch current		500	mA
T_A	Operating free-air temperature range	-40	85	°C
Maximum lead temperature (10-s soldering time), T_{lead}			300	°C
Storage temperature, T_{stg}		-45	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

TPS22906

SLVS921A – MARCH 2009 – REVISED JULY 2015

www.ti.com

7.2 ESD Ratings

		VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{IN}	Input voltage range	1	3.6	V
V _{OUT}	Output voltage range		V _{IN}	V
V _{IH}	High-level input voltage, ON	0.85	3.6	V
V _{IL}	Low-level input voltage, ON		0.4	V
C _{IN}	Input capacitor	1		μF

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾		TPS2206	UNIT
		YZV (DSBGA)	
		4 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	189.1	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	1.9	°C/W
R _{θJB}	Junction-to-board thermal resistance	36.8	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	11.3	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	36.8	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	—	°C/W

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report, [SPRA953](#).

7.5 Electrical Characteristics

V_{IN} = 1.0 V to 3.6 V, T_A = –40°C to 85°C (unless otherwise noted)

PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
I _{IN}	I _{OUT} = 0, V _{IN} = V _{ON}	V _{IN} = 1.1 V	Full	37	120	nA
		V _{IN} = 1.8 V	Full	82	235	
		V _{IN} = 3.6 V	Full	204	880	
I _{IN(OFF)}	V _{ON} = GND, OUT = Open	V _{IN} = 1.1 V	Full	22	210	nA
		V _{IN} = 1.8 V	Full	44	260	
		V _{IN} = 3.6 V	Full	137	700	
I _{IN(LEAKAGE)}	V _{ON} = GND, V _{OUT} = 0	V _{IN} = 1.1 V	Full	22	140	nA
		V _{IN} = 1.8 V	Full	45	230	
		V _{IN} = 3.6 V	Full	137	610	

Electrical Characteristics (continued)

$V_{IN} = 1.0 \text{ V to } 3.6 \text{ V}$, $T_A = -40^\circ\text{C to } 85^\circ\text{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		T _A	MIN	TYP	MAX	UNIT
r_{ON}	ON-state resistance	$I_{OUT} = -200 \text{ mA}$	$V_{IN} = 3.6 \text{ V}$	25°C	90	108		mΩ
				Full		125		
			$V_{IN} = 2.5 \text{ V}$	25°C	100	120		
				Full		140		
			$V_{IN} = 1.8 \text{ V}$	25°C	114	138		
				Full		160		
			$V_{IN} = 1.2 \text{ V}$	25°C	172	210		
				Full		235		
			$V_{IN} = 1.1 \text{ V}$	25°C	204	330		
				Full		330		
r_{PD}	Output pulldown resistance	$V_{IN} = 3.3 \text{ V}$, $V_{ON} = 0$, $I_{OUT} = 30 \text{ mA}$		25°C	88	120	Ω	
I_{ON}	ON input leakage current	$V_{ON} = 1.1 \text{ V to } 3.6 \text{ V or GND}$		Full		25	nA	

7.6 Switching Characteristics – $V_{IN} = 1.1 \text{ V}$

$T_A = 25^\circ\text{C}$, $RL_CHIP = 120 \Omega$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
t_{ON}	Turnon time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$	531			μs
			$C_L = 1 \mu\text{F}$	596			
			$C_L = 3.3 \mu\text{F}$	659			
t_{OFF}	Turnoff time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$	11			μs
			$C_L = 1 \mu\text{F}$	67			
			$C_L = 3.3 \mu\text{F}$	225			
t_r	V_{OUT} rise time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$	365			μs
			$C_L = 1 \mu\text{F}$	367			
			$C_L = 3.3 \mu\text{F}$	395			
t_f	V_{OUT} fall time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$	21			μs
			$C_L = 1 \mu\text{F}$	189			
			$C_L = 3.3 \mu\text{F}$	565			

7.7 Switching Characteristics – $V_{IN} = 1.2 \text{ V}$

$T_A = 25^\circ\text{C}$, $RL_CHIP = 120 \Omega$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
t_{ON}	Turnon time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$	471			μs
			$C_L = 1 \mu\text{F}$	527			
			$C_L = 3.3 \mu\text{F}$	587			
t_{OFF}	Turnoff time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$	10			μs
			$C_L = 1 \mu\text{F}$	61			
			$C_L = 3.3 \mu\text{F}$	199			
t_r	V_{OUT} rise time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$	324			μs
			$C_L = 1 \mu\text{F}$	325			
			$C_L = 3.3 \mu\text{F}$	350			
t_f	V_{OUT} fall time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$	20			μs
			$C_L = 1 \mu\text{F}$	175			
			$C_L = 3.3 \mu\text{F}$	523			

TPS22906

SLVS921A – MARCH 2009 – REVISED JULY 2015

www.ti.com

7.8 Switching Characteristics – $V_{IN} = 1.8$ V

$T_A = 25^\circ\text{C}$, $R_{L_CHIP} = 120 \Omega$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
t_{ON}	Turnon time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$		302		μs
			$C_L = 1 \mu\text{F}$		335		
			$C_L = 3.3 \mu\text{F}$		367		
t_{OFF}	Turnoff time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$		8		μs
			$C_L = 1 \mu\text{F}$		49		
			$C_L = 3.3 \mu\text{F}$		167		
t_r	V_{OUT} rise time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$		220		μs
			$C_L = 1 \mu\text{F}$		220		
			$C_L = 3.3 \mu\text{F}$		235		
t_f	V_{OUT} fall time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$		15		μs
			$C_L = 1 \mu\text{F}$		159		
			$C_L = 3.3 \mu\text{F}$		481		

7.9 Switching Characteristics – $V_{IN} = 2.5$ V

$T_A = 25^\circ\text{C}$, $R_{L_CHIP} = 120 \Omega$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
t_{ON}	Turnon time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$		223		μs
			$C_L = 1 \mu\text{F}$		246		
			$C_L = 3.3 \mu\text{F}$		268		
t_{OFF}	Turnoff time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$		7		μs
			$C_L = 1 \mu\text{F}$		47		
			$C_L = 3.3 \mu\text{F}$		158		
t_r	V_{OUT} rise time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$		175		μs
			$C_L = 1 \mu\text{F}$		175		
			$C_L = 3.3 \mu\text{F}$		187		
t_f	V_{OUT} fall time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$		18		μs
			$C_L = 1 \mu\text{F}$		185		
			$C_L = 3.3 \mu\text{F}$		471		

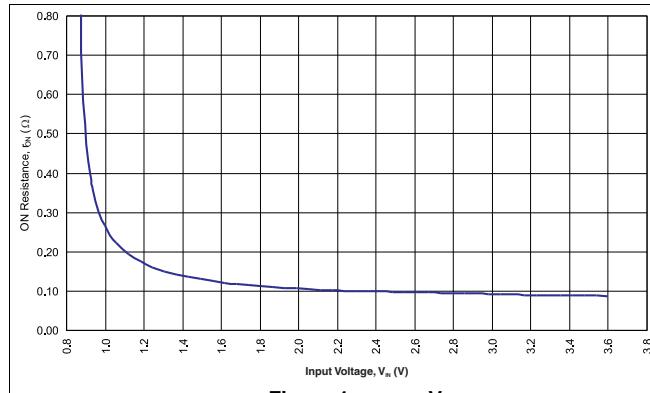
7.10 Switching Characteristics – $V_{IN} = 3$ V

$T_A = 25^\circ\text{C}$, $R_{L_CHIP} = 120 \Omega$ (unless otherwise noted)

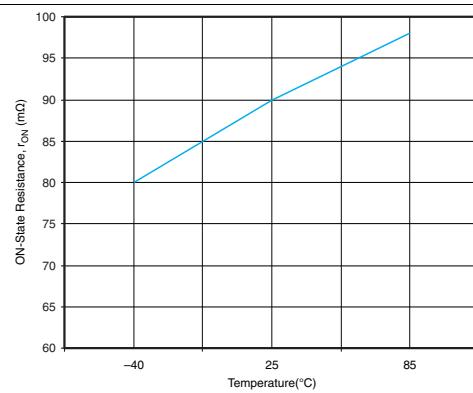
PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
t_{ON}	Turnon time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$		191		μs
			$C_L = 1 \mu\text{F}$		211		
			$C_L = 3.3 \mu\text{F}$		231		
t_{OFF}	Turnoff time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$		7		μs
			$C_L = 1 \mu\text{F}$		46		
			$C_L = 3.3 \mu\text{F}$		156		
t_r	V_{OUT} rise time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$		159		μs
			$C_L = 1 \mu\text{F}$		160		
			$C_L = 3.3 \mu\text{F}$		170		
t_f	V_{OUT} fall time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$		17		μs
			$C_L = 1 \mu\text{F}$		160		
			$C_L = 3.3 \mu\text{F}$		473		

7.11 Switching Characteristics – $V_{IN} = 3.6$ V

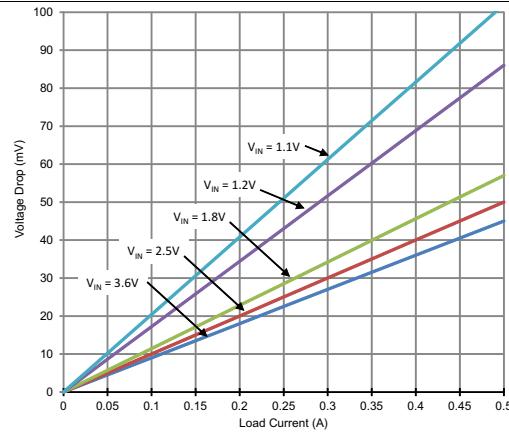
$T_A = 25^\circ\text{C}$, $R_{L_CHIP} = 120 \Omega$ (unless otherwise noted)

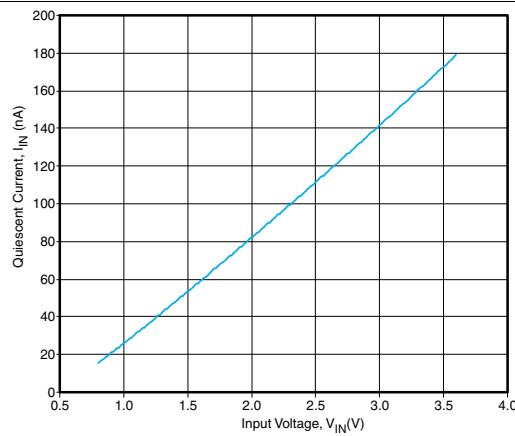

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{ON}	Turnon time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$	166		μs
			$C_L = 1 \mu\text{F}$	183		
			$C_L = 3.3 \mu\text{F}$	201		
t_{OFF}	Turnoff time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$	7		μs
			$C_L = 1 \mu\text{F}$	45		
			$C_L = 3.3 \mu\text{F}$	155		
t_r	V_{OUT} rise time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$	146		μs
			$C_L = 1 \mu\text{F}$	146		
			$C_L = 3.3 \mu\text{F}$	156		
t_f	V_{OUT} fall time	$R_L = 500 \Omega$	$C_L = 0.1 \mu\text{F}$	17		μs
			$C_L = 1 \mu\text{F}$	161		
			$C_L = 3.3 \mu\text{F}$	475		

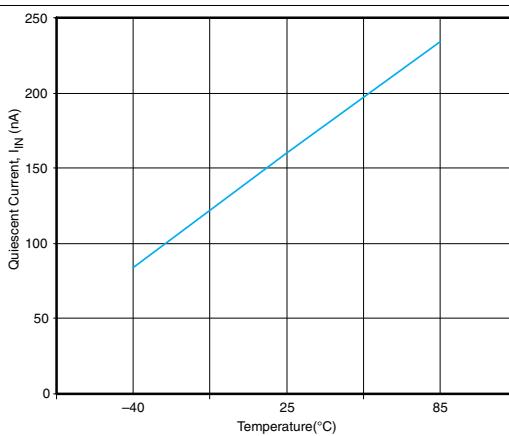
TPS22906


SLVS921A – MARCH 2009 – REVISED JULY 2015

www.ti.com


7.12 Typical Characteristics


Figure 1. r_{ON} vs V_{IN}


Figure 2. r_{ON} vs Temperature ($V_{IN} = 3.3$ V)

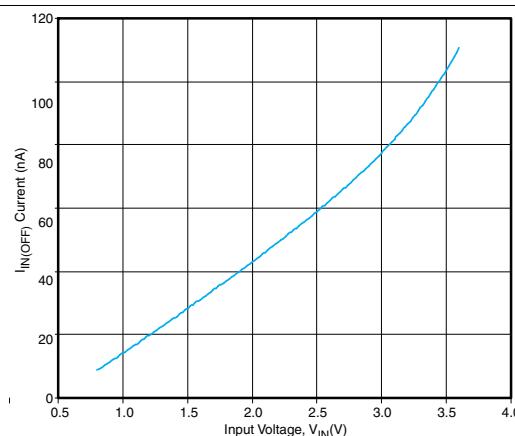

Figure 3. Voltage Drop vs Load Current

Figure 4. Quiescent Current vs V_{IN} ($V_{ON} = V_{IN}$, $I_{OUT} = 0$)

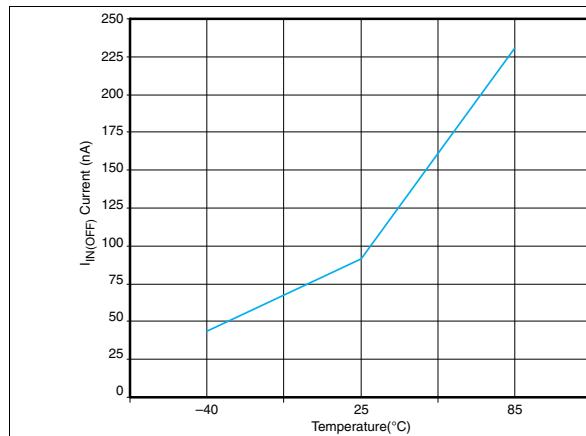


Figure 5. Quiescent Current vs Temperature ($V_{IN} = 3.3$ V, $I_{OUT} = 0$)

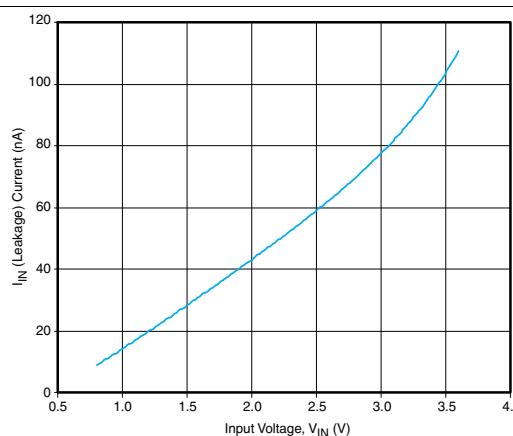
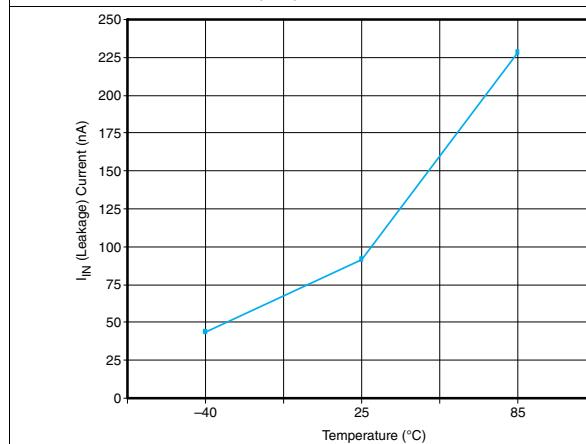
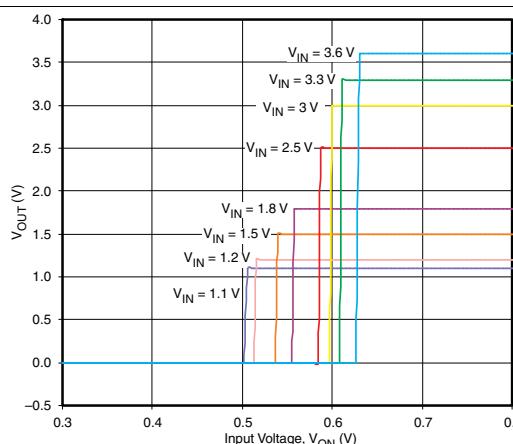
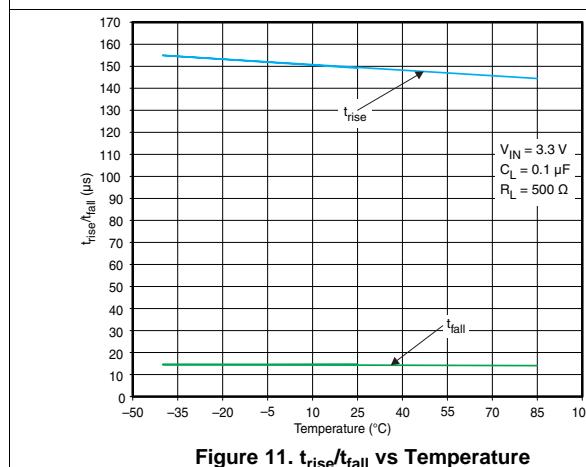


Figure 6. $I_{IN(OFF)}$ Current vs V_{IN} ($V_{ON} = 0$ V)


Typical Characteristics (continued)


Figure 7. $I_{IN(OFF)}$ vs Temperature ($V_{IN} = 3.3$ V)


Figure 8. $I_{IN}(\text{Leakage})$ vs V_{IN} ($I_{OUT} = 0$)

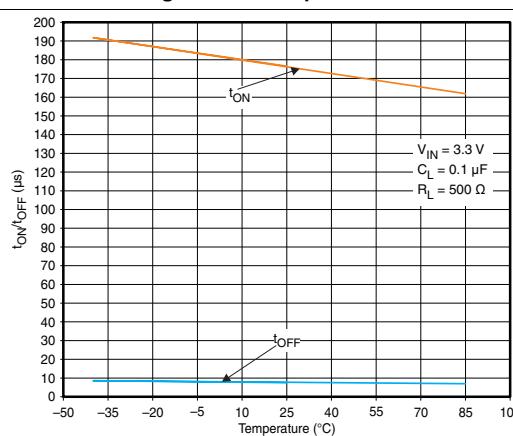
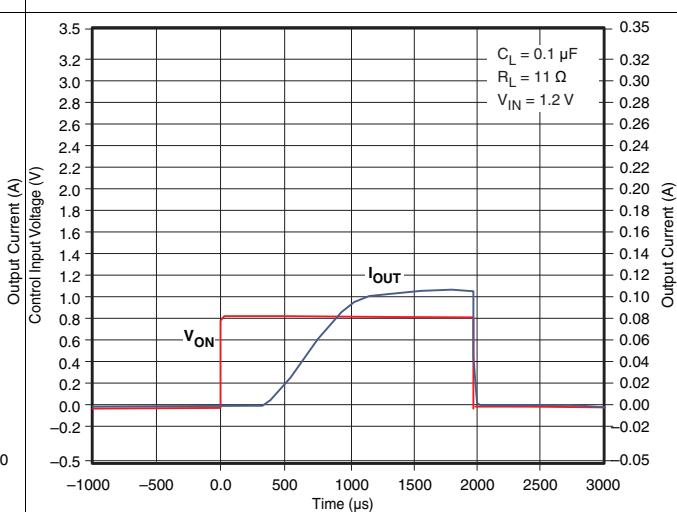
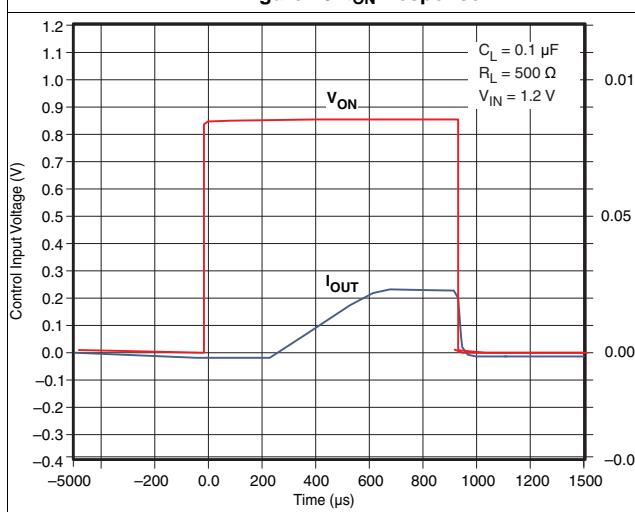
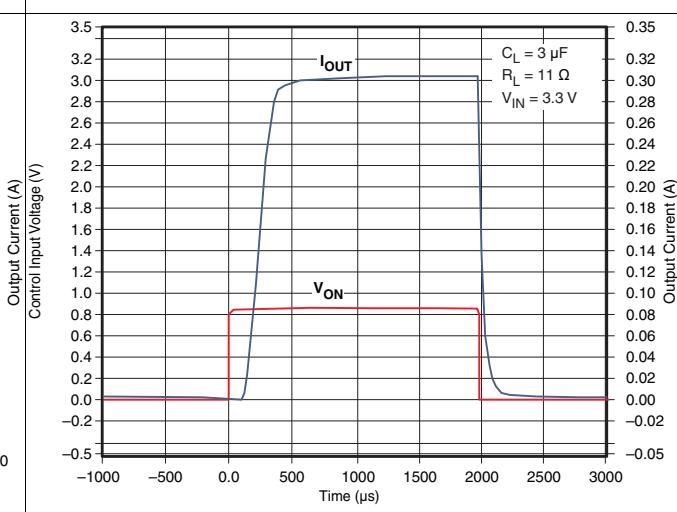
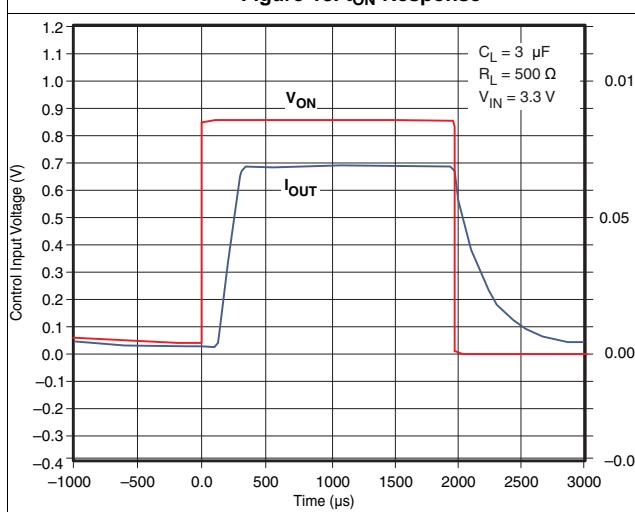
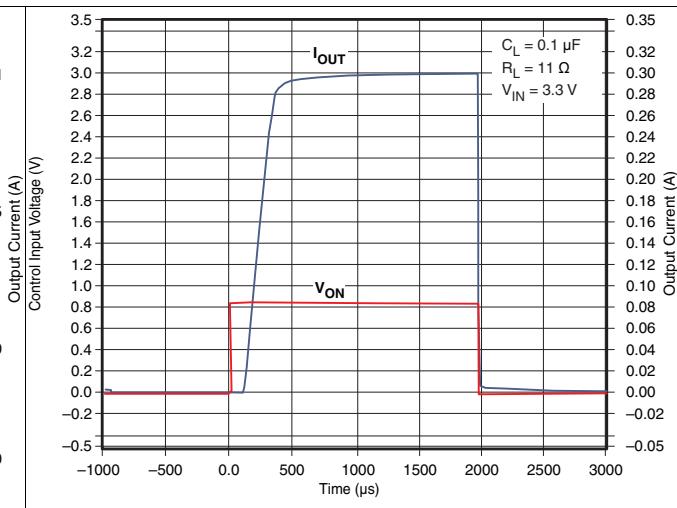
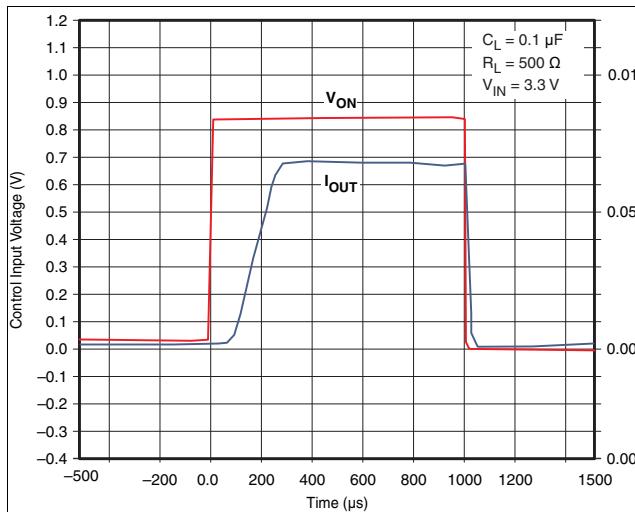
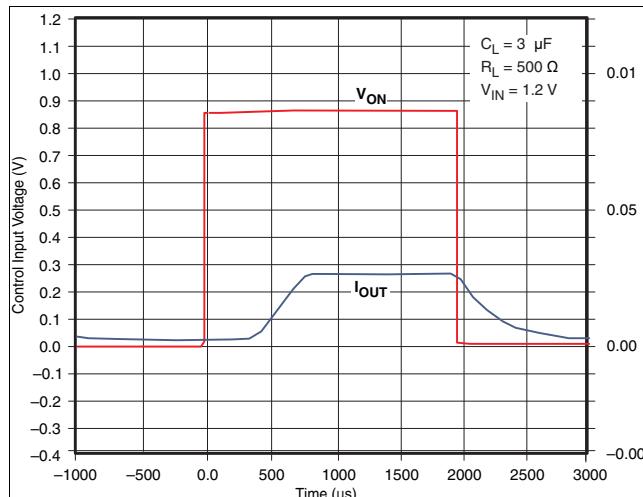

Figure 9. I_{IN} (Leakage) vs Temperature ($V_{IN} = 3.3$ V)

Figure 10. ON-Input Threshold

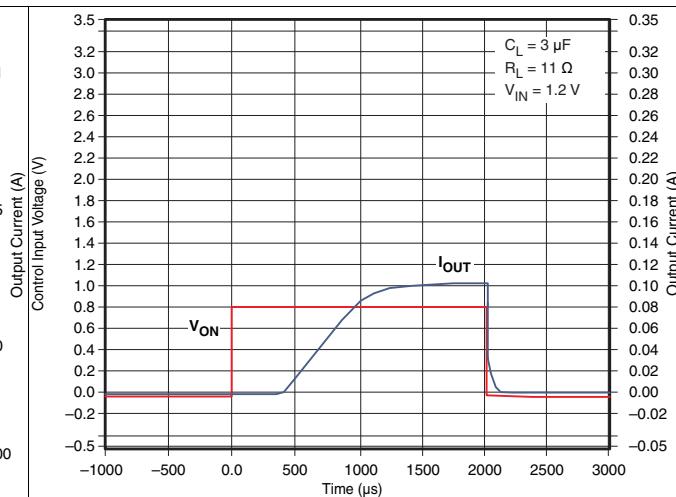
Figure 11. t_{rise}/t_{fall} vs Temperature

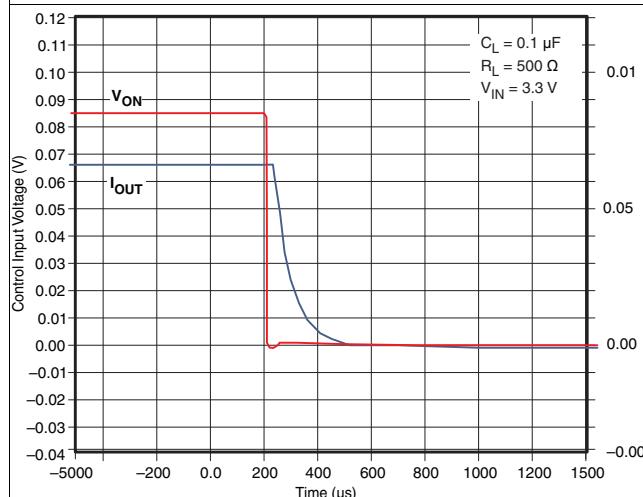






Figure 12. t_{ON}/t_{OFF} vs Temperature

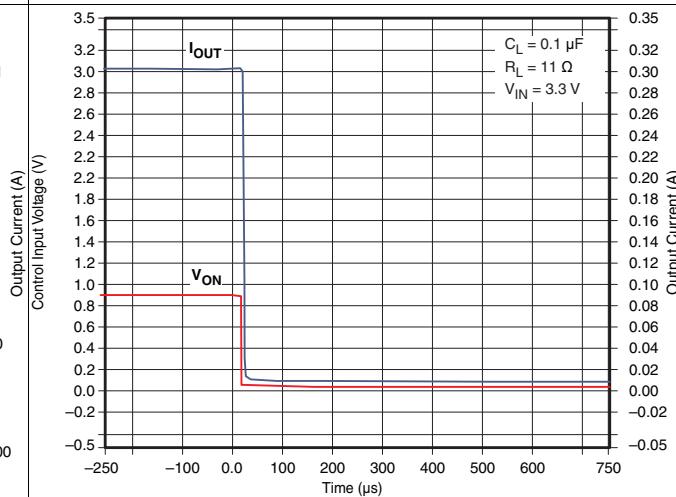
TPS22906

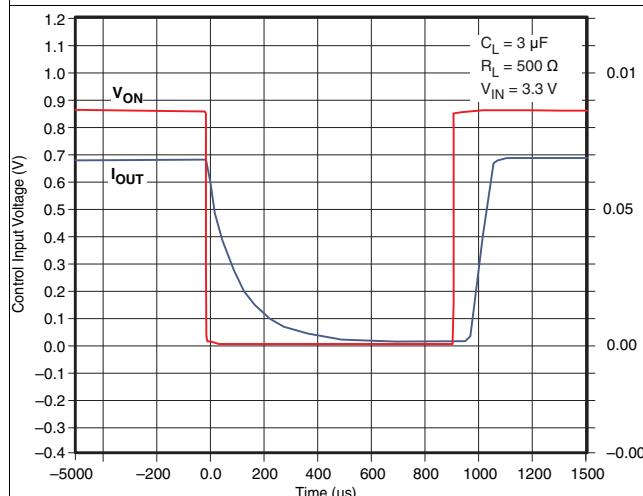

SLVS921A – MARCH 2009 – REVISED JULY 2015

www.ti.com


Typical Characteristics (continued)


Typical Characteristics (continued)


Figure 19. t_{ON} Response


Figure 20. t_{ON} Response

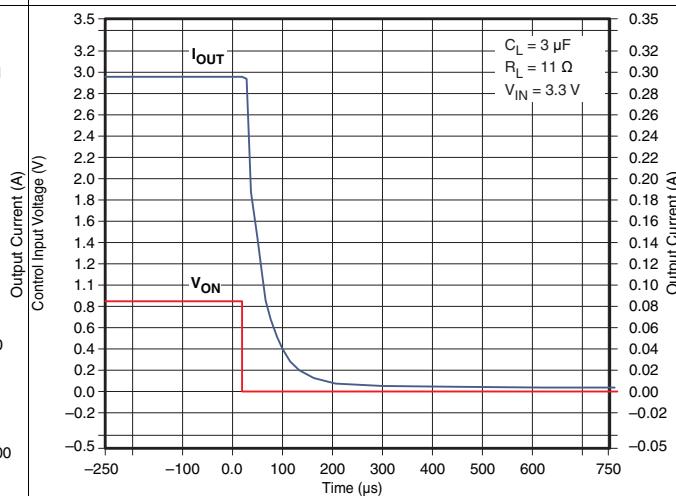
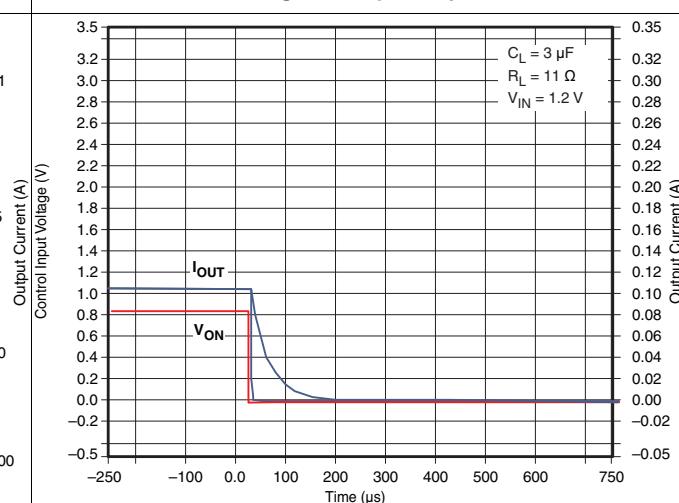
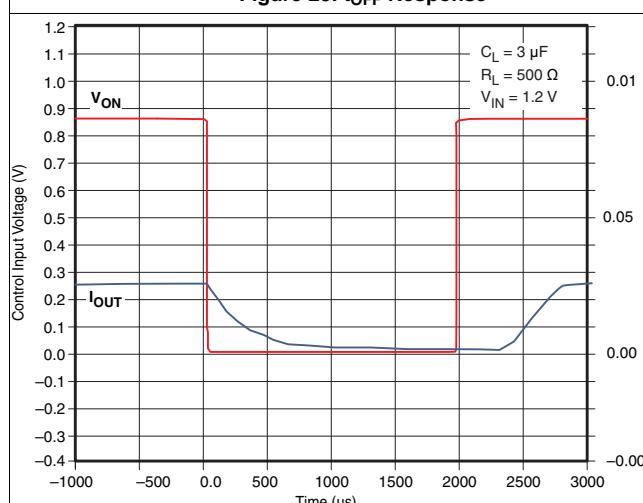
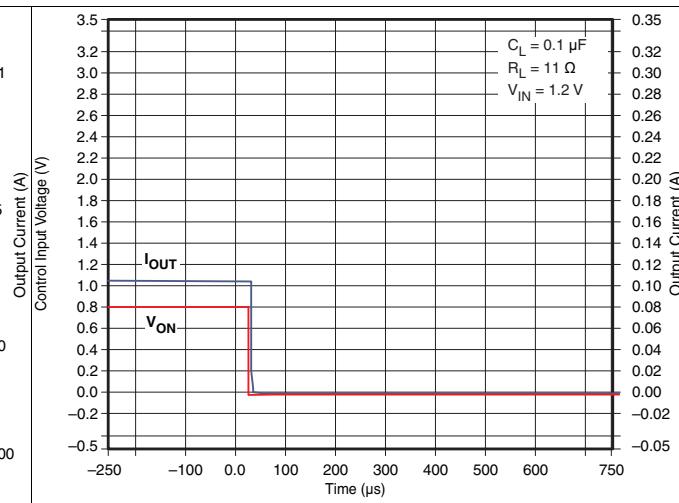
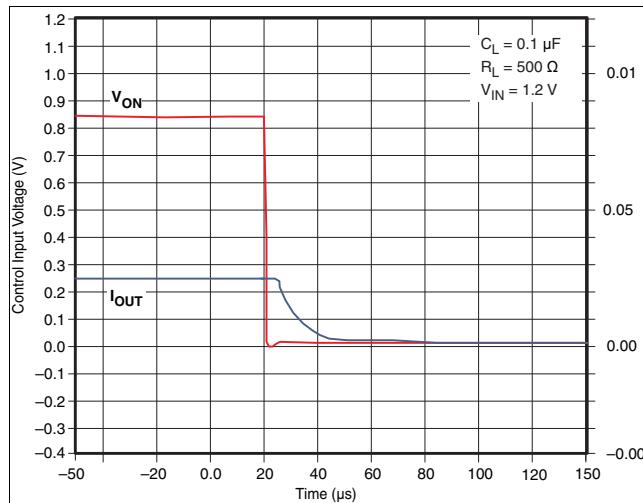
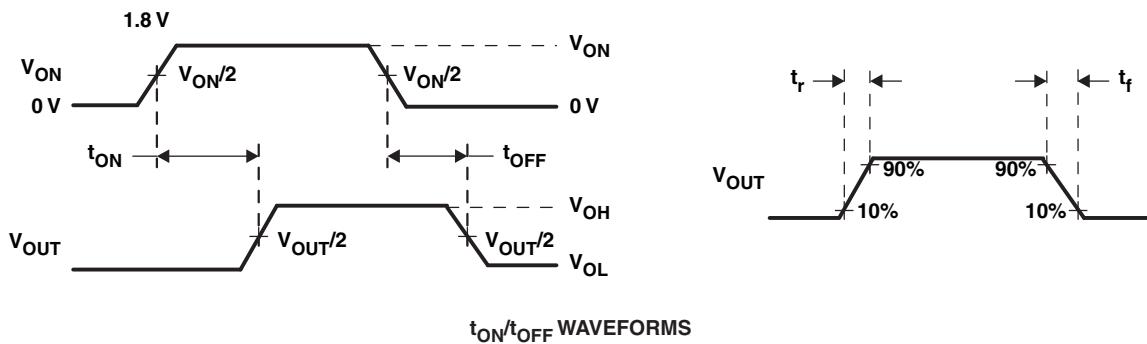
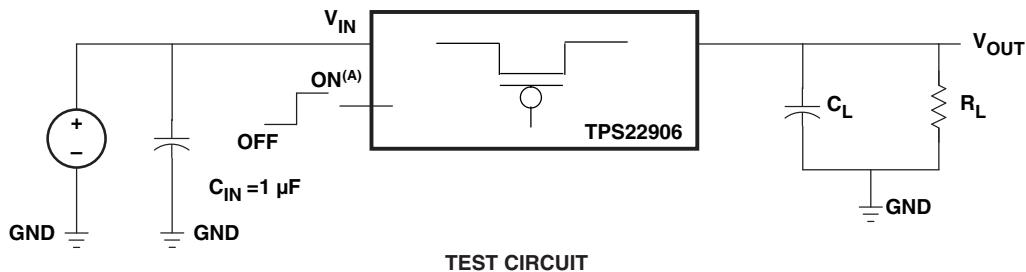

Figure 21. t_{OFF} Response

Figure 22. t_{OFF} Response

Figure 23. t_{OFF} Response





Figure 24. t_{OFF} Response

TPS22906



SLVS921A – MARCH 2009 – REVISED JULY 2015

www.ti.com

Typical Characteristics (continued)

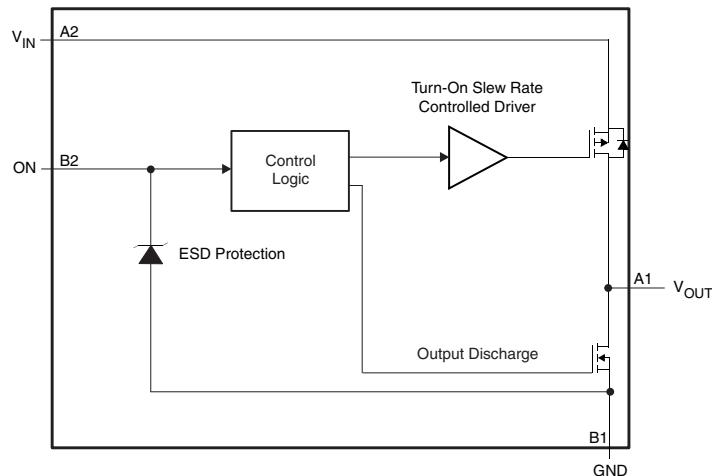
8 Parameter Measurement Information

A. t_{rise} and t_{fall} of the control signal is 100 ns.

Figure 29. Test Circuit and t_{ON}/t_{OFF} Waveforms

TPS22906

SLVS921A – MARCH 2009 – REVISED JULY 2015


www.ti.com

9 Detailed Description

9.1 Overview

TPS22906 is a low ON-state resistance (r_{ON}) load switch with controlled turnon. The device contains a P-channel MOSFET that operates over an input voltage range of 1.0 V to 3.6 V. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low-voltage control signals. A 120- Ω on-chip load resistor is added for output quick discharge when the switch is turned off.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 ON/OFF Control

The ON pin controls the state of the switch. Activating ON continuously holds the switch in the on state so long as there is no fault. ON is active HI and has a low threshold making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic threshold. It can be used with any microcontroller with 1.2-V, 1.8-V, 2.5-V, or 3.3-V GPIOs.

9.4 Device Functional Modes

Table 1 lists the functional modes of the TPS22906.

Table 1. Function Table

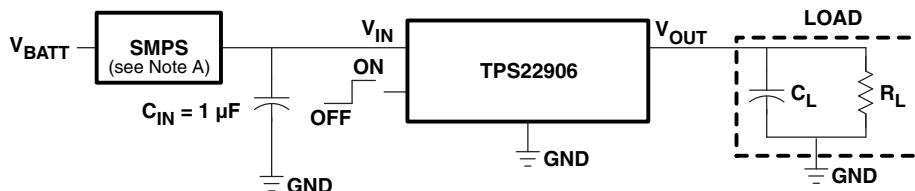
ON (CONTROL INPUT)	V _{IN} TO V _{OUT}	V _{OUT} TO GND
L	OFF	ON
H	ON	OFF

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information


10.1.1 Input Capacitor

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between V_{IN} and GND. A 1- μ F ceramic capacitor, C_{IN} , place close to the pins is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop during high current application. When switching heavy loads, it is recommended to have an input capacitor approximately 10 times higher than the output capacitor to avoid excessive voltage drop.

10.1.2 Output Capacitor

Due to the integral body diode in the PMOS switch, a C_{IN} greater than C_L is highly recommended. A C_L greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN} .

10.2 Typical Application

A. Switched mode power supply

Figure 30. Powering a Downstream Module

10.2.1 Design Requirements

Table 2 lists the design parameters for the TPS22906 device.

Table 2. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
V_{IN}	1.8 V
Load Current	0.3 A
Ambient Temperature	25°C

10.2.2 Detailed Design Procedure

10.2.2.1 V_{IN} to V_{OUT} Voltage Drop

The voltage drop from V_{IN} to V_{OUT} is determined by the ON-resistance of the device and the load current. The r_{ON} can be found in [Electrical Characteristics](#) and is dependent on temperature. When the value of r_{ON} is found, [Equation 1](#) can be used to calculate the voltage drop across the device:

$$\Delta V = I_{LOAD} \times r_{ON}$$

where

- ΔV = Voltage drop across the device
- I_{LOAD} = Load current

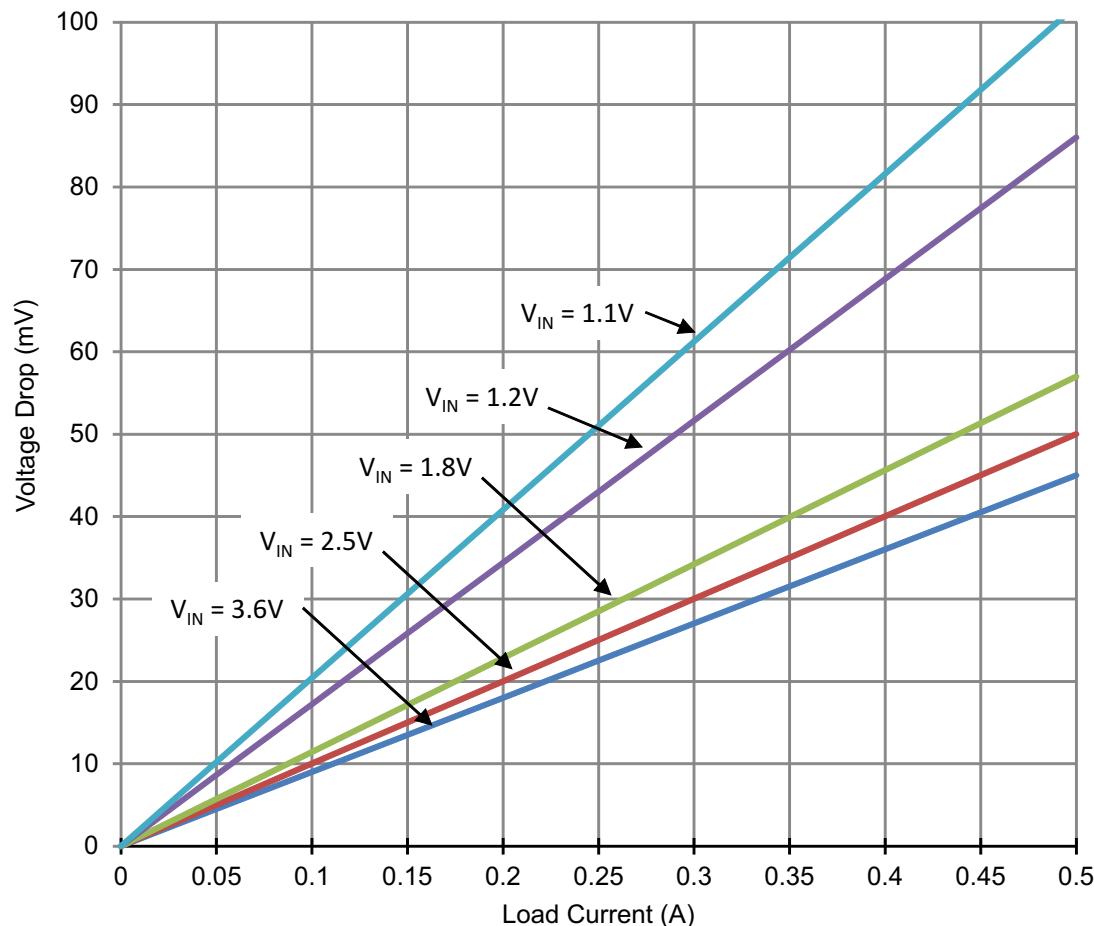
TPS22906

SLVS921A – MARCH 2009 – REVISED JULY 2015

www.ti.com

- r_{ON} = ON-resistance of the device (1)

At $V_{IN} = 1.8$ V, the TPS22906 has a r_{ON} value of 114 mΩ. Using this value and the defined load current, the above equation can be evaluated:


$$\Delta V = 0.30 \text{ A} \times 114 \text{ m}\Omega$$

where

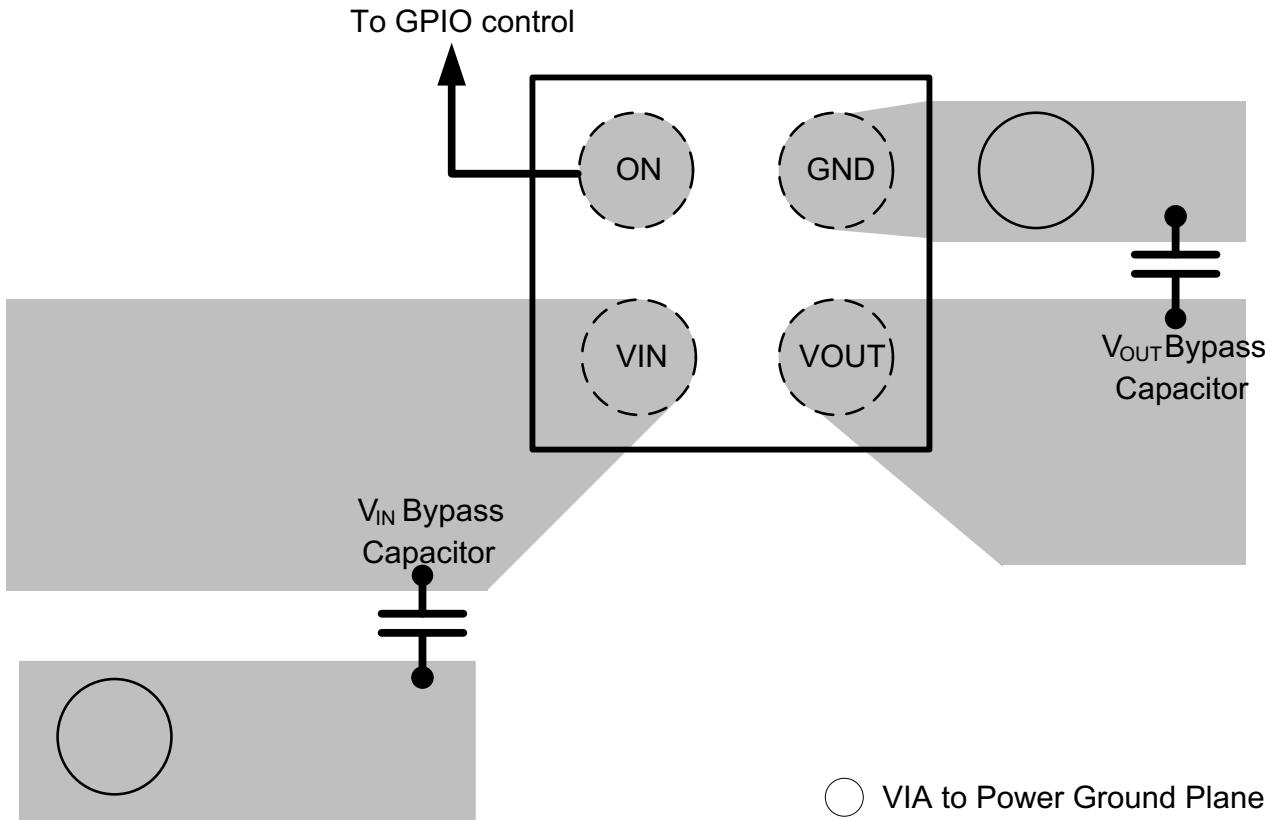
- $\Delta V = 34 \text{ mV}$ (2)

Therefore, the voltage drop across the device will be 34 mV.

10.2.3 Application Curve

Figure 31. Voltage Drop Vs Load Current

11 Power Supply Recommendations


The device is designed to operate with a V_{IN} range of 1.1 V to 3.6 V. This supply must be well regulated and placed as close to the device terminals as possible. It must also be able to withstand all transient and load currents, using a recommended input capacitance of 1 μ F if necessary. If the supply is more than a few inches from the device terminals, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or ceramic capacitor of 10 μ F may be sufficient.

12 Layout

12.1 Layout Guidelines

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short circuit operation. Using wide traces for V_{IN} , V_{OUT} , and GND helps minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance.

12.2 Layout Example

Figure 32. Recommended Board Layout

13 Device and Documentation Support

13.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.2 Trademarks

E2E is a trademark of Texas Instruments.

13.3 Electrostatic Discharge Caution

 These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

[SLYZ022](#) — *TI Glossary.*

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TPS22906YZVR	ACTIVE	DSBGA	YZV	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	5D (3 ~ 5)	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

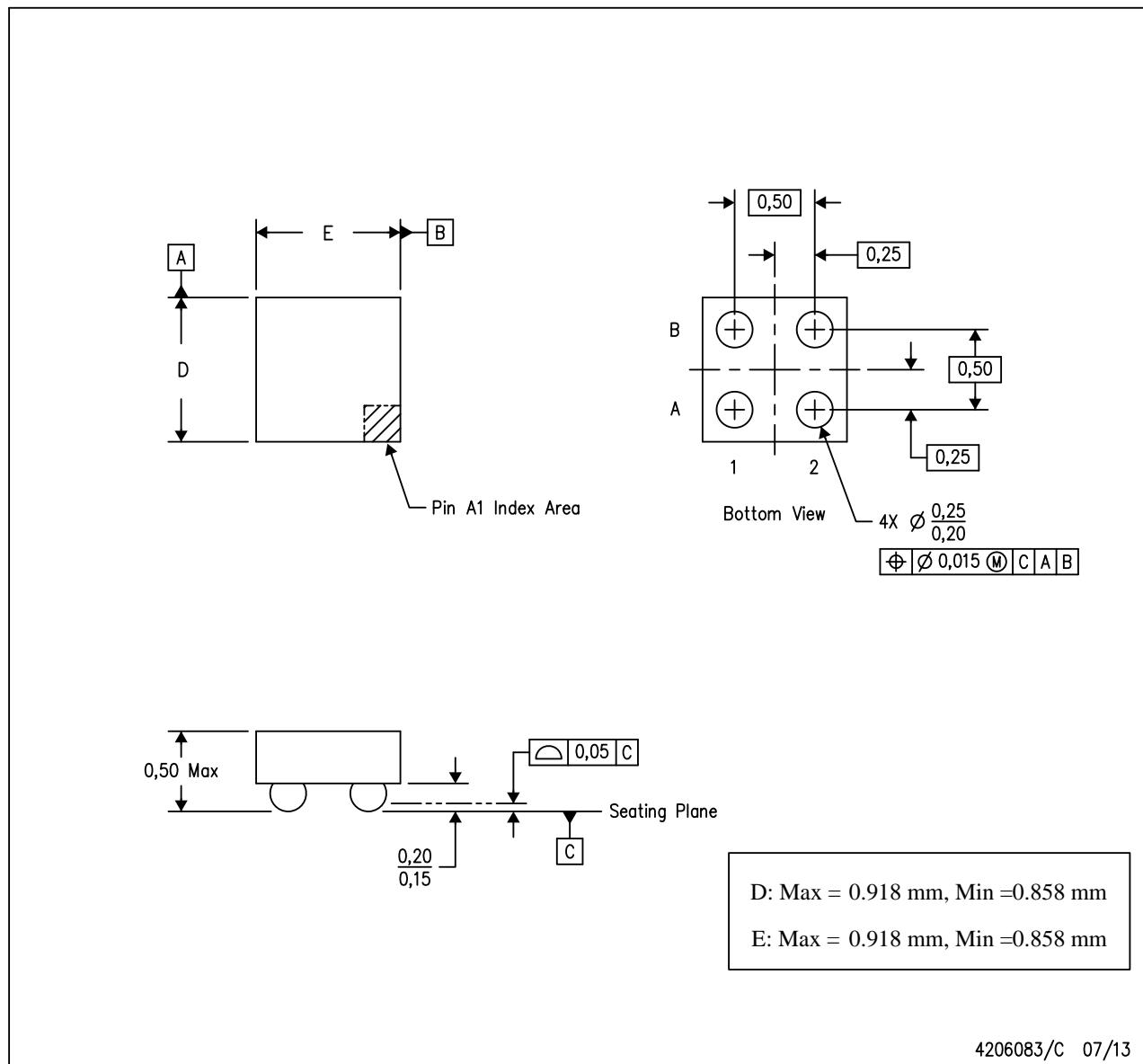
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "-" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

YZV (S-XBGA-N4)

DIE-SIZE BALL GRID ARRAY

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video

TI E2E Community

e2e.ti.com