Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor NTS4173PT1G

For any questions, you can email us directly: sales@integrated-circuit.com

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTS4173P

Power MOSFET

-30 V, -1.3 A, Single P-Channel, SC-70

Features

- -30 V BV_{ds}, Low R_{DS(on)} in SC-70 Package
- Low Threshold Voltage
- Fast Switching Speed
- This is a Halide-Free Device
- This is a Pb-Free Device

Applications

- · Load Switch
- Low Current Inverter and DC-DC Converters
- Power Switch for Printers, Communication Equipment

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

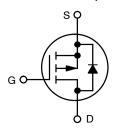
Parameter			Symbol	Value	Unit	
Drain-to-Source Voltage			V_{DSS}	-30	V	
Gate-to-Source Voltage	Gate-to-Source Voltage			±12	V	
Continuous Drain	Steady	T _A = 25°C		-1.2	A	
Current (Note 1)	State	T _A = 85°C	I _D	-0.80		
	t ≤ 5 s	T _A = 25°C		-1.3		
Power Dissipation	Steady State	T _A = 25°C	P _D	0.29	w	
(Note 1)						
	t ≤ 5 s			0.35		
Pulsed Drain Current	sed Drain Current $t_p = 10 \mu s$			-5.0	Α	
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to 150	°C	
Source Current (Body Diode)			IS	-1.0	Α	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C	

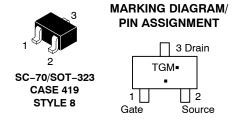
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	425	°C/W
Junction–to–Ambient – t ≤ 5 s (Note 1)	$R_{\theta JA}$	360	

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces)




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
-30 V	150 mΩ @ –10 V	-1.2 A	
	200 mΩ @ -4.5 V	-1.0 A	
	280 mΩ @ -2.5 V	-0.9 A	

SC-70/SOT-323 (3 LEADS)

TG = Specific Device Code M = Date Code*

■ = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTS4173PT1G	SC-70 (Pb-Free)	3000/Tape & Reel

- †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
- * Date code orientation may vary depending upon manufacturing location

Distributor of ON Semiconductor: Excellent Integrated System Limited

Datasheet of NTS4173PT1G - MOSFET P-CH 30V 1.2A SC70-3

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTS4173P

MOSFET ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Parameter Symbol Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS	•			•		•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-30			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -24 V, T _J = 25°C V _{GS} = 0 V, V _{DS} = -24 V, T _J = 85°C			-1.0 -5.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$			±0.1	μΑ
ON CHARACTERISTICS (Note 3)						
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -250 \mu A$	-0.7	-1.15	-1.5	V
Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -1.2 \text{ A}$		90	150	mΩ
		$V_{GS} = -4.5 \text{ V}, I_D = -1.0 \text{ A}$		110	200	
		$V_{GS} = -2.5 \text{ V}, I_D = -0.9 \text{ A}$		165	280	
Forward Transconductance	9FS	$V_{DS} = -5 \text{ V}, I_D = -1.2 \text{ A}$		3.6		S
CHARGES, CAPACITANCES AND GA	TE RESISTA	NCE				
Input Capacitance	C _{iss}			430		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = -15 \text{ V}$		55		1
Reverse Transfer Capacitance	C _{rss}	. DO 10 •		40		1
Total Gate Charge	Q _{G(TOT)}			4.8		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -15 \text{ V},$		0.6		
Gate-to-Source Charge	Q_{GS}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -15 \text{ V},$ $I_D = -1.2 \text{ A}$		1.1		
Gate-to-Drain Charge	Q_{GD}			1.5		1
Total Gate Charge	Q _{G(TOT)}			10.1		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -10 \text{ V}, V_{DS} = -15 \text{ V},$		0.6		1
Gate-to-Source Charge	Q_{GS}	$I_{D} = -1.2 \text{ A}$		1.1		1
Gate-to-Drain Charge	Q_{GD}			1.5		
SWITCHING CHARACTERISTICS (No	ote 4)					
Turn-On Delay Time	t _{d(on)}	on)		7.7		ns
Rise Time	t _r	VGS = -4.5 V. VDS = -15 V.		5.2		
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -15 \text{ V},$ $I_{D} = -1.2 \text{ A}, R_{G} = 3 \Omega$		16.2		
Fall Time	t _f			6.7		
Turn-On Delay Time	t _{d(on)}			5.3		ns
Rise Time	t _r	$V_{GS} = -10 \text{ V}, V_{DS} = -15 \text{ V},$		6.7		1
Turn-Off Delay Time	t _{d(off)}	$I_D = -1.2 \text{ A}, R_G = 3 \Omega$		19.9		1
Fall Time	t _f			7.1		1
DRAIN-SOURCE DIODE CHARACTE	RISTICS			-		-
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_S = -1.0 \text{ A}$		-0.8	-1.0	V
Reverse Recovery Time	t _{RR}			12		ns
Charge Time	ta	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, I_{S} = -1.0 \text{ A},$		10		1
Discharge Time	t _b	$dI_{SD}/d_t = 100 \text{ A}/\mu\text{s}$		2.0		1
Reverse Recovery Charge	Q _{RR}	1		7.0		nC

- Surface–mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces)
 Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%
 Switching characteristics are independent of operating junction temperatures

NTS4173P

TYPICAL CHARACTERISTICS

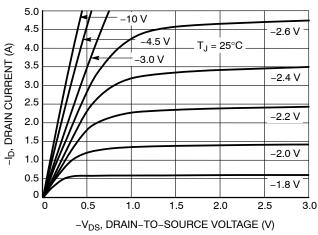


Figure 1. On-Region Characteristics

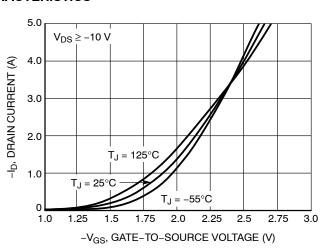


Figure 2. Transfer Characteristics

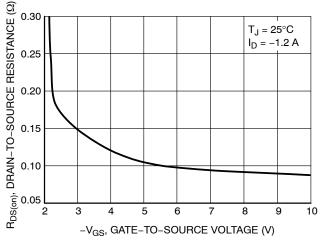


Figure 3. On-Resistance vs. Gate Voltage

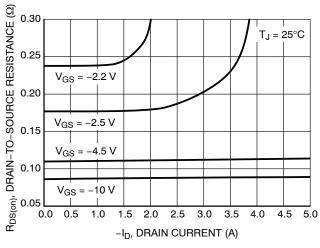


Figure 4. On-Resistance vs. Drain Current and **Gate Voltage**

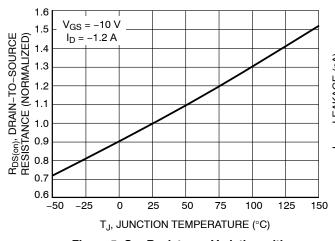
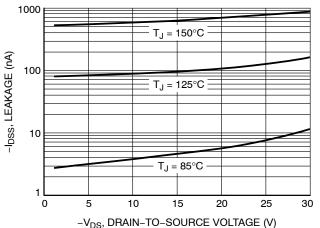
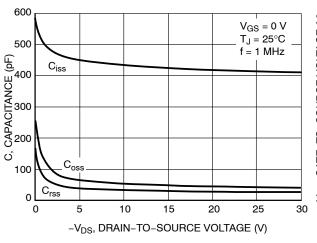


Figure 5. On-Resistance Variation with **Temperature**

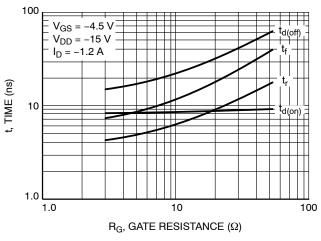



Figure 6. Drain-to-Source Leakage Current vs. Voltage

Distributor of ON Semiconductor: Excellent Integrated System Limited

Datasheet of NTS4173PT1G - MOSFET P-CH 30V 1.2A SC70-3

NTS4173P


TYPICAL CHARACTERISTICS

-V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) GATE-TO-SOURCE VOLTAGE (V) QΤ 10 V_{DS} V_{GS} 6 $V_{DS} = -15 \text{ V}$ 2 $I_D = -1.2 A$ -V_{GS}, (T_J = 25°C lo 10 4 Q_G, TOTAL GATE CHARGE (nC)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Total Charge

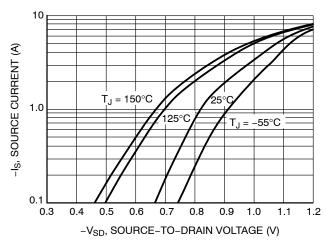
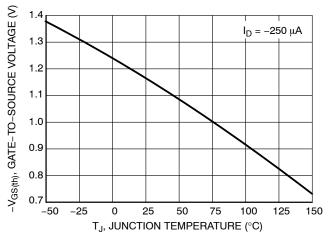



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

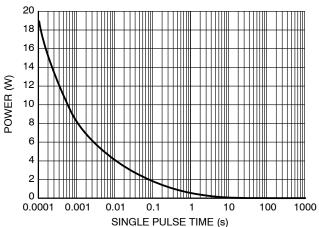


Figure 11. Threshold Voltage

Figure 12. Single Pulse Maximum Power Dissipation

NTS4173P

TYPICAL PERFORMANCE CURVES

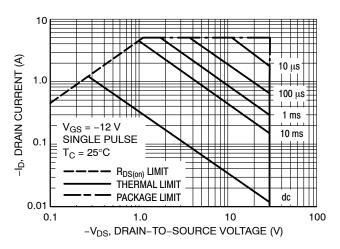


Figure 13. Maximum Rated Forward Biased Safe Operating Area

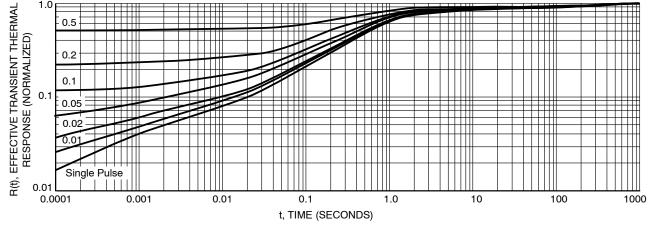
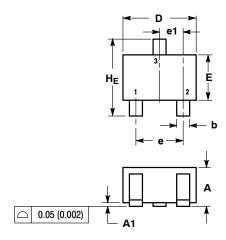
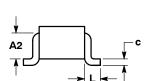


Figure 14. FET Thermal Response

Distributor of ON Semiconductor: Excellent Integrated System Limited


Datasheet of NTS4173PT1G - MOSFET P-CH 30V 1.2A SC70-3


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTS4173P

PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04 ISSUE M

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI
 - Y14.5M, 1982
- 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS				INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX		
Α	0.80	0.90	1.00	0.032	0.035	0.040		
A1	0.00	0.05	0.10	0.000	0.002	0.004		
A2	0.7 REF				0.028 REF			
b	0.30	0.35	0.40	0.012	0.014	0.016		
O	0.10	0.18	0.25	0.004	0.007	0.010		
D	1.80	2.10	2.20	0.071	0.083	0.087		
Е	1.15	1.24	1.35	0.045	0.049	0.053		
е	1.20	1.30	1.40	0.047	0.051	0.055		
e1	0.65 BSC				0.026 BSC	;		
٦	0.425 REF				0.017 REF			
HE	2.00	2.10	2.40	0.079	0.083	0.095		

STYLE 8

- GATE SOURCE

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative