

Excellent Integrated System Limited

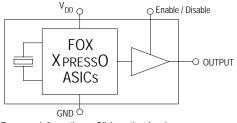
Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fox Electronics FXO-PC530-1100

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Distributor of Fox Electronics: Excellent Integrated System Limited Datasheet of FXO-PC530-1100 - OSCILLATOR XO 1.1GHZ LVPECL SMD Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


Model: FXO-PC53 SERIES

LVPECL 5 x 3.2mm 3.3V Oscillator

Freq: 0.75 MHz to 1.35GHz

Features

- XTREMELY Low Jitter
- Low Cost
- XPRESS Delivery
- Frequency Resolution to six decimal places
- Stabilities to ± 20 PPM
- -20 to +70°C or -40 to +85°C operating temperatures
- Tri-State Enable / Disable Feature
- Industry Standard Package, Footprint & Pin-Out
- Fully RoHS compliant
- Gold over Nickel Termination Finish
- Serial ID with Comprehensive Traceability

For more information -- Click on the drawing

Description

The Fox XPRESSO Crystal Oscillator is a breakthrough in configurable Frequency Control Solutions. XPRESSO utilizes a family of proprietary ASICs, designed and developed by Fox, with a key focus on noise reduction technologies.

The 3rd order Delta Sigma Modulator reduces noise to the levels that are comparable to traditional Bulk Quartz and SAW oscillators. The ASICs family has ability to select the output type, input voltages, and temperature performance features.

With the XPRESS lead-time, low cost, low noise, wide frequency range, excellent ambient performance, XpressO is an excellent choice over the conventional technologies.

Finished XPRESSO parts are 100% final tested.

nane

Rev. 12/12/2007

Need a

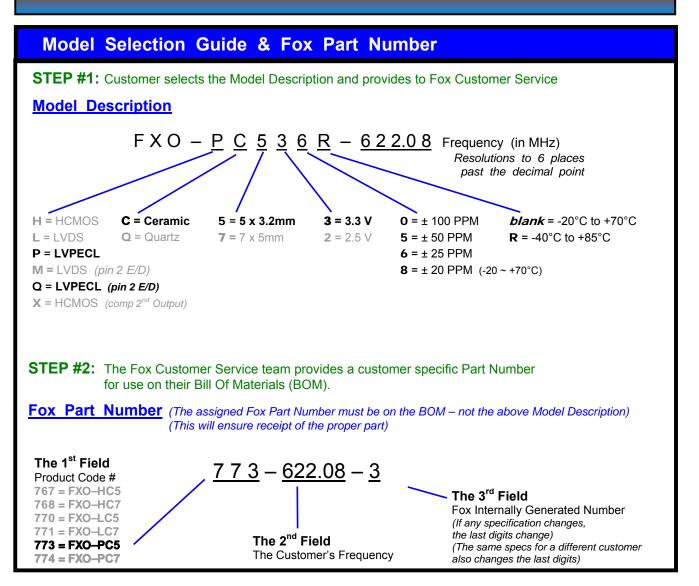
Sample

Applications

- ANY application requiring an oscillator
- SONET
- Ethernet
- Storage Area Network
- Broadband Access
- Microprocessors / DSP / FPGA
- Industrial Controllers
- Test and Measurement Equipment
- Fiber Channel

Contents

	page
Model Selection & Part Number Guide	2
Electrical Characteristic	3 3
Absolute Maximums	3
Output Wave Characteristics	4
Phase Noise	5
Jitter	5
Pin Assignment	6
Recommended Circuit	6
Reflow	6
Mechanical Drawing and Pad Layout	7
Tape and Reel Specification	8
Label	8
Traceability – LOT Number & Serial Identificatio	n 9
RoHS Material Declaration	10
SGS Report 11	& 12
Mechanical Test	13
Burn-In Test	13
MTTF / FITS calculations	14
Other XPRESSO Links	15
Fox Contact Information	15


FOXElectronics 5570 Enterprise Parkway Fort Myers, Florida 33905 USA +1.239.693.0099 FAX +1.239.693.1554 http://www.foxonline.com

<u>XPRESSO</u>

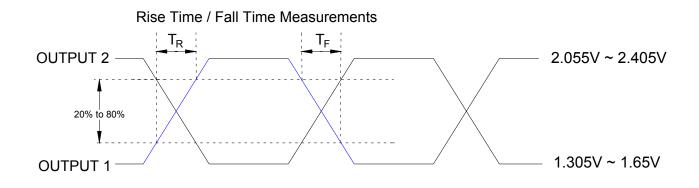
FXO-PC53 Series

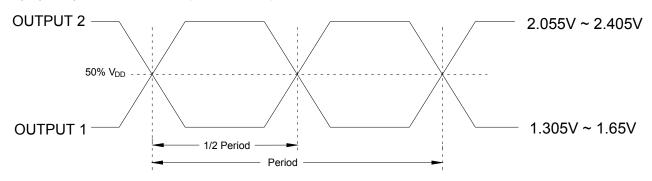
This example, FXO-PC536R-622.08 = LVPECL Output, Ceramic, 5 x 3.2mm Package, 3.3V, ±25 PPM Stability, -40 to +85°C Temperature Range, at 622.08 MHz

Electrical Characterist	ics		
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Frequency Range	Fo		0.750 MHz to 1.35 GHz
Frequency Stability ¹			100, 50, 25, & 20 ppm
Temperature Range	T _o T _{stg}	Standard operating Optional operating Storage	-20°C to +70°C -40°C to +85°C -55°C to +125°C
Supply Voltage	V _{DD}	Standard	3.3 V ± 5%
Input Current (@ Standard Load)	I _{DD}	Standard Load	120 mA
Output Load		Standard	50 Ohms into V_{DD} -2 V_{DC} . TYP.
Start-Up Time	Ts		10 mS
Output Enable / Disable Time			100 nS
Moisture Sensitivity Level	MSL	JEDEC J-STD-20	1
Termination Finish			Au

Note 1 – Stability is inclusive of 25°C tolerance, operating temperature range, input voltage change, load change, aging, shock and vibration.

Absolute Maximum Ratings (Useful life may be impaired. For user guidelines only, not tested)						
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)			
Input Voltage	V _{DD}		–0.5V to +5.0V			
Operating Temperature	T _{AMAX}		–55°C to +105°C			
Storage Temperature	T _{STG}		–55°C to +125°C			
Junction Temperature			150°C			
ESD Sensitivity	HBM	Human Body Model	1 kV			

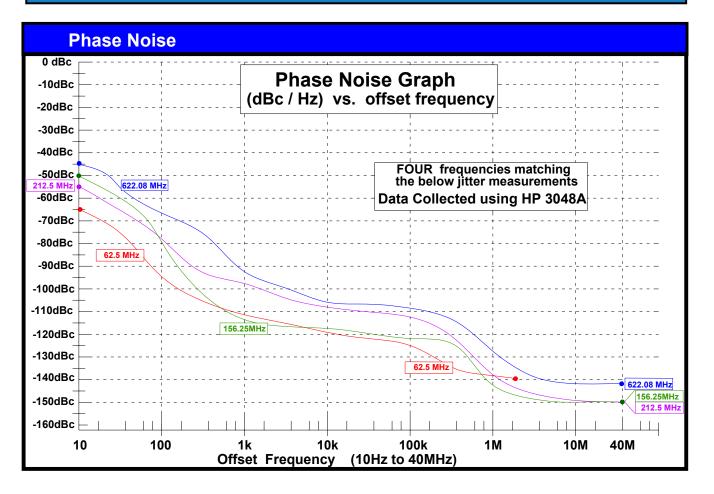



Output Wave Charac	teristics		
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Low Output Voltage	V _{OL}	0.75 MHz to 1.35 GHz	1.305V ~ 1.65V
High Output Voltage	V _{он}	0.75 MHz to 1.35 GHz	2.055V ~ 2.405V
Typical Complimentary Difference	V _{P-P}	0.75 MHz to 1.35 GHz	0.750 V _{P-P} Тур
Output Symmetry (See Drawing Below)		@ 50% V _{P-P} Level	45% ~ 55%
Output Enable Note1 (PIN # 1) Voltage	V _{IH}		> 70% V _{DD}
Output Disable ^{Note1} (PIN # 1) Voltage	VIL		< 30% V _{DD}
Cycle Rise Time (See Drawing Below)	T _R	0.75 MHz to 1.35 GHz	400 pS (20%~80%)
Cycle Fall Time (See Drawing Below)	T _F	0.75 MHz to 1.35 GHz	400 pS (80%~20%)

Note1 An optional PIN # 2 as Enable / Disable is available – see Model Selection Guide (page 2)

Oscillator Symmetry

Ideally, Symmetry should be 50/50 for 1/2 period -- Other expressions are 45/55 or 55/45



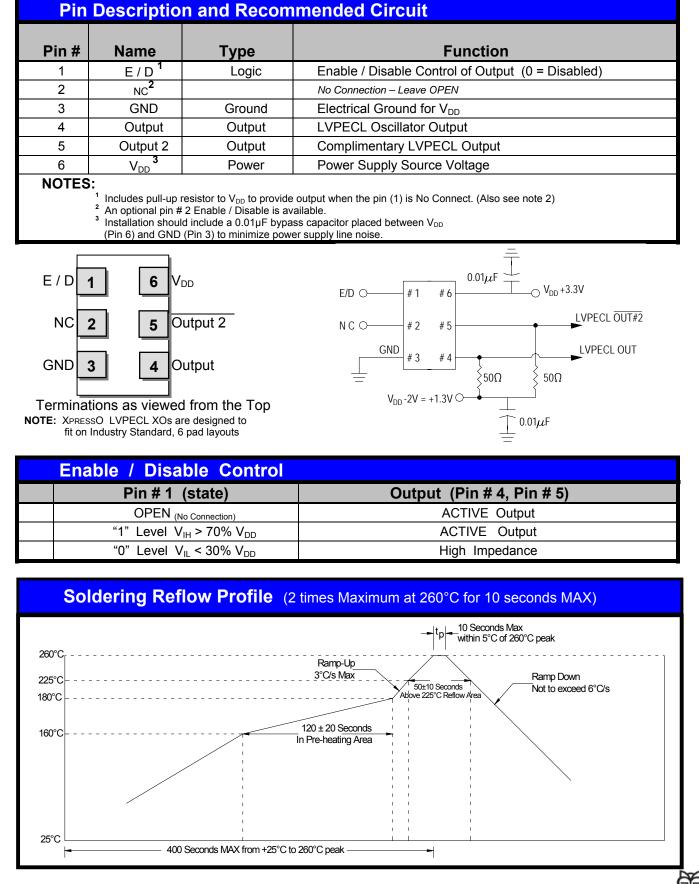
<u>Xpress0</u>

FXO-PC53 Series

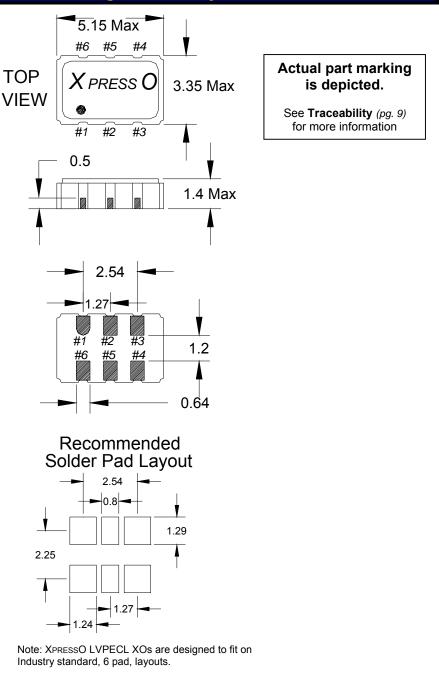
Jitter is frequency dependent. Below are typical values at select frequencies.

LVPECL Phase Jitter & Time Interval Error (TIE)					
Frequency	Phase Jitter (12kHz to 20MHz)	TIE (Sigma of Jitter Distribution)	Units		
62.5 MHz	1.01	3.1	pS RMS		
156.25 MHz	0.86	3.5	pS RMS		
212.5 MHz	1.05	3.6	pS RMS		
622.08MHz	0.94	3.5	pS RMS		

Phase Jitter is integrated from HP3048 Phase Noise Measurement System; measured directly into 50 ohm input; V_{DD} = 3.3V. <u>TIE</u> was measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software; V_{DD} = 3.3V. *Per MJSQ spec (Methodologies for Jitter and Signal Quality specifications)*


LVPECL R	andom & De	terministic Jitter	Composition
Frequency	Random (Rj) (pS RMS)	Deterministic (Dj) (pS P-P)	Total Jitter (Tj) (14 x Rj) + Dj
62.5 MHz	1.27	8.1	26.2 pS
156.25 MHz	1.29	9.3	27.7 pS
212.5 MHz	1.22	8.6	26.1 pS
622.08 MHz	1.21	9.6	26.8 pS

<u>**Rj and Dj**</u>, measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software. Per **MJSQ** spec (Methodologies for Jitter and Signal Quality specifications)



Mechanical Dimensional Drawing & Pad Layout

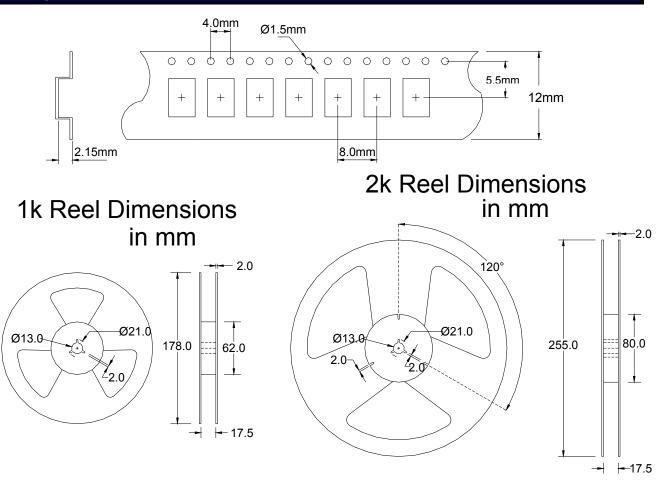
 Pin Connections

 #1) E/D
 #4) Output

 #2) NC
 #5) Output 2

 #3) GND
 #6) V_{DD}

Drawing is for reference to critical specifications defined by size measurements. Certain non-critical visual attributes, such as side castellations, reference pin shape, etc. may vary



Distributor of Fox Electronics: Excellent Integrated System Limited Datasheet of FXO-PC530-1100 - OSCILLATOR XO 1.1GHZ LVPECL SMD Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

FXO-PC53 Series

Tape and Reel Dimensions

Labeling (Reels and smaller packaging are labeled with the below)

An additional identification code is contained internally if tracking should ever be necessary

Traceability – LOT Number & Serial Identification

LOT Number

The LOT Number has direct ties to the customer purchase order. The LOT Number is marked on the "Reel" label, and also stored internally on non-volatile memory inside the XPRESSO part. XPRESSO parts that are shipped Tape and Reel, are also placed in an Electro Static Discharge (ESD) bag and will have the LOT Number labeled on the exterior of the ESD bag.

It is recommended that the XPRESSO parts remain in this ESD bag during storage for protection and identification.

If the parts become separated from the label showing the LOT Number, it can be retrieved from inside one of the parts, and the information that can be obtained is listed below:

- Customer Purchase Order Number
- Internal Fox Sales Order Number
- Dates that the XPRESSO part was shipped from the factory
- The assigned customer part number
- The specification that the part was designed for

Serial Identification

The Serial ID is the individualized information about the configuration of that particular XPRESSO part. The Serial ID is unique for each and every XPRESSO part, and can be read by special Fox equipment.

With the Serial ID, the below information can be obtained about that individual, XPRESSO part:

- Equipment that the XPRESSO part was configured on
- Raw material used to configure the XPRESSO part
- Traceability of the raw material back to the foundries manufacturing lot
- Date and Time that the part was configured
- Any optimized electrical parameters based on customer specifications
- Electrical testing of the actual completed part
- Human resource that was monitoring the configuration of the part

Fox has equipment placed at key Fox locations World Wide to read the Lot Identification and Serial Number of any XPRESSO part produced and can then obtain the information from above within 24 hours

RoHS Material Declaration

	Material Name	Component	Content	Content	
			(mg)	(w t %)	(CAS Number)
Cover	Kovar	Nickel (Ni)	1.890	3.09%	7440-02-0
		Cobalt (Co)	1.113	1.82%	7440-48-4
		Iron (Fe)	3.540	5.78%	7439-89-6
Base	Ceramic	Alumina (Al ₂ O ₃)	35.484	57.98%	1344-28-1
		Silicon Oxide (SiO ₂)	1.733	2.83%	14808-60-7
		Chromium Oxide (Cr ₂ O ₃)	0.268	0.44%	1308-38-9
		Molybdenum Oxide (MoO ₂)	0.364	0.59%	18868-43-4
		Magnesium Oxide (MgO)	0.234	0.38%	1309-48-4
		Calcium Oxide (CaO)	0.253	0.41%	1305-78-8
	+ Metallization	Tungsten (W)	6.290	10.28%	7440-33-7
		Molybdenum (Mo)	0.195	0.32%	7439-98-7
	+ Nickel Plating	Nickel (Ni)	0.810	1.32%	7440-02-0
		Cobalt (Co)	0.203	0.33%	7440-48-4
	+ Gold Plating	Gold (Au)	0.281	0.46%	7440-57-5
	+Seal ring	Iron (Fe)	2.438	3.98%	7439-89-6
		Nickel (Ni)	1.309	2.14%	7440-02-0
		Cobalt (Co)	0.768	1.25%	7440-48-4
	+ silver solder	Silver (Ag)	1.191	1.95%	7440-22-4
		Copper (Cu)	0.210	0.34%	7440-50-8
ΙC	ΙC	Aluminum (Al)	0.0021	0.00343%	7429-90-5
		Silicon (Si)	0.950	1.55%	7440-21-3
	Gold	Gold (Au)	0.480	0.784%	7440-57-5
	Adhesive	Silver (Ag)	0.000210	0.000343%	7440-22-4
		Ероху	0.0000700	0.0001144%	
Crystal	Crystal	Silicon Dioxide (SiO ₂)	1.170	1.91%	14808-60-7
	Electrode	Silver (Ag)	0.019	0.0310%	7440-22-4
		Nickel (Ni)	0.000159	0.000260%	7440-02-0
	Adhesive	Silver (Ag)	0.00037	0.000605%	7440-22-4
		Silicon (Si)	0.000125	0.000204%	7440-21-3
TOTAL			61.196	100.00%	

<u>XPRESSO</u>

FXO-PC53 Series

GS				
Test Repo	rt	No. 2053204/EC	Date : Mar 01 2006	Page 1 of 2
FOX ELECTRONICS 5570 ENTERPRISE PA FT. MYERS, FL 33905	RKWAY			
Report on the submitted	l sample	said to be CERAMIC SEA	M SEAL OSCILLATOR.	
SGS Job No. Supplier / Manufacturer Sample Receiving Date Testing Period		1981176 FOX ELECTRONICS FEB 17 2006 FEB 18 - 24 2006		
Test Requested :	2) 3) 4) 5)	To determine the Lead Co To determine the Mercury To determine the Hexavale To determine PBBs (polyb	n Content in the submitted s ntent in the submitted sampl Content in the submitted sat ent Chromium Content on th rominated biphenyls) and Pf thers) of the submitted sam	e. mple. e submitted sample. 3DEs
Test Method :	4)	Emission Spectrometry (IC With reference to EPA Met The sample was alkaline d analyzed by using Colorim Spectrophotometer).	/ Inductively Coupled Argon P-AES).	od 3060A, and then Vis
Test Results :	1-5)	Please refer to next page.		
Signed for and on behal SGS Hong Kong Ltd	lf of			

a Ting, Family Ho Laboratory Executive

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification and jurisdictional issues defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This Test Report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Hong Kong Ltd. 5/F - 8/F & 28/F -29/F, Metropole Square, 2 On Ylu Street, Slu Lek Yuen, Shatin, N.T., Hong Kong, t (852) 2334 4481-9 f (852) 2764 3126 www.hk.sgs.com Member of the SGS Group (SGS SA)

Test Report	No. 2053204/EC	Date : N	Nar 01 2006 Page 2 of 2				
Test Results :							
Test Item		<u>1</u> ND	Detection Limit				
1) Cadmium (Cd)			2 ppm				
2) Lead (Pb)		ND	2 ppm				
 Mercury (Hg) Hexavalent Chromium (Cr⁶⁺) 		ND ND	2 ppm 2 ppm				
+) riexavalent onronnulli (OF)		ND	2 ppm				
(Results shown are of the total v	weight of samples)						
5)	d when the reading is less	than detection	nimit value				
Flame Retardants		1	Detection Limit				
Flame Retardants Polybrominated Biphenyls (Pl		1	Detection Limit				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl		1 ND	Detection Limit 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl		1 ND ND	Detection Limit 5 ppm 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl		1 ND ND ND	Detection Limit 5 ppm 5 ppm 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl		1 ND ND ND ND	Detection Limit 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl		1 ND ND ND	Detection Limit 5 ppm 5 ppm 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Heptabromobiphenyl		1 ND ND ND ND ND ND ND ND ND	Detection Limit 5 ppm 5 ppm 5 ppm 5 ppm 5 ppm 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Heptabromobiphenyl Octabromobiphenyl		1 ND ND ND ND ND ND ND ND ND ND	Detection Limit 5 ppm 5 ppm 5 ppm 5 ppm 5 ppm 5 ppm 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Octabromobiphenyl Nonabromobiphenyl		1 ND ND ND ND ND ND ND ND ND ND ND	Detection Limit 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Octabromobiphenyl Nonabromobiphenyl Decabromobiphenyl	BBs)	1 ND ND ND ND ND ND ND ND ND ND ND ND	Detection Limit 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Octabromobiphenyl Nonabromobiphenyl Decabromobiphenyl Polybrominated Diphenylethe	BBs)	1 ND ND ND ND ND ND ND ND ND ND	Detection Limit 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Monabromobiphenyl Decabromobiphenyl Decabromobiphenyl Polybrominated Diphenylethe Monobromodiphenyl ether	BBs)	1 ND ND ND ND ND ND ND ND ND ND ND ND	Detection Limit 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Octabromobiphenyl Octabromobiphenyl Decabromobiphenyl Decabromobiphenyl Polybrominated Diphenylethe Monobromodiphenyl ether Dibromodiphenyl ether	BBs)	1 ND ND ND ND ND ND ND ND ND ND ND ND ND	Detection Limit 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Octabromobiphenyl Octabromobiphenyl Decabromobiphenyl Decabromobiphenyl Polybrominated Diphenylethe Monobromodiphenyl ether Dibromodiphenyl ether Tribromodiphenyl ether	BBs)	1 ND ND ND ND ND ND ND ND ND ND	Detection Limit 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Octabromobiphenyl Octabromobiphenyl Decabromobiphenyl Decabromobiphenyl Polybrominated Diphenylether Dibromodiphenyl ether Tribromodiphenyl ether Tetrabromodiphenyl ether	BBs)	1 ND ND ND ND ND ND ND ND ND ND	Detection Limit 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Heptabromobiphenyl Octabromobiphenyl Decabromobiphenyl Polybrominated Diphenylether Monobromodiphenyl ether Dibromodiphenyl ether Tribromodiphenyl ether Tetrabromodiphenyl ether Pentabromodiphenyl ether Pentabromodiphenyl ether	BBs)	1 ND ND ND ND ND ND ND ND ND ND	Detection Limit 5 ppm				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Heptabromobiphenyl Octabromobiphenyl Decabromobiphenyl Polybrominated Diphenylether Monobromodiphenyl ether Tribromodiphenyl ether Tetrabromodiphenyl ether Pentabromodiphenyl ether Pentabromodiphenyl ether Pentabromodiphenyl ether Pentabromodiphenyl ether Hexabromodiphenyl ether	BBs)	1 ND ND ND ND ND ND ND ND ND ND	Detection Limit 5 ppm 5 ppm <tr t=""> 5 ppm</tr>				
Flame Retardants Polybrominated Biphenyls (Pl Monobromobiphenyl Dibromobiphenyl Tribromobiphenyl Tetrabromobiphenyl Pentabromobiphenyl Hexabromobiphenyl Heptabromobiphenyl Octabromobiphenyl Decabromobiphenyl Polybrominated Diphenylether Monobromodiphenyl ether Dibromodiphenyl ether Tetrabromodiphenyl ether Pentabromodiphenyl ether Pentabromodiphenyl ether Hexabromodiphenyl ether Hexabromodiphenyl ether Hexabromodiphenyl ether Hexabromodiphenyl ether Hexabromodiphenyl ether	BBs)	1 ND ND ND ND ND ND ND ND ND ND	Detection Limit 5 ppm 5 ppm <tr td=""> </tr> <tr><td>Pentabromobiphenyl Hexabromobiphenyl Heptabromobiphenyl Octabromobiphenyl Nonabromobiphenyl Decabromobiphenyl Polybrominated Diphenylethe Monobromodiphenyl ether Dibromodiphenyl ether Tribromodiphenyl ether</td><td>BBs)</td><td>1 ND ND ND ND ND ND ND ND ND ND</td><td>Detection Limit 5 ppm 5 ppm <tr t=""> 5 ppm</tr></td></tr>	Pentabromobiphenyl Hexabromobiphenyl Heptabromobiphenyl Octabromobiphenyl Nonabromobiphenyl Decabromobiphenyl Polybrominated Diphenylethe Monobromodiphenyl ether Dibromodiphenyl ether Tribromodiphenyl ether	BBs)	1 ND ND ND ND ND ND ND ND ND ND	Detection Limit 5 ppm 5 ppm <tr t=""> 5 ppm</tr>
Pentabromobiphenyl Hexabromobiphenyl Heptabromobiphenyl Octabromobiphenyl Nonabromobiphenyl Decabromobiphenyl Polybrominated Diphenylethe Monobromodiphenyl ether Dibromodiphenyl ether Tribromodiphenyl ether	BBs)	1 ND ND ND ND ND ND ND ND ND ND	Detection Limit 5 ppm 5 ppm <tr t=""> 5 ppm</tr>				

Note ppm = mg/kg

ND = Not Detected

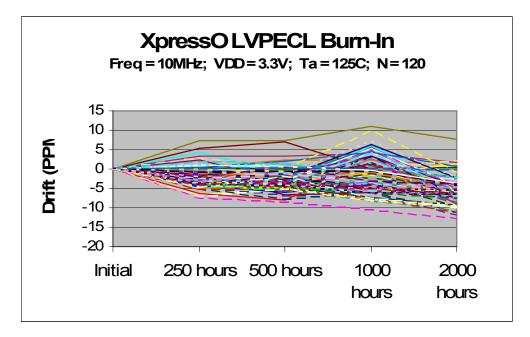
Not detected is reported when the reading is less than detection limit value.

Sample Description: 1. Black Ceramic w/ Silvery, Golden Metal w/ Silvery Chips

*** End of Report ***

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification and jurisdictional issues defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This Test Report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Hong Kong Ltd. 5/F - 8/F & 28/F - 29/F, Metropole Square, 2 On Ylu Street, Slu Lek Yuen, Shatin, N.T., Hong Kong. t (852) 2334 4481-9 f (852) 2764 3126 www.hk.sgs.com Member of the SGS Group (SGS SA)



Mechanical Testing

Parameter	Test Method
Mechanical Shock	Drop from 75cm to hardwood surface – 3 times
Mechanical Vibration	10~55Hz, 1.5mm amplitude, 1 Minute Sweep 2 Hours each in 3 Directions (X, Y, Z)
High Temperature Burn-in	Under Power @ 125°C for 2000 Hours (results below)
Hermetic Seal	He pressure: 4 ±1 kgf / cm ² 2 Hour soak

2,000 Hour Burn-In

Burn-In Testing – under power 2000 Hours, 125°C

MTTF / FITS Calculations

Products are grouped together by process for MTTF calculations. (All XpressO output and package types are manufactured with the same process)

Number of Parts Tested:
Number of Failures:360 (120 of each output type: HCMOS, LVDS, LVPECL)Number of Failures:0Test Temperature:125°CNumber of Hours:2000

MTTF was calculated using the following formulas:

[1.] Device Hours (devhrs) = (number of devices) x (hours at elevated temperature in °K)

[2.]
$$MTTF = \frac{devhrs \times af \times 2}{\chi^2}$$

[3.] FITS = $\frac{1}{MTTF} \times 10^9$

Where:

Label	Name	Formula/Value
af	Acceleration Factor	$e^{(\frac{eV}{k})\times(\frac{1}{t_1}-\frac{1}{t_2})}$
eV	Activation Energy	0.40 V
k	Bolzman's Constant	8.62 X 10⁻⁵ <i>eV</i> /°K
t ₁		Operating Temperature (°K)
t ₂		Accelerated Temperature (°K)
Θ	Theta	Confidence Level (60% industry standard)
r	Failures	Number of failed devices
X ²	Chi-Square	statistical significance for bivariate tabular analysis [table look- up] based on assumed Θ (Theta – confidence) and number of failures (r) For zero failures (60% Confidence): χ^2 = 1.830

DEVICE-HOURS = 360 x 2000 HOURS = 720,000

ACCELERATION FACTOR =
$$e^{(\frac{0.40}{8.625})\times(\frac{1}{298}-\frac{1}{398})} = 49.91009$$

MTTF = $\frac{720,000 \times 49.91009 \times 2}{1.833}$ = 15,607,065 Hours

Failure Rate = $\frac{1.833}{720,000 \times 49.91009 \times 2}$ = 6.41E-8

FITS = Failure Rate *1E9 = 64

Notes :

FXO-PC53 Series

Other XPRESSO Links
XPRESSO Brochure
Crystal Oscillators
HCMOS 5 x 3.2mm 3.3V XO 0.75 to 250MHz
HCMOS 7 x 5mm 3.3V XO 0.75 to 250MHz
LVPECL 5 x 3.2mm 3.3V XO 0.75 to 1.35GHz
LVPECL 7 x 5mm 3.3V XO 0.75 to 1.35GHz
LVDS 5 x 3.2mm 3.3V XO 0.75 to 1.35GHz
LVDS 7 x 5mm 3.3V XO 0.75 to 1.35GHz
Voltage Controlled Crystal Oscillators
HCMOS 5 x 3.2mm 3.3V VCXO 0.75 to 250MHz
HCMOS 7 x 5mm 3.3V VCXO 0.75 to 250MHz
LVPECL 5 x 3.2mm 3.3V VCXO 0.75 to 1.35GHz
LVPECL 7 x 5mm 3.3V VCXO 0.75 to 1.35GHz
LVDS 5 x 3.2mm 3.3V VCXO 0.75 to 1.35GHz
LVDS 7 x 5mm 3.3V VCXO 0.75 to 1.35GHz

Main Website www.foxonline.com

Patent Numbers: US 6,664,860, US 5,960,403, US 5,952,890; US 5,960,405; US 6,188,290; Foreign Patents: R.S.A. 98/0866, R.O.C. 120851; Singapore 67081, 67082; EP 0958652 China ZL 98802217.6, Malaysia MY-118540-A, Philippines 1-1998-000245, Hong Kong #HK1026079, Mexico #232179 US and Foreign Patents Pending XpressO™ Fox Electronics

Contact Information		Fox Japan
		Tel:+81.3.3374.2079,
(USA)-Worldwide Headquarters		Fax: +81.3.3377.5221
Tel: 888-GET-2-FOX		Email: www.foxonline.com/email.htm
Outside US: +1.239.693.0099,		
Fax:+1.239.693.1554	Fox EMEA	
Email: www.foxonline.com/email.htm	Tel/Fax: +44 1283 568153	
	Email: www.foxonline.com/email.htm	

The above specifications, having been carefully prepared and checked, is believed to be accurate at the time of publication; however, no responsibility is assumed by Fox Electronics for inaccuracies.

