Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery \& Lifecycle Information:
Texas Instruments
TLC59210IN

For any questions, you can email us directly:
sales@integrated-circuit.com

Distributor of Texas Instruments: Excellent Integrated System Limited
Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP

Folder $\quad \forall$ Documents
Software
-9 Community

TLC59210 8-BIT DMOS Sink Driver With Latch

1 Features

- DMOS Process
- High Voltage Output $\left(\mathrm{V}_{\mathrm{ds}}=30 \mathrm{~V}\right)$
- Output Current on Each Channel ($\mathrm{I}_{\mathrm{ds}} \mathrm{Max}=200 \mathrm{~mA}$)
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- ESD Protection Exceeds JESD 22
- 2000-V Human Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged Device Model (C101)
- LED Driver Application
- Output Clamp Diodes (Parasitic)
- Control Pins of $\overline{C L R}$ and CLK Inputs
- Clock Input up to 1 MHz

2 Applications

- Lamp and Display (LED)
- Hammer
- Relay

3 Description

The TLC59210 is an 8-bit flip-flop driver for LED and solenoid with Schmitt-trigger buffers. Each channel can sink up to 200 mA and support an output voltage up to 30V. The TLC59210 is designed for V_{CC} and operation from 3.3 V to 5.5 V .

Each output channel is controlled by a positive-edgetriggered D-type flip-flops with a direct clear (CLR) input. Information at the data (D) input meeting the setup time requirements is transferred to the Y output on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When CLK is at either the high or low level, the D input has no effect at the output.
The TLC59210 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Device Information ${ }^{(1)}$

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TLC59210	PDIP (20)	$24.33 \mathrm{~mm} \times 6.35 \mathrm{~mm}$
	TSSOP (20)	$6.50 \mathrm{~mm} \times 4.40 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Schematic

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Revision History 2
5 Pin Configuration and Functions 3
6 Specifications 4
6.1 Absolute Maximum Ratings 4
6.2 ESD Ratings 4
6.3 Recommended Operating Conditions 4
6.4 Thermal Information 4
6.5 Electrical Characteristics: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V 5
6.6 Electrical Characteristics: $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V 5
6.7 Timing Requirements: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V 6
6.8 Timing Requirements: $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V 6
6.9 Switching Characteristics: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V 6
6.10 Switching Characteristics: $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V 6
6.11 Typical Characteristics 7
7 Parameter Measurement Information 8
8 Detailed Description 9
8.1 Overview 9
8.2 Functional Block Diagram 9
8.3 Feature Description 10
8.4 Device Functional Modes. 10
9 Application and Implementation 11
9.1 Application Information 11
9.2 Typical Application 11
10 Power Supply Recommendations 13
11 Layout 13
11.1 Layout Guidelines 13
11.2 Layout Example 13
12 Device and Documentation Support 14
12.1 Community Resources 14
12.2 Trademarks 14
12.3 Electrostatic Discharge Caution 14
12.4 Glossary 14
13 Mechanical, Packaging, and Orderable Information 14

4 Revision History

Changes from Original (March 2009) to Revision A Page

- Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

Distributor of Texas Instruments: Excellent Integrated System Limited
Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com
Texas Instruments

5 Pin Configuration and Functions

N or PW Package 20 Pin PDIP or TSSOP (Top View)			
CLR	1	20	V_{CC}
D1	2	19	$\overline{\mathrm{Y} 1}$
D2	3	18	$\square \bar{Y}$
D3	4	17	$\square \bar{Y}$
D4	5	16	Y4
D5	6	15	$\square \overline{Y 5}$
D6	7	14	$\square \overline{\mathrm{Y}}$
D7	8	13	$\square \overline{Y 7}$
D8	9	12	$\square \bar{Y}$
CLK	10	11	\square GND

Pin Functions

PIN		I/O	
NO.	NAME		
1	CLR	I	Direct Clear. When Low, all outputs are off
2	D1	I	Data Input 1
3	D2	I	Data Input 2
4	D3	I	Data Input 3
5	D4	I	Data Input 4
6	D5	I	Data Input 5
7	D6	I	Data Input 6
8	D7	I	Data Input 7
9	D8	I	Data Input 8
10	CLK	I	Clock input. A Rising Edge transfers information at the data input (D) to the output (Y).
11	GND	GND	Ground
12	Y8	Output	Data Output 8
13	Y7	Output	Data Output 7
14	Y6	Output	Data Output 6
15	Y5	Output	Data Output 5
16	Y4	Output	Data Output 4
17	Y3	Output	Data Output 3
18	Y2	Output	Data Output 2
19	Y1	Output	Data Output 1
20	VCC	Power	Supply for Device

electronic components
Distributor of Texas Instruments: Excellent Integrated System Limited
Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.
Texas
INSTRUMENTS

TLC59210

SCLS711A -MARCH 2009-REVISED NOVEMBER 2015

6 Specifications

6.1 Absolute Maximum Ratings

				MIN	MAX	UNIT
$\mathrm{V}_{\text {cc }}$	Supply voltage			-0.5	7	V
D	Input voltage			-0.5	7	V
V_{ds}	Output voltage	H output		-0.5	32	V
I_{ds}	Output current	1 bit for output low,	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V		100	mA
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		200	
I_{K}	Input clamp current	$\mathrm{V}_{1}<0 \mathrm{~V}$			-20	mA
Operating free-air temperature				-40	85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature			-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

$\mathrm{V}_{(\text {ESD })} \quad$ Electrostatic discharge			Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
(3) JEDEC document JEP157 states that 200-V MM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

				MIN	MAX	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage			3	5.5	V
V_{IH}	High-level input voltage			$\mathrm{V}_{C C} \times 0.7$	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0	$\times 0.3$	V
V_{ds}	Output voltage				30	V
$I_{\text {ds }}$	Output current	N package,$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$	Duty cycle < 42\%		200	mA
			Duty cycle < 100\%		130	
		PW package,$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$	Duty cycle < 24\%		200	
			Duty cycle < 100\%		95	
T_{A}	Operating free-air temperature			-40	85	${ }^{\circ} \mathrm{C}$

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		TLC59210		UNIT
		N (PDIP)	PW (TSSOP)	
		20 PINS	20 PINS	
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	53.6	94.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) thermal resistance	41.2	28.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	34.6	45.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JT }}$	Junction-to-top characterization parameter	22.3	1.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Ψ_{JB}	Junction-to-board characterization parameter	34.4	45.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JC} \text { (bot) }}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

InsTRUMENTS

6.5 Electrical Characteristics: $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ to 5.5 V

over recommended operating free-air temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{V}_{\mathrm{T}_{+}}$	Positive-going input threshold	D, $\overline{C L R}, \mathrm{CLK}$				3.5	V
$\mathrm{V}_{\text {T- }}$	Negative-going input threshold	D, CLR, CLK		1.5			V
$\mathrm{V}_{\mathrm{HYS}}$	Hysteresis	D, CLR, CLK		0.5		2	V
I_{IH}	High-level input current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V}$			0	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$			0	-1	$\mu \mathrm{A}$
l l	Leakage current	$\mathrm{V}_{\mathrm{ds}}=30 \mathrm{~V}$				5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$	Leakage current	$\mathrm{V}_{\mathrm{I}}=0$ to $5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$ to $30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0$			0	5	$\mu \mathrm{A}$
I_{CC}	Supply current	$\mathrm{V}_{\mathrm{I}}=0$ to $5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$ to $30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0$	Output = all OFF		0	5	$\mu \mathrm{A}$
			Output = all ON		0	5	
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$			0.2	0.35	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}$			0.5	0.7	V
r_{ON}	ON-state resistance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$			2	3.5	Ω
C_{i}	Input capacitance	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND			5		pF

6.6 Electrical Characteristics: $\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$ to 3.6 V

over recommended operating free-air temperature range, $T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{V}_{\mathrm{T}_{+}}$	Positive-going input threshold	D, $\overline{C L R}, \mathrm{CLK}$				2.52	V
$\mathrm{V}_{\text {T- }}$	Negative-going input threshold	D, $\overline{C L R}, \mathrm{CLK}$		0.9			V
$\mathrm{V}_{\mathrm{HYS}}$	Hysteresis	D, $\overline{C L R}, \mathrm{CLK}$		0.33		1.32	V
I_{H}	High-level input current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=3.6 \mathrm{~V}$			0	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$			0	-1	$\mu \mathrm{A}$
l_{OZ}	Leakage current	$\mathrm{V}_{\mathrm{O}}=30 \mathrm{~V}$				5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$	Leakage current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{1}=0$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$ to 30 V			0	5	$\mu \mathrm{A}$
I_{CC}	Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \\ & \text { to } 30 \mathrm{~V} \end{aligned}$	Output = all OFF		0	5	$\mu \mathrm{A}$
			Output = all ON		0	5	
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$			0.35	0.7	V
ron	ON-state resistance	$\mathrm{V}_{C C}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$			3.5	7	Ω
C_{i}	Input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND			5		pF

Distributor of Texas Instruments: Excellent Integrated System Limited
Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.
TEXAS
INSTRUMENTS

TLC59210

SCLS711A -MARCH 2009-REVISED NOVEMBER 2015

6.7 Timing Requirements: $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ to 5.5 V

over recommended operating free-air temperature range, O / C to Y (unless otherwise noted)

			MIN
t_{su}	Setup time, $C L K \uparrow$	$\mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	10
t_{h}	Hold time, $\mathrm{CLK} \uparrow$	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	10
t_{w}	Pulse width, CLK, CLR	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	30
n	MAX		

6.8 Timing Requirements: $\mathrm{V}_{\mathrm{cc}}=\mathbf{3} \mathbf{V}$ to 3.6 V

over recommended operating free-air temperature range, O / C to Y (unless otherwise noted)

MIN			NOM
$\mathrm{t}_{\text {su }}$	Setup time, CLK \uparrow	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	10
t_{h}	Hold time, CLK \uparrow	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	10
t_{w}	Pulse width, CLK, CLR	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	30
ns			

6.9 Switching Characteristics: $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ to 5.5 V

over recommended operating free-air temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted), see Figure 5

PARAMETER	TEST CONDITIONS		LOAD CAPACITANCE	MIN TYP	MAX	UNIT
$\mathrm{t}_{\text {TLH }}$	Output = low to high	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=240 \Omega, \\ 24-\mathrm{V} \text { pullup } \end{gathered}$	180	230	ns
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			260	
$\mathrm{t}_{\text {THL }}$	Output $=$ high to low	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=240 \Omega, \\ 24-\mathrm{V} \text { pullup } \end{gathered}$	300	450	ns
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			500	
$t_{\text {PLH }}$	Output = low to high	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=240 \Omega, \\ 24 \text {-V pullup } \end{gathered}$	320	480	ns
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			550	
$\mathrm{t}_{\text {PHL }}$	Output $=$ high to low	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=240 \Omega, \\ 24 \text {-V pullup } \end{gathered}$	320	480	ns
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			550	
$\mathrm{t}_{\text {PHLR }}$	$\overline{\mathrm{CLR}}-\bar{Y}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=240 \Omega, \\ 24-\mathrm{V} \text { pullup } \end{gathered}$	320	480	ns
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			550	

6.10 Switching Characteristics: $V_{C C}=3 \mathrm{~V}$ to 3.6 V

over recommended operating free-air temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted), see Figure 5

PARAMETER	TEST CONDITIONS		LOAD CAPACITANCE	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {TLH }}$	Output = low to high	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=240 \\ \Omega, \\ 24-\mathrm{V} \text { pullup } \end{gathered}$		300	450	ns
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$				500	
$\mathrm{t}_{\text {THL }}$	Output $=$ high to low	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=240 \\ \Omega, \\ 24-\mathrm{V} \text { pullup } \end{gathered}$		300	450	ns
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$				500	
$t_{\text {PLH }}$	Output = low to high	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=240 \\ \Omega, \\ 24-\mathrm{V} \text { pullup } \end{gathered}$		500	700	ns
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$				850	
$t_{\text {PHL }}$	Output $=$ high to low	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=240 \\ \Omega, \\ 24-\mathrm{V} \text { pullup } \end{gathered}$		500	700	ns
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$				850	
$t_{\text {PHLR }}$	$\overline{\mathrm{CLR}}-\overline{\mathrm{Y}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=240 \\ \Omega, \\ 24-\mathrm{V} \text { pullup } \end{gathered}$		500	700	ns
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$				850	

Distributor of Texas Instruments: Excellent Integrated System Limited
Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com
Texas
INSTRUMENTS

6.11 Typical Characteristics

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP

TLC59210

SCLS711A -MARCH 2009-REVISED NOVEMBER 2015

7 Parameter Measurement Information

LOAD CIRCUIT FOR O/D OUTPUT

A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 3 \mathrm{~ns}$, and $\mathrm{t}_{\mathrm{f}} \leq 3 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $\quad t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{p d}$.

Figure 5. Test Circuit and Voltage Waveforms

Distributor of Texas Instruments: Excellent Integrated System Limited
Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP

8 Detailed Description

8.1 Overview

The TLC59210 is an 8-bit flip-flop driver for LED and solenoid with Schmitt-trigger buffers. Each output channel is controlled by a positive-edge-triggered D-type flip-flops with a direct clear (CLR) input. Information at the data (D) input meeting the setup time requirements is transferred to the Y output on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When CLK is at either the high or low level, the D input has no effect at the output.

8.2 Functional Block Diagram

Figure 6. Output Schematic

This symbol is in accordance with ANSI/IEEE Standard 91-1984 and IEC Publication 617-12.
Figure 7. Logic Symbol

Distributor of Texas Instruments: Excellent Integrated System Limited
Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.
TEXAS
INSTRUMENTS

8.3 Feature Description

The TLC59210 features the ability to independently control 8 Sinking Outputs (Y). At each CLK pulse the output can be latched high or low depending on the input state (D). The CLR function allows for all outputs to be set high.

8.4 Device Functional Modes

Table 1. Function Table (Each Latch) ${ }^{(1)}$

INPUTS			OUTPUT
$\overline{\mathbf{C L R}}$	CLK	D	
L	X	X	H^{\star}
H	\uparrow	L	H^{\star}
H	\uparrow	H	L
H	L	X	Y_{0}
H	\downarrow	X	Y_{0}

(1) L: Low-level, H: High-level, H^{*} : with pullup resistor, X: Irrelevant, \uparrow : Rising edge, \downarrow : Falling edge, Z : High-impedance (OFF)

Distributor of Texas Instruments: Excellent Integrated System Limited
Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com
TEXAS
INSTRUMENTS

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. Tl's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

In an LED display application, TLC59210 is used to drive the current sink for 8 LEDs in parallel. LED display patterns can be created by providing different bit patterns. Each LED can be duty cycled by either duty cycling the LED supply or the control bit.

9.1.1 Setting LED Current

The LED current is primarily dependent on the supply voltage, the forward voltage of the LED, and the series resistor (RSET). In many applications the supply voltage and LED forward voltage cannot be adjusted. Hence, RSET is utilized to adjust the LED current.

9.1.2 PWM Brightness Dimming

The perceived brightness of the LEDs can be adjusted by use of PWM dimming. For example, an LED driven at 50% duty cycle will appear less bright than it would at 100% duty cycle.

9.2 Typical Application

Figure 8. Typical Application Schematic

9.2.1 Design Requirements

For an LED display application, a parallel data bus used to provide the input control for TLS59210. A character generator circuit and LED power circuit are used to generate the bit pattern written into the TLC59210 to provide the power control for the entire LED array. The LED power circuit controls the total current into the array and can also power cycle the LED array. For simple implementation, LED power circuit could be eliminated. The $\mathrm{V}_{\text {LEd }} c a n$ be connected directly to the resistor and LED string.

Distributor of Texas Instruments: Excellent Integrated System Limited
Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.
TEXAS
INSTRUMENTS

TLC59210

SCLS711A -MARCH 2009-REVISED NOVEMBER 2015

Typical Application (continued)

9.2.2 Detailed Design Procedure

The combination of LED Supply voltage ($\mathrm{V}_{\mathrm{LED}}$), the LED forward voltage (V_{F}), and external resistor sets the maximum LED current ($l_{D S}$) that would appear with a 100% duty cycle.

$$
\begin{equation*}
I_{D S}=(V L E D-V F) / R_{S E T} \tag{1}
\end{equation*}
$$

The maximum total power dissipation and maximum current through each channel of TLC59210 is determined by the number of the LEDs that are on at one time, the LED duty cycle, and the ambient temperature. The following graphs show how the maximum channel current may be limited by the total power dissipation.

9.2.3 Application Curves

Figure 9. Maximum Output Current vs Duty Cycle (TSSOP (PW) Package)

Figure 10. Maximum Output Current vs Duty Cycle (DIP (N) Package)

Distributor of Texas Instruments: Excellent Integrated System Limited
Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP

10 Power Supply Recommendations

TLC59210 operates from a VCC range of 3 V to 5.5 V . The system will also require a power supply for the LEDs. The supply voltage of the LEDs must be greater than the forward voltage of the LED plus the VOL of the channel, but not greater than 30V.

11 Layout

11.1 Layout Guidelines

The traces carrying power through the LEDs should be wide enough to handle the necessary current. All LED current passes through the device and into the ground node. There must be a strong connection between the device ground and the circuit board ground.

11.2 Layout Example

Figure 11. Layout Example

TeXAS

INSTRUMENTS

TLC59210

SCLS711A -MARCH 2009-REVISED NOVEMBER 2015

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect Tl's views; see Tl's Terms of Use.
TI E2ETM Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZO22 - TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
il Texas
INSTRUMENTS
Distributor of Texas Instruments: Excellent Integrated System Limited
Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TLC59210IN	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type	-40 to 85	TLC59210IN	Samples
TLC59210IPWR	ACTIVE	TSSOP	PW	20	2000	$\begin{gathered} \text { Green (RoHS } \\ \text { \& no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM		Y59210	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
ACTIVE: Product device recommended for new designs.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb -Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP
;: sales@integrated-circuit.com Website: www.irRAGKAGEIORTION ADDENDUM
INSTRUMENTS

Distributor of Texas Instruments: Excellent Integrated System Limited
Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com
TEXAS
PACKAGE MATERIALS INFORMATION
INSTRUMENTS
www.ti.com

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TLC59210IPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC59210IPWR	TSSOP	PW	20	2000	367.0	367.0	38.0

Distributor of Texas Instruments: Excellent Integrated System Limited
Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
(D) The 20 pin end lead shoulder width is a vendor option, either half or full width.

Distributor of Texas Instruments: Excellent Integrated System Limited
Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

MECHANICAL DATA
PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

PW (R-PDSO-G20) PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
electronic components

Distributor of Texas Instruments: Excellent Integrated System Limited
 Datasheet of TLC59210IN - IC LED Driver Power Switch 200mA 20-PDIP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which Tl components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

