Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

ON Semiconductor NTMD6601NR2G

For any questions, you can email us directly: sales@integrated-circuit.com

NTMD6601NR2G

Power MOSFET

80 V, 2.2 A, Dual N-Channel, SO-8

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- Dual SO-8 Surface Mount Package Saves Board Space
- This is a Pb-Free Device

Applications

• LCD Displays

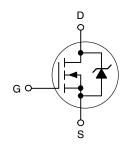
MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

D				7	
Rating		Symbol	Value	Unit	
Drain-to-Source Voltage		V_{DSS}	80	V	
Gate-to-Source Voltage - Continuous		V_{GS}	±15	V	
Continuous Drain		T _A = 25°C	I _D	1.4	Α
Current R _{θJA} (Note 1)		T _A = 70°C		1.2	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	1.0	W
Continuous Drain	Steady State	T _A = 25°C	I _D	1.1	Α
Current R _{θJA} (Note 2)		T _A = 70°C		0.9	
Power Dissipation $R_{\theta JA}$ (Note 2)		T _A = 25°C	P _D	0.6	W
Continuous Drain		T _A = 25°C	I _D	2.2	Α
Current R _{0JA} t < 5 s (Note 1)		T _A = 70°C		1.7	
Pulsed Drain Current	, ,	= 25°C, = 10 μs	I _{DM}	9.0	Α
Operating Junction and	Storage T	emperature	T _J , T _{STG}	-55 to +150	°C
Source Current (Body Diode)			I _S	1.3	Α
Single Pulse Drain-to-Source Avalanche Energy T_J = 25C, V_{DD} = 50 V, V_{GS} = 10 V, I_L = 7.0 A_{pk} , L = 1.0 mH, R_G = 25 Ω			EAS	25	mJ
Lead Temperature for So (1/8" from case for 10 s)		urposes	TL	260	°C

THERMAL RESISTANCE RATINGS

Rating	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	120	
Junction-to-Ambient – t≤ 5 s (Note 1)	$R_{\theta JA}$	48	°C/W
Junction-to-FOOT (Drain)	$R_{\theta JF}$	40	-0/00
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	200	

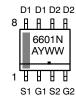
- 1. Surface-mounted on 2 inch sq FR4 board using 1 inch sq pad size, 1 oz Cu.
- Surface-mounted on FR4 board using the minimum recommended pad size.



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	V _{(BR)DSS} R _{DS(on)} Max		
80 V	215 m Ω @ 10 V	2.2 A	
	245 mΩ @ 4.5 V	2.27	


N-Channel

MARKING DIAGRAM & PIN ASSIGNMENT

SO-8 CASE 751 STYLE 11

6601N = Device Code

A = Assembly Location
Y = Year
WW = Work Week

= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMD6601NR2G	SO-8 (Pb-Free)	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Distributor of ON Semiconductor: Excellent Integrated System Limited

Datasheet of NTMD6601NR2G - MOSFET 2N-CH 80V 1.1A 8SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTMD6601NR2G

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	•			•	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		80			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				99.8		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μΑ
		V _{DS} = 80 V	T _J = 125°C			25	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{C}$	_{SS} = ±15 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{E}$	₀ = 250 μΑ	1.0	1.9	3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.6		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 2.2 A		190	215	†
		V _{GS} = 5.0 V	I _D = 1.0 A		215	245	- mΩ
CHARGES, CAPACITANCES AND GATI	E RESISTANCE						
Input Capacitance	C _{ISS}				220	400	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 N	MHz, V _{DS} = 25 V		55	100	
Reverse Transfer Capacitance	C _{RSS}				16	30	
Total Gate Charge	Q _{G(TOT)}				5.0	9.0	nC
Threshold Gate Charge	Q _{G(TH)}		40.7/ 1 4.0.4		0.4		
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 5.0 \text{ V}, V_{DS} =$	40 V, I _D = 1.0 A		1.0		
Gate-to-Drain Charge	Q_{GD}				2.75		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 40 V, I _D = 1.0 A			9.0	15	nC
SWITCHING CHARACTERISTICS (Note	4)						
Turn-On Delay Time	t _{d(ON)}				21	35	
Rise Time	t _r	V _{GS} = 4.5 V, V	/ _{DD} = 40 V,		62	105	ns
Turn-Off Delay Time	t _{d(OFF)}	I _D = 1.0 A, R			52	85	
Fall Time	t _f	1			50	85	1
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DD} = 40 V, I_{D} = 2.5 A, R_{G} = 47 Ω			15		
Rise Time	t _r				95		ns
Turn-Off Delay Time	t _{d(OFF)}				50		
Fall Time	t _f				105		
BODY - DRAIN DIODE RATINGS (Note	3)						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V$ $T_J = 25^{\circ}C$			0.8	1.0	V
		40	T _J = 150°C		0.6		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } d_{IS}/d_t = 100 \text{ A/}\mu\text{s,}$ $I_S = 1.0 \text{ A}$			44		1
Charge Time	Ta				21		ns
Discharge Time	T _b				23		1
Reverse Recovery Time	Q _{RR}				43	86	nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

NTMD6601NR2G

TYPICAL ELECTRICAL CHARACTERISTICS

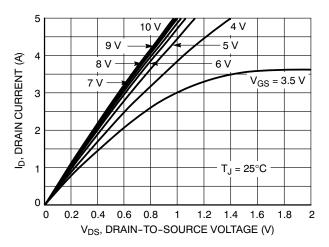


Figure 1. On-Region Characteristics

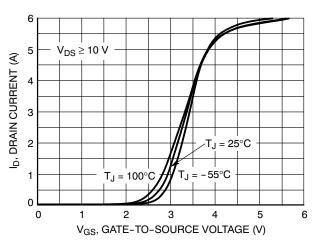


Figure 2. Transfer Characteristics

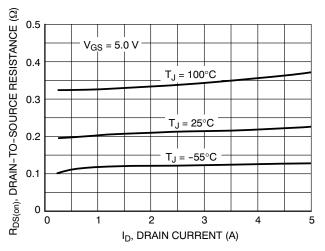


Figure 3. On-Resistance versus **Drain Current and Temperature**

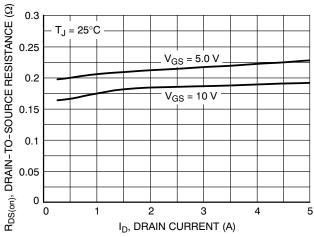


Figure 4. On-Resistance versus Drain Current and Gate Voltage

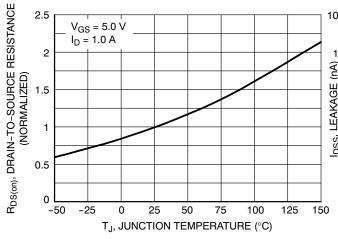


Figure 5. On-Resistance Variation with **Temperature**

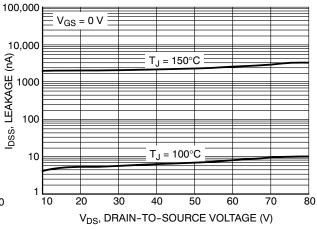
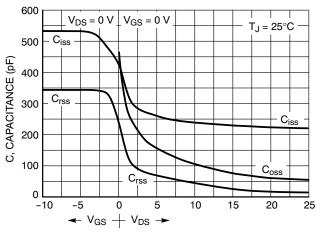



Figure 6. Drain-To-Source Leakage **Current versus Voltage**

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTMD6601NR2G

TYPICAL ELECTRICAL CHARACTERISTICS

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V)

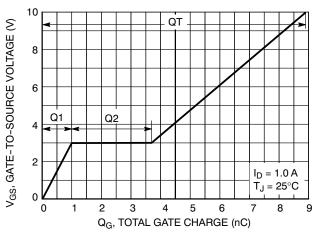


Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

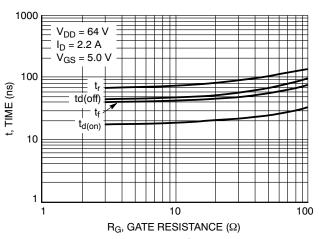


Figure 9. Resistive Switching Time Variation versus Gate Resistance

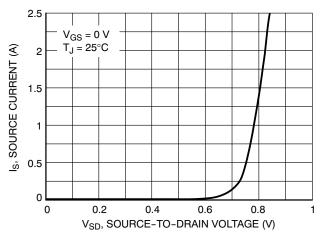


Figure 10. Diode Forward Voltage versus Current

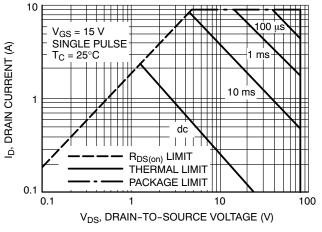


Figure 11. Maximum Rated Forward Biased Safe Operating Area

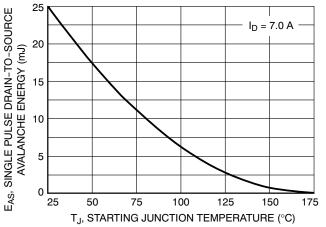


Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

Distributor of ON Semiconductor: Excellent Integrated System Limited

Datasheet of NTMD6601NR2G - MOSFET 2N-CH 80V 1.1A 8SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

NTMD6601NR2G

TYPICAL ELECTRICAL CHARACTERISTICS

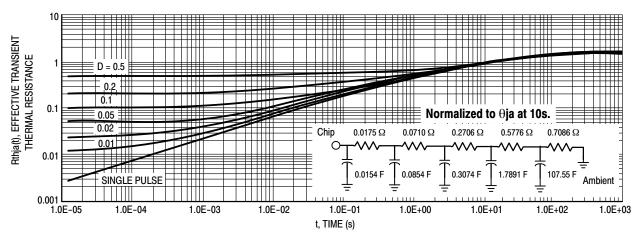


Figure 13. Thermal Response

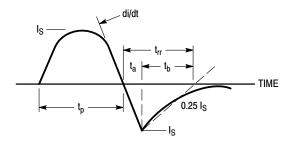
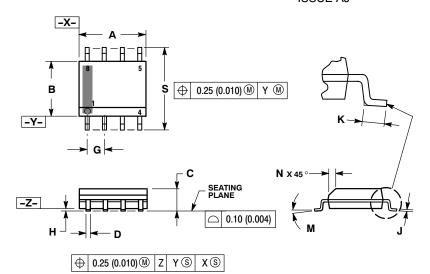
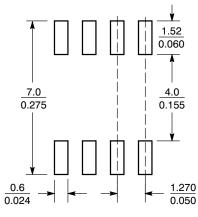


Figure 14. Diode Reverse Recovery Waveform

Distributor of ON Semiconductor: Excellent Integrated System Limited


Datasheet of NTMD6601NR2G - MOSFET 2N-CH 80V 1.1A 8SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


NTMD6601NR2G

PACKAGE DIMENSIONS

SO-8 NB CASE 751-07 **ISSUE AJ**

SOLDERING FOOTPRINT*

SCALE 6:1

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 751-01 THRU 751-06 ARE OBSOLETE. NEW
- STANDARD IS 751-07.

	MILLIN	IETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	4.80	4.80 5.00		0.197		
В	3.80 4.00		0.150	0.157		
С	1.35 1.75		0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27	1.27 BSC		0.050 BSC		
Н	0.10	0.10 0.25		0.010		
J	0.19 0.25		0.007	0.010		
K	0.40 1.27		0.016	0.050		
M	0 ° 8 °		0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0 244		

STYLE 11:

- SOURCE 1 PIN 1. 2.
 - GATE 1 SOURCE 2
 - GATE 2

 - DRAIN 2 DRAIN 2
 - DRAIN 1 DRAIN 1

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email: orderlit@onsemi.com

Literature Distribution Center for ON Semiconductor Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 **Phone**: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative