

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor FDFME3N311ZT

For any questions, you can email us directly: sales@integrated-circuit.com

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

SEMICONDUCTOR

July 2010

-6 k

5

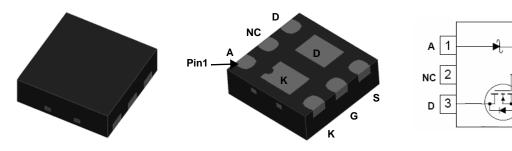
4

FDFME3N311ZT

Integrated N-Channel PowerTrench® MOSFET and Schottky Diode 30 V, 1.8 A, 299 m Ω

Features

- Max $r_{DS(on)}$ = 299 m Ω at V_{GS} = 4.5 V, I_D = 1.6 A
- Max $r_{DS(on)}$ = 410 m Ω at V_{GS} = 2.5 V, I_D = 1.3 A
- Low profile: 0.55 mm maximum in the new package MicroFET 1.6x1.6 Thin
- Free from halogenated compounds and antimony oxides
- HBM ESD protection level > 1600 V (Note 3)
- RoHS Compliant


General Description

This device is designed specifically as a single package solution for a boost topology in cellular handset and other ultra-portable applications. It features a MOSFET with low input capacitance, total gate charge and on-state resistance. An independently connected schottky diode with low forward voltage and reverse leakage current to maximize boost efficiency.

The MicroFET 1.6x1.6 **Thin** package offers exceptional thermal performance for it's physical size and is well suited to switching and linear mode applications.

Application

■ Boost Functions

BOTTOM MicroFET 1.6x1.6 Thin

MOSFET Maximum Ratings $T_A = 25$ °C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V
V _{GS}	Gate to Source Voltage	Gate to Source Voltage			
1	Drain Current -Continuous	T _A = 25 °C	(Note 1a)	1.8	А
I _D	-Pulsed			4.5	^
Б	Power Dissipation for Single Operation	T _A = 25 °C	(Note 1a)	1.4	14/
P_{D}	Power Dissipation for Single Operation	T _A = 25 °C	(Note 1b)	0.6	W
V_{RRM}	Schottky Repetitive Peak Reverse Voltage		28	V	
I _O	Schottky Average Forward Current			1	Α
T _J , T _{STG}	Operating and Storage Junction Temperature	Operating and Storage Junction Temperature Range			

Thermal Characteristics

TOP

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1a)	90	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1b)	195	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1c)	110	*C/VV
Roug	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1d)	234	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
1T	FDFME3N311ZT	MicroFET 1.6x1.6 Thin	7"	8mm	5000 units

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of FDFME3N311ZT - MOSFET N-CH 30V 1.8A 6MICROFET Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Parameter	Test Conditions	Min	Тур	Max	Units
cteristics					
Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V
Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		25		mV/°C
Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μΑ
Gate to Source Leakage Current	V _{GS} = ±12 V, V _{DS} = 0 V			±10	μΑ
	Cteristics Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current				

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	0.5	1	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25 °C		-3		mV/°C
		$V_{GS} = 4.5 \text{ V}, I_D = 1.6 \text{ A}$		235	299	
r _{DS(on)}		$V_{GS} = 2.5 \text{ V}, I_D = 1.3 \text{ A}$		296	410	mΩ
		$V_{GS} = 4.5 \text{ V}, I_D = 1.6 \text{ A}, T_J = 125 \text{ °C}$		365	603	
9 _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 1.6 \text{ A}$		2.8		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 45 V V 0 V	55	75	pF
Coss	Output Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1 MHz	15	20	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 1/11/12	7	10	pF
R_q	Gate Resistance		7.5		Ω

Switching Characteristics

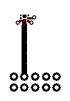
t _{d(on)}	Turn-On Delay Time		6	12	ns
t _r	Rise Time	$V_{DD} = 15 \text{ V}, I_{D} = 1.6 \text{ A},$ $V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$	8	16	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = 4.5 V, N _{GEN} = 0.22	22	35	ns
t _f	Fall Time		1.4	10	ns
Q_g	Total Gate Charge	V 45VV 45V	1	1.4	nC
Q_{gs}	Gate to Source Gate Charge	$V_{GS} = 4.5 \text{ V}, V_{DD} = 15 \text{ V},$ $I_{D} = 1.6 \text{ A}$	0.2		nC
Q _{gd}	Gate to Drain "Miller" Charge	10 = 1.071	0.3		nC

Drain-Source Diode Characteristics

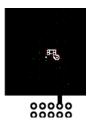
V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 0.9 \text{ A}$ (Note 2)		0.9	1.2	V
t _{rr}	Reverse Recovery Time	L = 1.6 A di/dt = 100 A/		12	22	ns
Q _{rr}	Reverse Recovery Charge	I _F = 1.6 A, di/dt = 100 A/μs		10	nC	

Schottky Diode Characteristics

I_	Reverse Leakage	V _R = 28 V	T _J = 25 °C T _J = 85 °C	15	100	μΑ
I _R Reverse Leakage	v _R = 20 v	T _J = 85 °C	0.46	4.7	mA	
V	Forward Valtage	Ι – 1 Λ	T _J = 25 °C T _J = 85 °C	0.47	0.57	V
V _F Forward Voltage	I _F = 1 A	T _J = 85 °C	0.45		V	
V	Forward Valtage	I _F = 500 mA	T _J = 25 °C T _J = 85 °C	0.38	0.48	V
V _F Forward Voltage	Forward voltage	IF = 500 IIIA	$T_J = 85 ^{\circ}C$	0.33		V


Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of FDFME3N311ZT - MOSFET N-CH 30V 1.8A 6MICROFET Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Electrical Characteristics


- Notes: 1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.
 - (a) MOSFET $R_{\theta JA} = 90$ °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB.
 - (b) MOSFET $R_{\theta JA}$ = 195 °C/W when mounted on a minimum pad of 2 oz copper.
 - (c) Schottky $R_{\theta JA}$ = 110 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062" thick PCB.
 - (d) Schottky $R_{\rm BJA}$ = 234 °C/W when mounted on a minimum pad of 2 oz copper.

a. 90 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 195 °C/W when mounted on a minimum pad of 2 oz copper.

c. 110 °C/W when mounted on a 1 in² pad of 2 oz copper.

d. 234 °C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. The diode connected between the gate and source serves only as protection ESD. No gate overvoltage rating is implied.
- 4. Rating is applicable to MOSFET only.

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Typical Characteristics T_J = 25°C unless otherwise noted

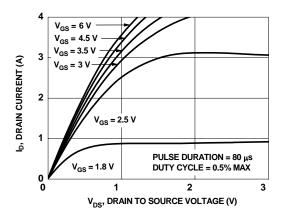


Figure 1. On Region Characteristics

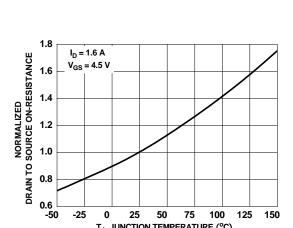


Figure 3. Normalized On Resistance vs Junction Temperature

T_J, JUNCTION TEMPERATURE (°C)

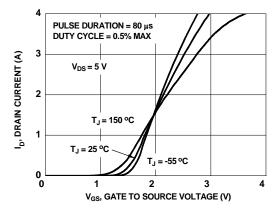


Figure 5. Transfer Characteristics

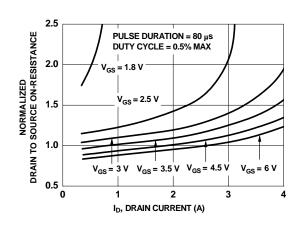


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

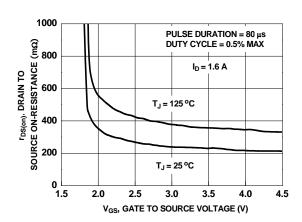


Figure 4. On-Resistance vs Gate to Source Voltage

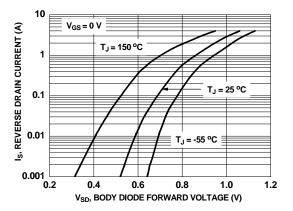


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

10⁻²

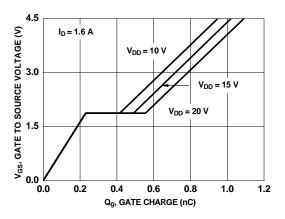


Figure 7. Gate Charge Characteristics

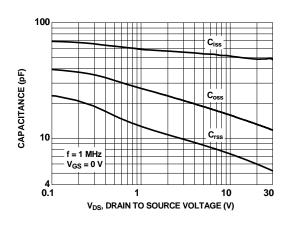


Figure 8. Capacitance vs Drain to Source Voltage

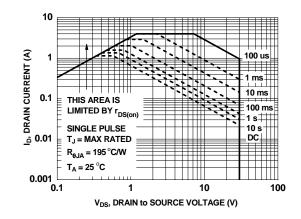
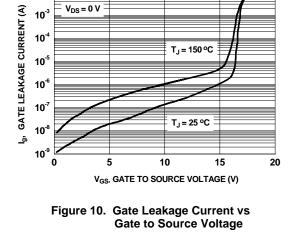



Figure 9. Forward Bias Safe Operating Area

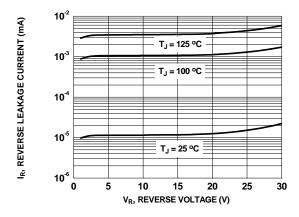


Figure 11. Schottky Diode Reverse Current

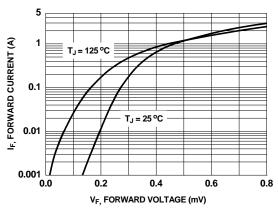


Figure 12. Schottky Diode Forward Voltage

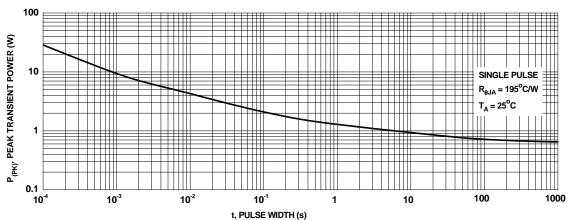


Figure 13. Single Pulse Maximum Power Dissipation

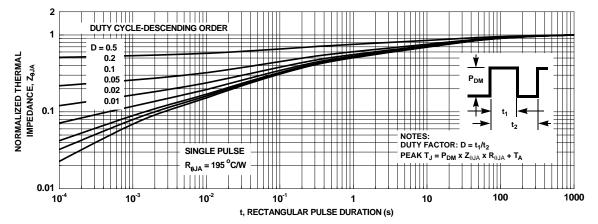
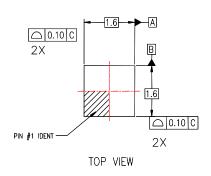
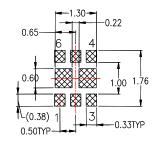
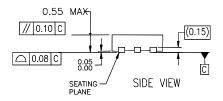
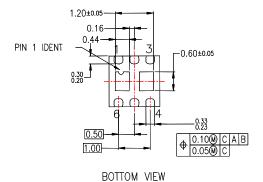




Figure 14. Junction-to-Ambient Transient Thermal Response Curve


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


Dimensional Outline and Pad Layout

RECOMMENDED LAND PATTERN

©2010 Fairchild Semiconductor Corporation FDFME3N311ZT Rev. C3

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited

Datasheet of FDFME3N311ZT - MOSFET N-CH 30V 1.8A 6MICROFET

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{TM}$ CTL™

Current Transfer Logic™ DEUXPEED[®] Dual Cool™ EcoSPARK® EfficentMax™ ESBC™

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series™

FACT FAST® FastvCore™ FETBench™ FlashWriter® * F-PFS™ FRFET®

Global Power ResourceSM Green FPS™ Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™

MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ OptiHiT[™] OPTOLOGIC® OPTOPLANAR®

PDP SPM™

Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFET QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™ SPM[®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™

SYSTEM ")" GENERAL
The Power Franchise® bwer

TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TIŃYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* uSerDes™

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

AIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Datasneet identification	Froduct Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
Obsolete	Not in Floudction	Semiconductor. The datasheet is for reference information only.

Rev. 148