

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay/Siliconix DG2616DN-T1-E4

For any questions, you can email us directly: sales@integrated-circuit.com

Vishay Siliconix

Low Voltage, Dual SPDT Analog Switch with Charge Pump

DESCRIPTION

The DG2616, DG2617, DG2618 are monolithic CMOS analog switching products designed for high performance switching of analog signals. Combining low power, high speed, low on-resistance and small physical size, the DG2616, DG2617, DG2618 are ideal for portable and battery powered applications.

The DG2616, DG2617, DG2618 have built-in charge-pump circuitry which lowers the minimum supply voltage to \pm 1.5 V while maintaining low on-resistance. The Control circuitry allows the DG2616, DG2617, DG2618 to operate in different configurations.

Built on Vishay Siliconix's low voltage process, the DG2616, DG2617, DG2618 has an epitaxial layer that prevents latch-up. Break-before-make is guaranteed.

The DG2616, DG2617, DG2618 are manufactured in space saving DFN-10 (3.0×3.0 mm). And as a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device terminations and is 100 % RoHS compliant.

FEATURES

- Low voltage operation (1.5 V to 3.6 V)
- Low on-resistance ${\rm R}_{\rm ON}\!\!:$ 4.2 Ω typ. at 2.7 V
- Fast switching: t_{ON} = 39 ns t_{OFF} = 8 ns
- DFN-10 package

RoHS COMPLIA

BENEFITS

- Reduced power consumption
- · High accuracy
- · Reduce board space
- TTL/1.8 V logic compatible
- High bandwidth

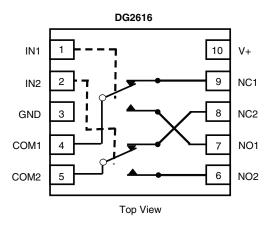
APPLICATIONS

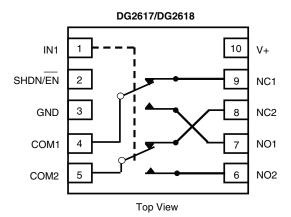
- · Cellular phones
- · Audio and video signal routing
- PCMCIA cards
- · Battery operated systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE DG2616						
Logic	NC1, 2	NO1, 2				
0	ON	OFF				
1	OFF	ON				

TRUTH TABLE DG2617									
SHDN/EN Logic IN Logic NC1, 2 NO1, 2 Charge Pump									
0	0	ON	OFF	ON					
0	1	OFF	ON	ON					
1	0	ON	OFF	OFF					
1	1	OFF	ON	OFF					


TRUTH TABLE DG2618							
SHDN/EN Logic IN Logic NC1, 2 NO1, 2 Charge Pum							
0	0	ON	OFF	ON			
0	1	OFF	ON	ON			
1	х	OFF	OFF	OFF			


ORDERING INFORMATION							
Temp. Range Package Part Number							
- 40 °C to 85 °C	DFN-10	DG2616DN-T1-E4 DG2617DN-T1-E4 DG2618DN-T1-E4					

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS T _A = 25 °C, unless otherwise noted						
Parameter		Limit	Unit			
Reference to GND	V+	- 0.3 to 6.0	V			
nelerence to GIND	IN, COM, NC, NO ^a	- 0.3 to (V+ + 0.3)				
Current (Any terminal except NO, NC or 0	30					
Continuous Current (NO, NC, or COM)		± 150	mA			
Peak Current (Pulsed at 1 ms, 10 % Duty Cycle)		± 300				
Storage Temperature (D-Suffix)		- 65 to 150	°C			
Package Solder Reflow Conditions ^d						
Power Dissipation (Packages) ^b	DFN-10 ^c	1191	mW			

Notes

- a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board.
- c. Derate 14.9 mW/°C above 70 °C
- d. Manual soldering with iron is not recommended for leadless components. The DFN-10 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

www.vishay.com

Vishay Siliconix

Test Conditions Limits							
		Otherwise Unless Specified		- 4	0 °C to 85	°C	
Parameter	Symbol	$V+ = 3 V, \pm 10 \%, V_{IN} = 0.5 \text{ or } 1.4 V^{e}$	Temp.a	Min.b	Typ.c	Max.b	Unit
Analog Switch	,						
d	V_{NO} , V_{NC} ,		FII	0			.,
Analog Signal Range ^d	V_{COM}		Full	0		V+	V
		V+ = 1.5 V, V _{COM} = 1.5 V, I _{NO} , I _{NC} = 10 mA	Room Full		5.3	7.0 8.0	
		$V+ = 2.7 \text{ V}, V_{COM} = 1.5 \text{ V}, I_{NO}, I_{NC} = 10 \text{ mA}$	B		4.2	7.0	
On-Resistance	R _{ON}	$V+ = 2.7 \text{ V}, V_{COM} = 2.7 \text{ V}, I_{NO}, I_{NC} = 10 \text{ mA}$	Room		4.7	7.0	
			Full			8.0	
		V+ = 3.6 V, V _{COM} = 3.6 V, I _{NO} , I _{NC} = 10 mA	Room		5.5	7.0	Ω
		T. 0.0 1, 100M 0.0 1, 1NO, 1NC 10 11.11	Full			8.0	5.2
R _{ON} Flatness ^d	R _{ON} Flatness	$V+ = 2.7 \text{ V}, V_{COM} = 1.5 \text{ V}, 2.7 \text{ V},$	Room		0.6	2.0	
R _{ON} Match ^d	ΔR_{ON}	I_{NO} , $I_{NC} = 10 \text{ mA}$	Room		0.1		
On Resistance (Shutdown)	R _{SHDN}	V+ = 3.6 V, V _{COM} = 1.7 V, I _{NO} , I _{NC} = 10 mA	Room Full		15	20 21	
	I _{NO(off)} ,		Room	- 2		2	
Outland Off Landson Comment	I _{NC(off)}	$V+ = 3.6 V, V_{NO}, V_{NC} = 0.3 V/3.3 V,$	Full	- 10		10	
Switch Off Leakage Current		$V_{COM} = 3.3 \text{ V}/0.3 \text{ V}$	Room	- 2		2	nA
	I _{COM(off)}		Full	- 10		10	11/4
Channel-On Leakage	I _{COM(on)}	$V + = 3.6 \text{ V}, V_{NO}, V_{NC} = V_{COM} = 0.3 \text{ V}/3.3 \text{ V}$	Room	- 2		2	
Current	-COM(OH)	The state of the s	Full	- 10		10	
Digital Control		V 45V		1.0	<u> </u>	I	
Input High Voltage	V_{INH}	V+ = 1.5 V V+ = 2.7 V to 3.6 V	1	1.0			
		V+ = 2.7 V to 3.6 V V+ = 1.5 V	Full	1.4		0.4	V
Input Low Voltage	V_{INL}	V+ = 1.5 V V+ = 2.7 V to 3.6 V	1			0.4	
Input Capacitance	C _{in}	V = 2.7 V to 0.0 V	Full		3.2	0.0	pF
Input Current	I _{INL} or I _{INH}	V _{IN} = 0 or V+	Full	- 1	0.2	1	μA
Dynamic Characteristics	IINL TO TINH	- IIV		<u> </u>		<u>'</u>	μ,
			Room		39	69	
Turn-On Time	t _{ON}	V: 07 == 0 0 V V == V 4 5 V	Full			76	
Turn Off Time	t	$V_{+} = 2.7 \text{ or } 3.6 \text{ V}, V_{NO} \text{ or } V_{NC} = 1.5 \text{ V},$	Room		9	39	ns
Turn-Off Time	t _{OFF}	$R_L = 50 \Omega, C_L = 35 pF$	Full			41	
Break-Before-Make Time	t _d		Full	1			
Charge Injection ^d	Q_{INJ}	$C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V, } R_{GEN} = 0 \Omega$	Room		7		рC
d	A 15 =	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$			- 77		
Off-Isolation ^d	OIRR	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 MHz$	Room		- 32		dB
		$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$	1100111		- 80		ub
Crosstalk ^{d, f}	X _{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 MHz$			- 32		
N N 0# 0d	C _{NO(off)}		Room		9		
N _O , N _C Off Capacitance ^d	C _{NC(off)}	F)			7		_
	C _{NO(on)}	f = 1 MHz	Room		21		pF
Channel-On Capacitance ^d	C _{NC(on)}		Room		19		

Document Number: 74411 S-82149-Rev. B, 08-Sep-08 www.vishay.com

Distributor of Vishay/Siliconix: Excellent Integrated System Limited

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Datasheet of DG2616DN-T1-E4 - IC SWITCH LV DUAL SPST 10DFN

ectionic components

DG2616, DG2617, DG2618

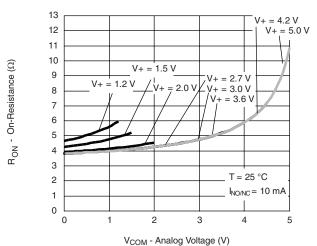
Vishay Siliconix

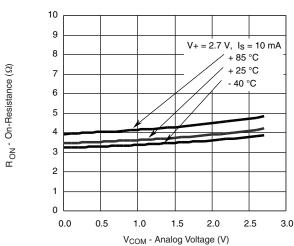
SPECIFICATIONS V+ = 3 V									
Test Conditions Otherwise Unless Specified			- 4	Limits - 40 °C to 85 °C					
Parameter	Symbol	$V+ = 3 V, \pm 10 \%, V_{IN} = 0.5 \text{ or } 1.4 V^{e}$	Temp.a	Min.b	Typ.c	Max.b	Unit		
Power Supply									
Power Supply Range	V+			1.5		3.6	V		
Power Supply Current	l+	$V+ = 3.6 \text{ V}, V_{IN} = 0 \text{ or } V+, \text{SHDN/}\overline{EN} = 0 \text{ V}$	- Full		104	300			
Fower Supply Current	I+	$V+ = 3.6 \text{ V}, V_{IN} = 0 \text{ or } V+, \text{SHDN/}\overline{\text{EN}} = V+$	Full		0.1	2	μΑ		

Notes:

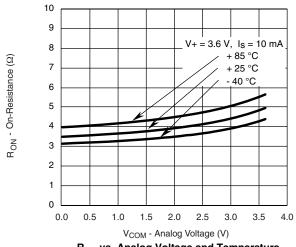
- a. Room = 25 °C, Full = as determined by the operating suffix.
- b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- c. Typical values are for design aid only, not guaranteed nor subject to production testing.
- d. Guarantee by design, not subjected to production test.
- e. V_{IN} = input voltage to perform proper function.
- f. Crosstalk measured between channels.

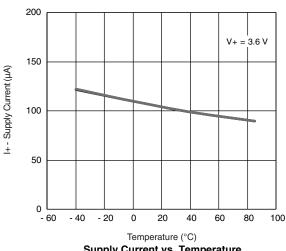
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

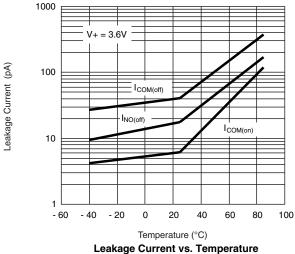

www.vishay.com

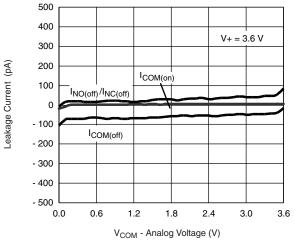


Vishay Siliconix


TYPICAL CHARACTERISTICS T_A = 25 °C, unless otherwise noted

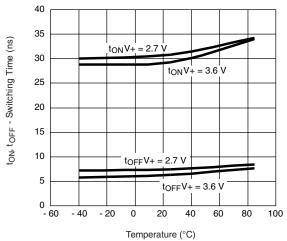

R_{ON} vs. V_{COM} and Supply Voltage

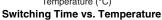

R_{ON} vs. Analog Voltage and Temperature

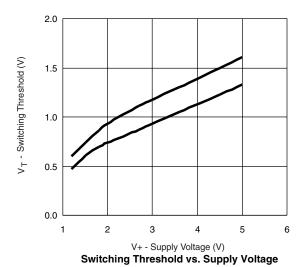


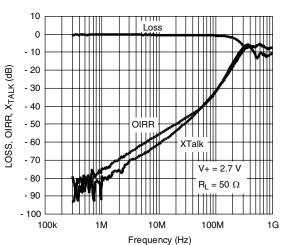
R_{ON} vs. Analog Voltage and Temperature

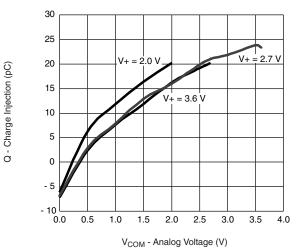
Supply Current vs. Temperature


Leakage vs. Analog Voltage

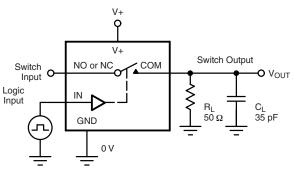


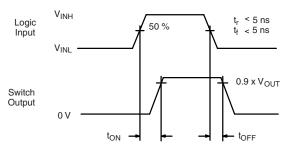

Vishay Siliconix


TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted



Insertion Loss, Off-Isolation Crosstalk vs. Frequency


Charge Injection vs. Analog Voltage


Vishay Siliconix

TEST CIRCUITS

C_L (includes fixture and stray capacitance)

$$V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$$

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

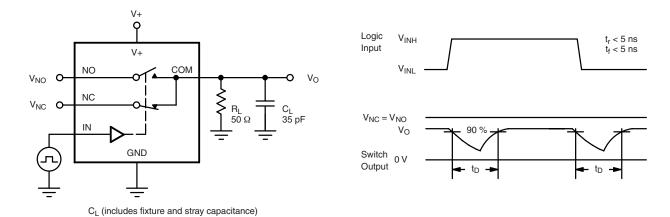


Figure 2. Break-Before-Make Interval

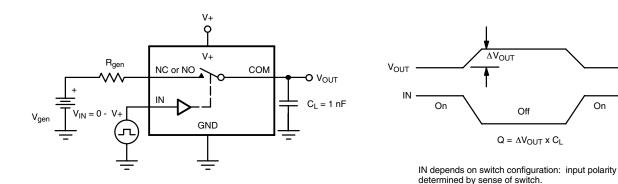


Figure 3. Charge Injection

Document Number: 74411 S-82149-Rev. B, 08-Sep-08 On

Distributor of Vishay/Siliconix: Excellent Integrated System Limited

Datasheet of DG2616DN-T1-E4 - IC SWITCH LV DUAL SPST 10DFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

DG2616, DG2617, DG2618

Vishay Siliconix

TEST CIRCUITS

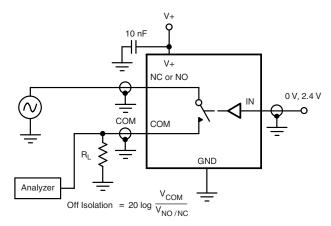


Figure 4. Off-Isolation

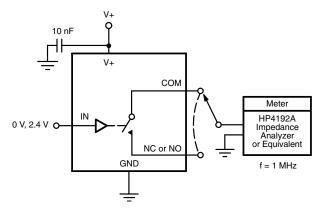
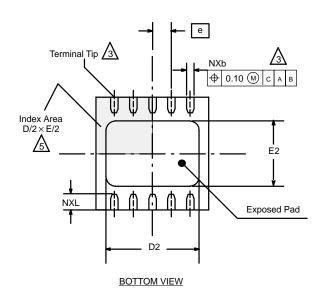
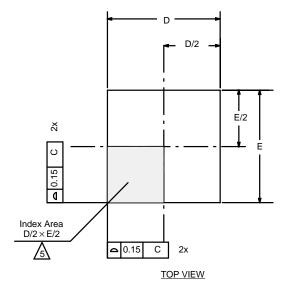
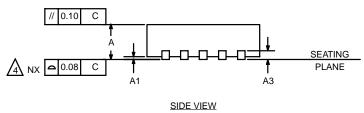


Figure 5. Channel Off/On Capacitance


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?74411.





Package Information Vishay Siliconix

DFN-10 LEAD (3 X 3)

NOTES:

1. All dimensions are in millimeters and inches.

2. N is the total number of terminals.

Dimension b applies to metallized terminal and is measured between 0.15 and 0.30 mm from terminal tip. $\,$

Coplanarity applies to the exposed heat sink slug as well as the terminal.

The pin #1 identifier may be either a mold or marked feature, it must be located within the zone iindicated.

MI	MILLIMETERS			INCHES			
Min	Nom	Max	Min	Nom	Max		
0.80	0.90	1.00	0.031	0.035	0.039		
0.00	0.02	0.05	0.000	0.001	0.002		
	0.20 BSC			0.008 BSC			
0.18	0.23	0.30	0.007 0.009 0.012				
	3.00 BSC		0.118 BSC				
2.20	2.38	2.48	0.087	0.094	0.098		
3.00 BSC			0.118 BSC				
1.49	1.64	1.74	0.059	0.065	0.069		
	0.50 BSC			0.020 BSC			
0.30	0.40	0.50	0.012	0.016	0.020		
*Use millimeters as the primary measurement.							
	Min 0.80 0.00 0.18 2.20 1.49 0.30 neters as the	Min Nom 0.80 0.90 0.00 0.02 0.20 BSC 0.18 0.23 3.00 BSC 2.20 2.38 3.00 BSC 1.49 1.64 0.50 BSC 0.30 0.40	Min Nom Max 0.80 0.90 1.00 0.00 0.02 0.05 0.20 BSC 0.30 0.30 3.00 BSC 2.28 2.48 3.00 BSC 1.74 0.50 BSC 0.30 0.40 0.50 eters as the primary measurement.	Min Nom Max Min 0.80 0.90 1.00 0.031 0.00 0.02 0.05 0.000 0.20 BSC 0.18 0.23 0.30 0.007 3.00 BSC 0.087 0.087 3.00 BSC 0.50 BSC 0.059 0.50 BSC 0.30 0.40 0.50 0.012 neters as the primary measurement.	Min Nom Max Min Nom 0.80 0.90 1.00 0.031 0.035 0.00 0.02 0.05 0.000 0.001 0.20 BSC 0.008 BSC 0.18 0.23 0.30 0.007 0.009 3.00 BSC 0.118 BSC 2.20 2.38 2.48 0.087 0.094 3.00 BSC 0.118 BSC 1.49 1.64 1.74 0.059 0.065 0.50 BSC 0.020 BSC 0.30 0.40 0.50 0.012 0.016 neters as the primary measurement.		

ECN: S-42134—Rev. A, 29-Nov-04 DWG: 5943

Document Number: 73181 www.vishay.com

Distributor of Vishay/Siliconix: Excellent Integrated System Limited

Datasheet of DG2616DN-T1-E4 - IC SWITCH LV DUAL SPST 10DFN

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000