

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay/Siliconix DG2741DQ-T1-E3

For any questions, you can email us directly: sales@integrated-circuit.com

Vishay Siliconix

Low-Voltage, 0.8 Ω R_{ON}, Dual SPST Analog Switch

DESCRIPTION

The DG2741, DG2742, DG2743 are low voltage, single supply, dual SPST analog switches. Designed for high performance switching of analog signals, the DG2741, DG2742, DG2743 provide low on-resistance (0.8 Ω at + 2.7 V), fast speed (too, tof) at 35 ns and 33 ns) and the ability to handle signals over the entire analog voltage range.

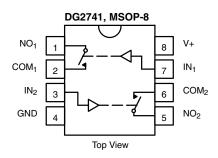
When operated on a + 3 V supply, control pins are compatible with 1.8 V digital logic. Additionally, on-resistance flatness and matching (0.18 Ω and 0.08 Ω , respectively) offer high accuracy between channels.

The DG2741 contains two normally open (NO) switches, the DG2742 contains two normally closed (NC) switches, and the DG2743 contains one normally open and one normally closed switch. Break-before-make is guaranteed.

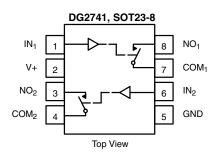
Built on Vishay Siliconix's low voltage submicron CMOS process, the DG2741, DG2742, DG2743 were designed to offer solutions that extend beyond audio/video functions, to providing the performance required for today's demanding mixed-signal switching in portable applications.

FEATURES

- Low voltage operation (1.6 V to 3.6 V)
- Low on-resistance R_{DS(on)}: 0.8 Ω at 2.7 V
- · High current handling capacity: 150 mA continuous
- Off-isolation: 56 dB at 1 MHz
- Fast switching: 25 ns t_{ON}
- Low charge injection Q_{INJ}: 5.8 pC
- Low power consumption: < 1 μW
- ESD protection > 2 000 V


BENEFITS

- · High accuracy
- · High bandwidth
- TTL and low voltage logic compatibility
- Low power consumption
- Reduced PCB space (SOT23-8 and MSOP-8)


APPLICATIONS

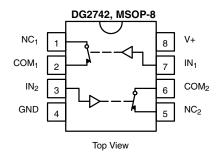
- Mixed signal routing
- · Portable and battery operated systems
- · Low voltage data acquisition
- Modems
- PCMCIA cards

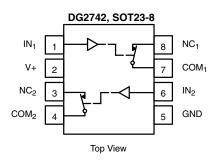
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION (DG2741)

Device Marking: 2741

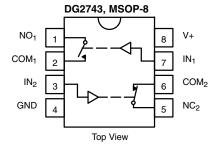
Device Marking: F3

TRUTH TABLE (DG2741)					
Logic Switch					
0	Off				
1	On				


Document Number: 72708 S11-0303-Rev. B, 28-Feb-11


Vishay Siliconix

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION (DG2742, DG2743)



Device Marking: 2742

Device Marking: F4

TRUTH TABLE (DG2742)					
Logic	Switch				
0	On				
1	Off				

Device Marking: 2743

		DG274	3, SO	T23-8		
IN ₁ V+	1 2	→ ▷		<i>_</i>	8	NO ₁
NC ₂	3	_ _	┌ ≺	1—	6	IN ₂
COM ₂	4	To	p View	1	5	GND

Device Marking: F5

TRUTH TABLE (DG2743)					
Logic	Switch-1	Switch-2			
0	Off	On			
1	On	Off			

ORDERING INFORMATION							
Temp. Range Package Part Number							
		DG2741DQ-T1					
	MSOP-8	DG2742DQ-T1					
- 40 °C to 85 °C		DG2743DQ-T1					
- 40 C 10 65 C		DG2741DS-T1					
	SOT23-8	DG2742DS-T1					
		DG2743DS-T1					

Distributor of Vishay/Siliconix: Excellent Integrated System LimitedDatasheet of DG2741DQ-T1-E3 - IC SWTICH DUAL SPST 8MSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

DG2741, DG2742, DG2743

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)						
Parameter	Limit	Unit				
Referenced V+ to GND	- 0.3 to + 4 V	V				
IN, COM, NC, NO ^a	- 0.3 V to (V+ + 0.3 V)	7 V				
Continuous Current (NO, NC and COM	± 200	mA				
Peak Current (Pulsed at 1 ms, 10 % dut	± 300] "				
ESD per Method 3015.7	> 2	kV				
Storage Temperature (D Suffix)	- 65 to 150	°C				
Power Dissipation (Packages) ^c	6-Pin SC-70 ^c	250	mW			

Notes:

- a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board.
- c. Derate 3.1 mW/°C above 70 °C.

SPECIFICATIONS (V+ = 1.8 V) Test Conditions Limits							
		Test Conditions Otherwise Unless Specified		- 40 °C to 85 °C			
Parameter	meter Symbol $V+ = 1.8 \text{ V}, \pm 10 \%, V_{IN} = 0.4 \text{ or } 1.0 \text{ V}^e$		Temp.a	Min.b	Typ.c	Max.b	Unit
Analog Switch							
Analog Signal Range ^d	$V_{NO}, V_{NC} V_{COM}$		Full	0		V+	٧
On-Resistance	R _{ON}	$V+ = 1.8 \text{ V}, V_{COM} = 0.9 \text{ V}$ $I_{NO}, I_{NC} = 10 \text{ mA}$	Room Full ^d		0.9	2.5 4.0	
R _{ON} Flatness ^d	R _{ON} Flatness	$V+ = 1.8 \text{ V}, V_{COM} = 0 \text{ to } V+, I_{NO}, I_{NC} = 10 \text{ mA}$	Room		0.25		Ω
R _{ON} Match ^d	ΔR_{ON}		Room		0.05		
0 71 071 1 1 0 m d	I _{NO(off)} I _{NC(off)}	V+ = 1.8 V	Room Full ^d	- 1 - 10		1 10	
Switch Off Leakage Current [†]	I _{COM(off)}	V_{NO} , $V_{NC} = 0.2 \text{ V/2.0 V}$, $V_{COM} = 1.5 \text{ V/0.3 V}$	Room Full ^d	- 1 - 10		1 10	nA
Channel-On Leakage Current ^f	I _{COM(on)}	$V+ = 1.8 \text{ V}, V_{NO}, V_{NC} = V_{COM} = 0.3 \text{ V}/1.5 \text{ V}$	Room Full ^d	- 1 - 10		1 10	
Digital Control							
Input High Voltage	V _{INH}		Full	1.0			V
Input Low Voltage	V _{INL}		Full			0.4	•
Input Capacitance ^d	C _{in}		Full		5.5		pF
Input Current ^f	I _{INL} or I _{INH}	$V_{IN} = 0$ or $V+$	Full	- 1		1	μΑ
Dynamic Characteristics							
Turn-On Time ^d	t _{ON}	V 22V 15VD 5000 2575	Room Full ^d		33	45 50	
Turn-Off Time ^d	t _{OFF}	V_{NO} or V_{NC} = 1.5 V, R_L = 50 Ω , C_L = 35 pF figures 1 and 2	Room Full ^d		27	40 45	ns
Break-Before-Make Time ^d	t _d		Room	3			
Charge Injection ^d	Q _{INJ}	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω , figure 3	Room		20		рC
Off-Isolation ^d	OIRR	$R_1 = 1 \text{ k}\Omega$, $C_1 = 5 \text{ pF}$, $f = 1 \text{ MHz}$	Room		55		٩D
Crosstalk ^d	X _{TALK}	$\Pi_{L} = 1 \text{ NS2, } O_{L} = 3 \text{ pr, } 1 = 1 \text{ NM} \square Z$	Room		91		dB
NO, NC Off Capacitance ^d	$C_{NO(off)} \ C_{NC(off)}$	V _{IN} = 0 or V+, f = 1 MHz	Room		88		pF
Channel-On Capacitance ^d	C _{ON}		Room		105		

Document Number: 72708 S11-0303-Rev. B, 28-Feb-11

Distributor of Vishay/Siliconix: Excellent Integrated System Limited

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Datasheet of DG2741DQ-T1-E3 - IC SWTICH DUAL SPST 8MSOP

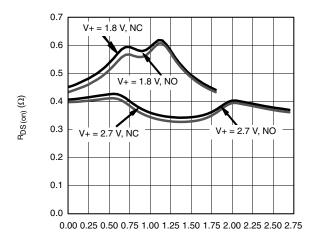
DG2741, DG2742, DG2743

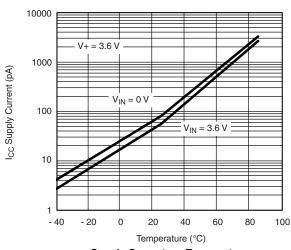
Vishay Siliconix

		Test Conditions Otherwise Unless Specified		Limits - 40 °C to 85 °C			
Parameter	Symbol	$V+ = 3 V$, $\pm 10 \%$, $V_{IN} = 0.5 \text{ or } 1.4 V^e$	Temp.a	Min.b	Typ.c	Max.b	Uni
Analog Switch							
Analog Signal Range ^d	$V_{NO}, V_{NC} \ V_{COM}$		Full	0		V+	V
On-Resistance	R _{ON}	$V+ = 2.7 \text{ V}, V_{COM} = 0.2 \text{ V}/1.5 \text{ V}, I_{NO}$ $I_{NC} = 100 \text{ mA}$	Room Full		0.4	0.8 0.9	
R _{ON} Flatness	R _{ON} Flatness	V+ = 2.7 V, V _{COM} = 1.5, 2 V, I _{NO} , I _{NC} = 100 mA	Room		0.8	0.18	Ω
R _{ON} MatchFlat	ΔR_{ON}		Room		0.05	0.08	
Switch Off Leakage Current	I _{NO(off)} I _{NC(off)}	V+ = 3.3 V	Room Full	- 1 - 10		1 10	
Switch on Educage durient	I _{COM(off)}	V_{NO} , $V_{NC} = 0.3 \text{ V/3 V}$, $V_{COM} = 3 \text{ V/0.3 V}$	Room Full	- 1 - 10		1 10	nA
Channel-On Leakage Current	I _{COM(on)}	$V+ = 3.3 \text{ V}, V_{NO}, V_{NC} = V_{COM} = 0.3 \text{ V/3 V}$	Room Full	- 1 - 10		1 10	
Digital Control							
Input High Voltage	V _{INH}		Full	1.4			V
Input Low Voltage	V_{INL}		Full			0.5	·
Input Capacitance ^d	C_{in}		Full		5.5		pF
Input Current ^f	$I_{\rm INL}$ or $I_{\rm INH}$	$V_{IN} = 0$ or $V+$	Full	- 1		1	μΑ
Dynamic Characteristics							
Turn-On Time	t _{ON}	V_{NO} or V_{NC} = 1.5 V, R_{L} = 50 Ω , C_{L} = 35 pF	Room Full		20	30 35	ns
Turn-Off Time	t _{OFF}	V_{NO} of $V_{NC} = 1.3 \text{ V}$, $H_{L} = 30.22$, $G_{L} = 35 \text{ pr}$ $V_{+} = 2.7 \text{ V}$, figures 1 and 2	Room Full		18	28 33	110
Break-Before-Make Time	t _d		Room	1			
Charge Injection ^d	Q_{INJ}	C_L = 1 nF, V_{GEN} = 0 V, R_{GEN} = 0 Ω , figure 3	Room		5.8		рС
Off-Isolation ^d	OIRR	$R_1 = 1 \text{ k}\Omega$, $C_1 = 5 \text{ pF}$, $f = 1 \text{ MHz}$	Room		- 56	_	40
Crosstalk ^d	X _{TALK}	$\Gamma_1 = \Gamma_1 \times 2, \ O_1 = 0 \ \text{pr}, \ \Gamma = \Gamma_1 \text{virial}$	Room		- 89		dB
NO, NC Off Capacitance ^d	C _{NO(off)} C _{NC(off)}	V+ = 3.6 V, V _{IN} = 0 or V+, f = 1 MHz	Room		81		pF
Channel-On Capacitance ^d	C _{ON}	1			103		
Power Supply			•				
Power Supply Range	V+			1.5		3.6	V
Power Supply Current	l+	$V+ = 3.6 \text{ V}, V_{IN} = 0 \text{ or } V+$			0.01	1.0	μΑ

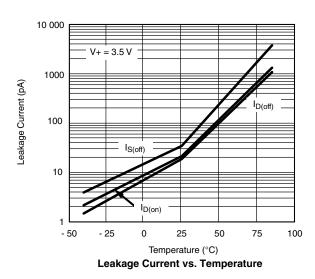
Notes:

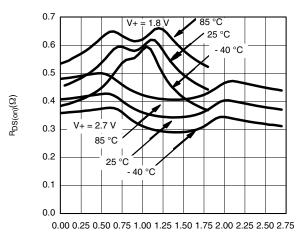
- a. Room = 25 °C, Full = as determined by the operating suffix.
- b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- c. Typical values are for design aid only, not guaranteed nor subject to production testing.
- d. Guarantee by design, nor subjected to production test.
- e. V_{IN} = input voltage to perform proper function.
- f. Guaranteed by 3 V leakage testing, not production tested.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

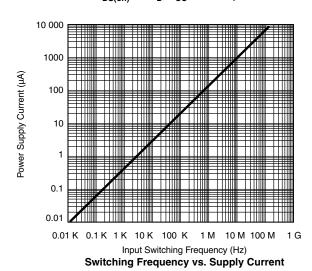


Vishay Siliconix


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



 V_D (V) R_{DS(on)} vs. V_{COM} vs. 1 V_{CC}

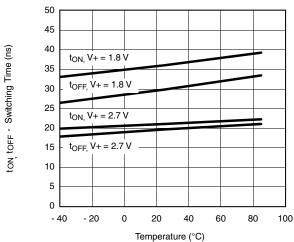


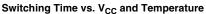
Supply Current vs. Temperature

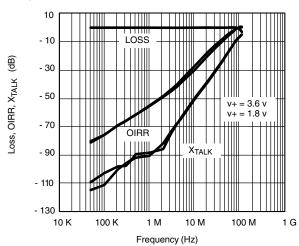
 V_D (V) $R_{DS(on)}$ vs. V_D , V_{CC} and Temperature

2000 V + = 3.3 V1500 I_{S(off)} 1000 Leakage Current (pA) 500 0 - 500 $I_{D(on)}$ - 1000 - 1500 I_{D(off)} - 2000 2.0 0.5 1.0 1.5 2.5 3.0 3.5 0.0 V_D (V) Leakage Current vs. Analog Voltage

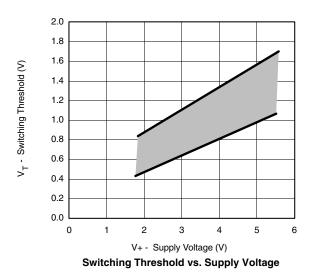
S11-0303-Rev. B, 28-Feb-11


Document Number: 72708 www.vishay.com




Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



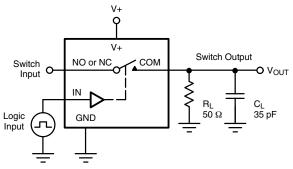
Insertion Loss, Off -Isolation Crosstalk vs. Frequency

20 Q - Charge Injection (pC) V+ = 3.6 V0 V+ = 1.8 V- 20 - 40 - 60 0.5 4.0 0.0 1.0 1.5 2.0 2.5 V_{COM} - Analog Voltage (v) Charge Injection vs. Analog Voltage

40

www.vishay.com

Document Number: 72708 S11-0303-Rev. B, 28-Feb-11

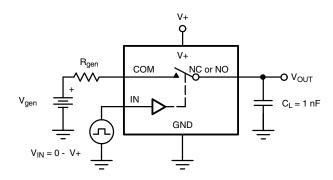

6

Vishay Siliconix

TEST CIRCUITS

 $V_{INH} \qquad \qquad t_r < 5 \text{ ns} \\ V_{INL} \qquad \qquad t_f < 5 \text{ ns} \\ 0.9 \text{ x } V_{OUT} \\ 0 \text{ V} \qquad \qquad t_{OFF} \\ \end{cases}$

C_L (includes fixture and stray capacitance)


$$V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$$

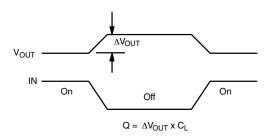
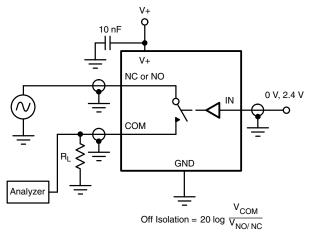

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

Logic Input


Switch Output

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 2.Charge Injection

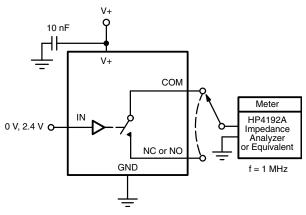


Figure 3. Off-Isolation

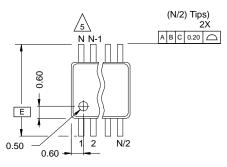
Figure 4. Channel Off/On Capacitance

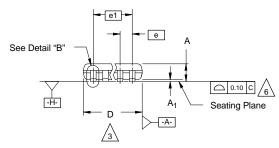
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppq?72708.

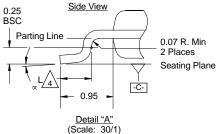
Document Number: 72708 www.vishay.com S11-0303-Rev. B, 28-Feb-11 7

Distributor of Vishay/Siliconix: Excellent Integrated System Limited

Datasheet of DG2741DQ-T1-E3 - IC SWTICH DUAL SPST 8MSOP


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


Package Information Vishay Siliconix


MSOP: 8-LEADS

JEDEC Part Number: MO-187, (Variation AA and BA)

Top View

NOTES:

Die thickness allowable is 0.203 ± 0.0127 .

Dimensioning and tolerances per ANSI.Y14.5M-1994.

Dimensions "D" and "E₁" do not include mold flash or protrusions, and are measured at Datum plane -H-, mold flash or protrusions shall not exceed

Dimension is the length of terminal for soldering to a substrate.

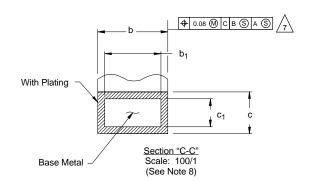
Terminal positions are shown for reference only.

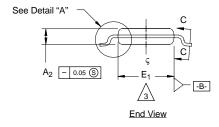
Formed leads shall be planar with respect to one another within 0.10 mm at seating plane.

The lead width dimension does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the lead foot. Minimum space between protrusions and an adjacent lead to be 0.14 mm. See detail "B" and Section "C-C".

Section "C-C" to be determined at 0.10 mm to 0.25 mm from the lead tip.

Controlling dimension: millimeters.


10. This part is compliant with JEDEC registration MO-187, variation AA and BA.

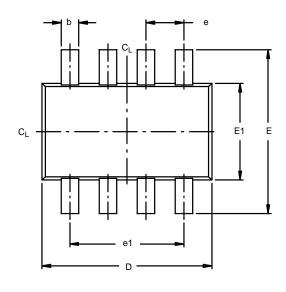

/11\ Datums -A- and -B- to be determined Datum plane -H-.

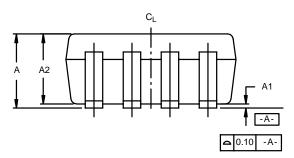
12-Jul-02

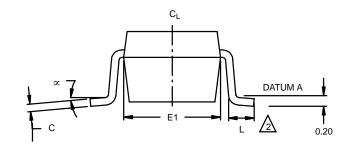
Exposed pad area in bottom side is the same as teh leadframe pad size.

N = 8L

	МІ				
Dim	Min	Nom	Max	Note	
Α	-	-	1.10		
A ₁	0.05	0.10	0.15		
A ₂	0.75	0.85	0.95		
b	0.25	-	0.38	8	
b ₁	0.25	0.30	0.33	8	
С	0.13	-	0.23		
c ₁	0.13	0.15	0.18		
D		3.00 BSC		3	
Е		4.90 BSC			
E ₁	2.90	3.00	3.10	3	
е		0.65 BSC			
e ₁		1.95 BSC			
L	0.40	0.55	0.70	4	
N		5			
œ	0°	4°	6°		
ECN: T-02080—Rev. C, 15-Jul-02 DWG: 5867					


Document Number: 71244 www.vishay.com





Package Information Vishay Siliconix

SOT-23: 8-LEAD

NOTES:

All dimensions are in millimeters.

Foot length measured at intercept point between Datum A and

- Package outline exclusive of mold flash and metal burr.
- Package outline inclusive of solder plating.
- No molding flash allowed on the top and bottom lead surface.

	MI	LLIMETE	RS	INCHES		
Dim	Min	Nom	Max	Min	Nom	Max
Α	0.90	1.27	1.45	0.035	0.05	0.057
A1	0.00	0.0762	0.15	0.000	0.003	0.006
A2	0.90	1.20	1.30	0.035	0.047	0.051
b	0.22	0.30	0.38	0.009	0.012	0.015
С	0.09	0.152	0.20	0.004	0.006	0.008
D	2.80	2.9	3.00	0.11	0.114	0.118
E	2.60	2.8	23.00	0.102	0.11	0.118
E1	1.50	1.65	1.75	0.059	0.065	0.069
е		0.65 REF			0.026 REF	
e1	1.95 REF				0.077 REF	
L	0.35	0.45	0.55	0.014	0.018	0.022
×	0°	4°	8°	0°	4°	8°
ECN: C-03085—Rev. A, 07-Apr-03 DWG: 5895						

Document Number: 72207 www.vishay.com

Distributor of Vishay/Siliconix: Excellent Integrated System Limited

Datasheet of DG2741DQ-T1-E3 - IC SWTICH DUAL SPST 8MSOP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000