Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: Texas Instruments TMP513AIRSAR For any questions, you can email us directly: sales@integrated-circuit.com Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com **TMP512** TMP513 www.ti.com SBOS491A - JUNE 2010 - REVISED MAY 2011 # **Temperature and Power Supply System Monitors** Check for Samples: TMP512, TMP513 #### **FEATURES** - ±1°C REMOTE DIODE SENSORS - ±1°C LOCAL TEMPERATURE SENSOR - SERIES RESISTANCE CANCELLATION - n-FACTOR CORRECTION - **TEMPERATURE ALERT FUNCTION** - **AVERAGING** - 12-BIT RESOLUTION - **DIODE FAULT DETECTION** - SENSES BUS VOLTAGES FROM 0V TO +26V - REPORTS CURRENT IN AMPS. VOLTAGE IN **VOLTS AND POWER IN WATTS** - **HIGH ACCURACY: 1% MAX OVER TEMP** - **WATCHDOG LIMITS:** - Upper Over-Limit - **Lower Under-Limit** ### **APPLICATIONS** - **DESKTOP AND NOTEBOOK COMPUTERS** - **SERVERS** - INDUSTRIAL CONTROLLERS - **CENTRAL OFFICE TELECOM EQUIPMENT** - LCD/ DLP®/LCOS PROJECTORS - STORAGE AREA NETWORKS (SAN) #### DESCRIPTION The TMP512 (dual-channel) TMP513 and (triple-channel) are system monitors that include remote sensors, a local temperature sensor, and a high-side current shunt monitor. These system monitors have the capability of measuring remote temperatures, on-chip temperatures, and system voltage/power/current consumption. The remote temperature sensor diode-connected transistors are typically low-cost, NPN- or PNP-type transistors or diodes that are an integral part of microcontrollers, microprocessors, or FPGAs. accuracy is ±1°C for Remote multiple IC manufacturers, with no calibration needed. The SMBus™ two-wire serial interface accepts two-wire write and read commands. The onboard current shunt monitor is a high-side current shunt and power monitor. It monitors both the shunt drop and supply voltage. A programmable calibration value (along with the TMP512/TMP513 internal digital multiplier) enables direct readout in amps; an additional multiplication calculates power in watts. The TMP512 and TMP513 both feature two separate onboard watchdog capabilities; an over-limit comparator and a lower-limit comparator. These devices use a single +3V to +26V supply, drawing a maximum of 1.4mA of supply current, and they are specified for operation from -40°C to +125°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. DLP is a registered trademark of Texas Instruments. SMBus is a trademark of Intel Corporation. All other trademarks are the property of their respective owners. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SBOS491A - JUNE 2010 - REVISED MAY 2011 www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ### PACKAGE INFORMATION(1) | PRODUCT | PACKAGE-LEAD | PACKAGE DESIGNATOR | PACKAGE MARKING | |---------|--------------|--------------------|-----------------| | TMD542 | SO-14 | D | TMP512A | | TMP512 | QFN-16 | RSA | TMP512A | | TMD542 | SO-16 | D | TMP513A | | TMP513 | QFN-16 | RSA | TMP513A | For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the TMP512/TMP513 product folder at www.ti.com. ## ABSOLUTE MAXIMUM RATINGS(1) Over operating free-air temperature range (unless otherwise noted). | | | TMP512, TMP513 | UNIT | |--|---|-----------------------|------| | Supply Voltage, V+ | | 26 | V | | Files O | Voltage | GND – 0.3 to +6 | V | | Filter C | Current | 10 | mA | | Analan lanuta V | Differential (V _{IN+}) – (V _{IN} –) ⁽²⁾ | -26 to +26 | V | | Analog Inputs, V _{IN+} , V _{IN-} | Common-Mode | -0.3 to +26 | V | | Open-Drain Digital Outputs | | GND – 0.3 to +6 | V | | GPIO, DXP, DXN | | GND – 0.3 to V+ + 0.3 | V | | Input Current Into Any Pin | | 5 | mA | | Open-Drain Digital Output (| Current | 10 | mA | | Storage Temperature | | -65 to +150 | °C | | Junction Temperature | | +150 | °C | | ESD Ratings | Human Body Model (HBM) | 2000 | V | | | Charged-Device Model (CDM) | 1000 | V | | | Machine Model (MM) | 150 | V | ⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond V_{IN+} and V_{IN-} may have a differential voltage of -26V to +26V; however, the voltage at these pins must not exceed the range -0.3V to Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A -JUNE 2010-REVISED MAY 2011 ### THERMAL INFORMATION | | | TMP512 | TMP512AIRSAR
TMP512AIRSAT | | |-----------------------|--|----------|------------------------------|-------| | | THERMAL METRIC ⁽¹⁾ | D (SOIC) | RSA | UNITS | | | | 14 | 16 | | | θ_{JA} | Junction-to-ambient thermal resistance | 91.1 | 34.3 | | | $\theta_{JC(top)}$ | Junction-to-case(top) thermal resistance | 10.6 | 35.4 | | | θ_{JB} | Junction-to-board thermal resistance | 40.3 | 11.6 | °C/W | | ΨЈТ | Junction-to-top characterization parameter | 49.1 | 0.5 | *C/vv | | Ψ_{JB} | Junction-to-board characterization parameter | 47.5 | 11.6 | | | $\theta_{JC(bottom)}$ | Junction-to-case(bottom) thermal resistance | N/A | 2.7 | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. ### THERMAL INFORMATION | | . (4) | TMP513AID | TMP513AIRSAR
TMP513AIRSAT | _ | |-----------------------|--|-----------|------------------------------|-------| | | THERMAL METRIC ⁽¹⁾ | D (SOIC) | RSA | UNITS | | | | 16 | 16 | | | θ_{JA} | Junction-to-ambient thermal resistance | 77.6 | 44.8 | | | $\theta_{JC(top)}$ | Junction-to-case(top) thermal resistance | 55.0 | 43.8 | | | θ_{JB} | Junction-to-board thermal resistance | 49.9 | 14.7 | °C/W | | ΨЈТ | Junction-to-top characterization parameter | 3.5 | 0.4 | C/vv | | ΨЈВ | Junction-to-board characterization parameter | 32.2 | 14.5 | | | $\theta_{JC(bottom)}$ | Junction-to-case(bottom) thermal resistance | N/A | 2.6 | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A – JUNE 2010 – REVISED MAY 2011 www.ti.com ### **ELECTRICAL CHARACTERISTICS: V+ = +12V** **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+125^{\circ}C$. At $T_A = +25^{\circ}C$, $V_{+} = 12V$, $V_{SENSE} = (V_{IN+} - V_{IN-}) = 32mV$, $PGA = \div 1$, and $BRNG^{(1)} = 1$, unless otherwise noted. | , SENSE | \ IIV+ IIV-7 | | | TMP512, TMP513 | | | |---------------------------------------|----------------|---------------------------------------|-----|----------------|------|---------------| | PARAMETER | PARAMETER | | MIN | TYP | MAX | UNIT | | INPUT | | | | | | 1 | | Current Sense (Input) Voltage Range | | PGA = ÷ 1 | 0 | | ±40 | mV | | | | PGA = ÷ 2 | 0 | | ±80 | mV | | | | PGA = ÷ 4 | 0 | | ±160 | mV | | | | PGA = ÷ 8 | 0 | | ±320 | mV | | Bus Voltage (Input Voltage) Range (2) | | BRNG = 0 | 0 | | 16 | V | | | | BRNG = 1 | 0 | | 32 | V | | Common-Mode Rejection | CMRR | V _{IN+} = 0V to 26V | 100 | 120 | | dB | | Offset Voltage, RTI ⁽³⁾ | Vos | PGA = ÷ 1 | | ±10 | ±100 | μV | | | | PGA = ÷ 2 | | ±20 | ±125 | μV | | | | PGA = ÷ 4 | | ±30 | ±150 | μV | | | | PGA = ÷ 8 | | ±40 | ±200 | μV | | vs Temperature | vs Temperature | | | 0.2 | | μ V/°C | | D 0 1 | - | | | 10 | | μV/V | | vs Power Supply | PSRR | V+ = 4.5V to 26V, subregulator supply | | 0.1 | | μV/V | | Current Sense Gain Error | | | | ±0.04 | | % | | vs Temperature | | | | 0.0025 | | % | | Input Impedance | | Active Mode | | | | | | V _{IN+} Pin | | | | 20 | | μA | | V _{IN} - Pin | | | | 20 320 | | μA kΩ | | Input Leakage | | Power-Down Mode | | | | | | V _{IN+} Pin | | | | 0.1 | 0.5 | μA | | V _{IN} - Pin | | | | 0.1 | 0.5 | μΑ | | DC ACCURACY | | | | | | | | ADC Basic Resolution | | | | 12 | | Bits | | 1 LSB Step Size | | | | | | | | Shunt Voltage | | | | 10 | | μV | | Bus Voltage | | | | 4 | | mV | | Current Measurement Error | | | | ±0.2 | ±0.5 | % | | over Temperature | | | | | ±1 | % | | Bus Voltage Measurement Error | | | | ±0.2 | ±0.5 | % | | over Temperature | | | | | ±1 | % | | Differential Nonlinearity | | | | ±0.1 | | LSB | | ADC TIMING | | | | | | | | ADC Conversion Time | | 12-Bit | | 665 | 733 | μs | | | | 11-Bit | | 345 | 380 | μs | | | | 10-Bit | | 185 | 204 | μs | | | | 9-Bit | | 105 | 117 | μs | - 1) BRNG is bit 13 of Configuration Register 1. - (2) This parameter only expresses the full-scale range of the ADC scaling. In no event should more than 26V be applied to this device. - (3) Referred-to-input (RTI). - (4) See Subregulator section.
Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com **TMP512 TMP513** SBOS491A - JUNE 2010 - REVISED MAY 2011 ### **ELECTRICAL CHARACTERISTICS: V+ = +12V (continued)** **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$. At $T_A = +25^{\circ}\text{C}$, $V_{SENSE} = (V_{IN+} - V_{IN-}) = 32\text{mV}$, $PGA = \div 1$, and $BRNG^{(1)} = 1$, unless otherwise noted. | 11 1 1 1 2 3 3, VI = 12 V, VSENSE - (V | IN+ VIN-/ | - 32111V, 1 G/V = 1 1, drid B/V/VG | TMP512, TMP513 | | 13 | | |---|----------------------|---|----------------|-------|------|------| | PARAMETER | | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | TEMPERATURE ERROR | | - | | | | | | | | $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | | ±1.25 | ±2.5 | °C | | Local Temperature Sensor | TE _{LOCAL} | $T_A = +15^{\circ}C \text{ to } +85^{\circ}C, V+ = 12V$ | | ±0.25 | ±1 | °C | | | | $T_A = +15^{\circ}\text{C to } +85^{\circ}\text{C}, T_D = -40^{\circ}\text{C to} + 150^{\circ}\text{C}, V+ = 12V$ | | ±0.25 | ±1 | °C | | Remote Temperature Sensor ⁽⁵⁾ | TE _{REMOTE} | $T_A = -40$ °C to +100°C, $T_D = -40$ °C to +150°C, $V_T = 12V$ | | ±1 | ±3 | °C | | | | $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}, T_D = -40^{\circ}\text{C to} +150^{\circ}\text{C}$ | | ±3 | ±5 | °C | | vs Supply, Local | | V+ = 3V to 5.5V, Configuration 3 ⁽⁶⁾ | | 0.2 | 0.5 | °C/V | | | | V+ = 3V to 5.5V, Configuration 3 ⁽⁶⁾ | | 0.2 | 0.5 | °C/V | | vs Supply, Remote | | V+ = 4.5V to 26V, subregulator supply | | 0.01 | 0.05 | °C/V | | TEMPERATURE MEASUREMENT | | - | | | | | | Conversion Time (per channel) | | | 100 | 115 | 130 | ms | | Resolution | | | | | | | | Local Temperature Sensor | | | | 13 | | Bits | | Remote Temperature Sensor | | | | 13 | | Bits | | Remote Sensor Source Currents | | Series Resistance 3kΩ max | | | | | | High | | Conco nosionarios enaz max | | 120 | | μA | | Medium High | | | | 60 | | μA | | Medium Low | | | | 12 | | μA | | Low | | | | 6 | | μA | | Default Non-Ideality Factor | n | TMP512/12 Optimized Ideality Factor | | 1.008 | | | | SMBus | | | | | | | | Logic Input High Voltage (SCL, SDA, GPIO, A0) | V _{IH} | | 2.1 | | | v | | Logic Input Low Voltage (SCL, SDA, GPIO, A0) | V _{IL} | | | | 0.8 | V | | Hysteresis | | | | 500 | | mV | | SMBus Output Low Sink Current | | | 6 | | | mA | | SDA Output Low Voltage | V _{oL} | I _{OUT} = 6mA | | 0.15 | 0.4 | V | | Logic Input Current | | 0 ≤ V _{IN} ≤ 6V | -1 | | 1 | μΑ | | SMBus Input Capacitance (SCL, SDA, GPIO, A | .0) | | | 3 | | pF | | SMBus Clock Frequency | | | | | 3.4 | MHz | | SMBus Timeout ⁽⁷⁾ | | | 25 | 30 | 35 | ms | | SCL Falling Edge to SDA Valid Time | | | | | 1 | μs | | POWER SUPPLY | | | | | | | | Specified Supply Range ⁽⁶⁾ | V+ | | +3 | | +26 | V | | Quiescent Current | 1 | | | 1 | 1.4 | mA | | Quiescent Current, Power-Down Mode | | | | 55 | 100 | μA | | Power-On Reset Threshold | | | | 2 | | V | | TEMPERATURE RANGE | | | | - | | | | Specified Temperature Range | | | -40 | 1 | +125 | °C | Tested with one-shot measurements, and with less than 5Ω effective series resistance, and with 100pF differential input capacitance. See Subregulator section. SMBus timeout in the TMP512/13 resets the interface any time SCL or SDA is low for over 28ms. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010-REVISED MAY 2011 www.ti.com ### **PIN CONFIGURATIONS** ### **TMP512** #### TMP512: PIN DESCRIPTIONS | D PACKAGE
SO-16 | RSA
PACKAGE
QFN-16 | NAME | DESCRIPTION | | |--------------------|--------------------------|------------------|---|--| | 1 | 15 | Filter C | Subregulator output and filter capacitor pin. | | | 2 | 16 | V+ | Positive supply voltage (3V to 26V) See Figure 22. | | | 3 | 1 | V_{IN+} | Positive differential shunt voltage. Connect to positive side of shunt resistor. | | | 4 | 2 | V _{IN-} | Negative differential shunt voltage. Connect to negative side of shunt resistor. Bus voltage is measured from this pin to ground. | | | 5 | 3 | SDA | Serial bus data line for SMBus, open-drain; requires pull-up resistor. | | | 6 | 4 | SCL | Serial bus clock line for SMBus, open-drain; requires pull-up resistor. | | | 7 | 5 | A0 | Address pin | | | _ | 6 | NC | Not connected | | | _ | 7 | NC | Not connected | | | 8 | 8 | DXP1 | Channel 1 positive connection to remote temperature sensor. | | | 9 | 9 | DXN1 | Channel 1 negative connection to remote temperature sensor. | | | 10 | 10 | DXP2 | Channel 2 positive connection to remote temperature sensor. | | | 11 | 11 | DXN2 | Channel 2 negative connection to remote temperature sensor. | | | 12 | 12 | GPIO | General-purpose, user-programmable input/output. Totem-pole output. Connect to ground or supply through a resistor if not used. Default state is as an input. | | | 13 | 13 | ALERT | Open-drain SMBus alert output. Controlled in SMBus Alert Mask Register. Default state is disabled. | | | 14 | 14 | GND | Ground | | Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A -JUNE 2010-REVISED MAY 2011 ### **TMP513** #### TMP513: PIN DESCRIPTIONS | | TMP513: PIN DESCRIPTIONS | | | | | | |--------------------|--------------------------|------------------|---|--|--|--| | D PACKAGE
SO-16 | RSA
PACKAGE
QFN-16 | NAME | DESCRIPTION | | | | | 1 | 15 | Filter C | Subregulator output and filter capacitor pin. | | | | | 2 | 16 | V+ | Positive supply voltage (3V to 26V) See Figure 22. | | | | | 3 | 1 | V _{IN+} | Positive differential shunt voltage. Connect to positive side of shunt resistor. | | | | | 4 | 2 | V _{IN-} | Negative differential shunt voltage. Connect to negative side of shunt resistor. Bus voltage is measured from this pin to ground. | | | | | 5 | 3 | SDA | Serial bus data line for SMBus, open-drain; requires pull-up resistor. | | | | | 6 | 4 | SCL | Serial bus clock line for SMBus, open-drain; requires pull-up resistor. | | | | | 7 | 5 | A0 | Address pin | | | | | 8 | 6 | DXP1 | Channel 1 positive connection to remote temperature sensor. | | | | | 9 | 7 | DXN1 | Channel 1 negative connection to remote temperature sensor. | | | | | 10 | 8 | DXP2 | Channel 2 positive connection to remote temperature sensor. | | | | | 11 | 9 | DXN2 | Channel 2 negative connection to remote temperature sensor. | | | | | 12 | 10 | DXP3 | Channel 3 positive connection to remote temperature sensor. | | | | | 13 | 11 | DXN3 | Channel 3 negative connection to remote temperature sensor. | | | | | 14 | 12 | GPIO | General-purpose, user-programmable input/output. Totem-pole output. Connect to ground or supply through a resistor if not used. Default state is as an input. | | | | | 15 | 13 | ALERT | Open-drain SMBus alert output. Controlled in SMBus Alert Mask Register. Default state is disabled. | | | | | 16 | 14 | GND | Ground | | | | SBOS491A - JUNE 2010 - REVISED MAY 2011 www.ti.com ### TYPICAL CHARACTERISTICS: V+ = +12V At $T_A = +25$ °C, $V_{SENSE} = (V_{IN+} - V_{IN-}) = 32$ mV, PGA = \div 1, and BRNG = 1, unless otherwise noted. Figure 1. Figure 2. ### LOCAL TEMPERATURE ERROR vs TEMPERATURE Figure 3. Figure 4. ### SHUNT GAIN ERROR vs TEMPERATURE Figure 5. ### **BUS VOLTAGE OFFSET vs TEMPERATURE** Figure 6. SBOS491A -JUNE 2010-REVISED MAY 2011 #### www.ti.com ### TYPICAL CHARACTERISTICS: V+ = +12V (continued) At $T_A = +25$ °C, $V_{SENSE} = (V_{IN+} - V_{IN-}) = 32$ mV, PGA = \div 1, and BRNG = 1, unless otherwise noted. Figure 7. Figure 8. # INPUT CURRENTS WITH LARGE DIFFERENTIAL VOLTAGES ($V_{\text{IN+}}$ at 12V, Sweep of $V_{\text{IN-}}$) Figure 9. ACTIVE IQ vs TEMPERATURE Figure 10. ### SHUTDOWN IQ vs TEMPERATURE Figure 11. #### SHUTDOWN I_Q vs SUPPLY VOLTAGE Figure 12. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010-REVISED MAY 2011 www.ti.com ## **TYPICAL CHARACTERISTICS:** V+ = +12V (continued) At $T_A = +25$ °C, $V_{SENSE} = (V_{IN+} - V_{IN-}) = 32$ mV, PGA = \div 1, and BRNG = 1, unless otherwise noted. Figure 13. Figure 14. **TEXAS** **INSTRUMENTS** # **Distributor of Texas Instruments: Excellent Integrated System Limited** Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com www.ti.com SBOS491A - JUNE 2010 - REVISED MAY 2011 ## TYPICAL CHARACTERISTICS: V+ = +12V (continued) At $T_A = +25$ °C, $V_{SENSE} = (V_{IN+} - V_{IN-}) = 32$ mV, PGA = \div 1, and BRNG = 1, unless otherwise noted. ### **REMOTE TEMPERATURE ERROR vs SERIES** RESISTANCE ## (Diode-Connected Transistor, 2N3906 PNP) Figure 15. REMOTE TEMPERATURE ERROR vs SERIES RESISTANCE Figure 16. ## REMOTE TEMPERATURE ERROR Figure 17. SBOS491A - JUNE 2010-REVISED MAY 2011 www.ti.com ### PARAMETRIC MEASUREMENT INFORMATION ### **TYPICAL CONNECTIONS** ### Figure 18. SERIES RESISTANCE CONFIGURATION (a) GND Collector-Connected Transistor (b) Diode-Connected Transistor (1) $R_{S1} + R_{S2}$ should be less than $1k\Omega$; see *Filtering* section. Figure 19. ### Figure 20. DIFFERENTIAL CAPACITANCE CONFIGURATION (a) GND Collector-Connected Transistor (b) Diode-Connected Transistor (1) C_{DIFF} should be less than 2200pF; see *Filtering* section. Figure 21. # **Distributor of
Texas Instruments: Excellent Integrated System Limited**Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A - JUNE 2010-REVISED MAY 2011 #### APPLICATION INFORMATION ### **DESCRIPTION** The TMP512/13 are digital temperature sensors with a digital current-shunt monitor that combine a local die temperature measurement channel and remote junction temperature measurement channels: two for the TMP512 and three for the TMP513. The TMP512/13 contain multiple registers for holding configuration information, temperature, and voltage measurement results. These devices provide digital current, voltage, and power readings necessary for decision-making in precisely-controlled Programmable registers allow flexible configuration for setting warning limits, measurement resolution, continuous-versus-triggered and operation. Detailed register information appears at the end of this data sheet, beginning with Table 3. For proper remote temperature sensing operation, the TMP512 requires transistors connected between DXP1 and DXN1 and between DXP2 and DXN2, and for the TMP513, between DXP3 and DXN3 as well. Unused channels on the TMP512/13 must be connected to GND. The TMP512/13 offer compatibility with two-wire and SMBus interfaces. The two-wire and SMBus protocols are essentially compatible with each other. Two-wire is used throughout this data sheet, with SMBus being specified only when a difference between the two systems is being addressed. Two bi-directional lines, SCL and SDA, connect the TMP512/13 to the bus. SDA is an open-drain connection. See Figure 23 for a typical application circuit. #### **SUBREGULATOR** The subregulator can be configured to three different modes of operation. Each mode has its advantage and limitation. Figure 22 shows the three configuration arrangements. The minimum capacitance on the Filter C pin for Configurations 1 and 2 is 470nF. The minimum capacitance on the Filter C pin for Configuration 3 is 100nF. Configuration 1 has V+ and $V_{\rm IN+}$ tied together. V+ supplies the subregulator, which in turn supplies the 3.3V to the Filter C pin and the internal die. With the V+ supply range of 4.5V to 26V connected to the shunt voltage, the bus voltage range cannot go to zero and is limited to 4.5V to 26V. Configuration 2 has V+ to the subregulator without any other connections. Under this configuration, the bus voltage range can go from 0V to 26V, because it is not limited to 4.5V as in Configuration 1. Configuration 3 has the subregulator V+ and Filter C pins shorted together. V+ is limited to 3V to 5.5V because the Filter C pin supplies the internal die; it cannot exceed this voltage range. The bus voltage range can go from 0V to 26V, because it is not limited to 4.5V as in Configuration 1. Figure 22. Typical Subregulator Configurations Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010 - REVISED MAY 2011 www.ti.com ### **SERIES RESISTANCE CANCELLATION** Series resistance in an application circuit that typically results from printed circuit board (PCB) trace resistance and remote line length is automatically cancelled by the TMP512/13, preventing what would otherwise result in a temperature offset. A total of up to $3k\Omega$ of series line resistance is cancelled by the TMP512/13, eliminating the need for additional characterization and temperature offset correction. See the *Remote Temperature Error vs Series Resistance* typical characteristic curves (Figure 15) for details on the effects of series resistance and power-supply voltage on sensed remote temperature error. #### **DIFFERENTIAL INPUT CAPACITANCE** The TMP512/13 can tolerate differential input capacitance of up to 2200pF with minimal change in temperature error. The effect of capacitance on sensed remote temperature error is illustrated in Figure 16, Remote Temperature Error vs Differential Capacitance. See the Filtering section for suggested component values where filtering unwanted coupled signals is needed. #### TEMPERATURE MEASUREMENT DATA Temperature measurement data may be taken over an operating range of -40°C to +125°C for both local and remote locations. The Temperature Register of the TMP512/13 is configured as a 13-bit, read-only register that stores the output of the most recent conversion. Two bytes must be read to obtain data, and are described in the Local Temperature Result Register and the Remote Temperature Result Registers. Note that byte 1 is the most significant byte, followed by byte 2, the least significant byte. The first 13 bits are used to indicate temperature. The least significant byte does not have to be read if that information is not needed. The data format for temperature is summarized in Table 10. One LSB equals 0.0625°C. Negative numbers are represented in binary twos complement format. Following power-up or reset, the Temperature Register will read 0°C until the first conversion is complete. Unused bits in the Temperature Register always read '0'. #### REGISTER INFORMATION The TMP512/13 contain multiple registers for holding configuration information, temperature and voltage measurement results, and status information. These registers are described in Table 3. #### POINTER REGISTER The 8-bit Pointer Register is used to address a given data register. The Pointer Register identifies which of the data registers should respond to a read or write command on the two-wire bus. This register is set with every write command. A write command must be issued to set the proper value in the Pointer Register before executing a read command. Table 3 describes the pointer address of the TMP512/13 registers. The power-on reset (POR) value of the Pointer Register is 00h (0000 0000b). Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A - JUNE 2010-REVISED MAY 2011 ### n-FACTOR CORRECTION REGISTER The TMP512/13 allow for a different n-factor value to be used for converting remote channel measurements to temperature. The remote channel uses sequential current excitation to extract a differential V_{BE} voltage measurement to determine the temperature of the remote transistor. Equation 1 describes this voltage and temperature. $$V_{BE2} - V_{BE1} = \frac{nkT}{q} \ln \left(\frac{I_2}{I_1} \right)$$ (1) The value n in Equation 1 is a characteristic of the particular transistor used for the remote channel. The power-on reset value for the TMP512/13 is n = 1.008. The value in the n-Factor Correction Register may be used to adjust the effective n-factor according to Equation 2 and Equation 3. $$n_{\text{eff}} = \frac{1.008 \times 300}{(300 - N_{\text{ADJUST}})} \tag{2}$$ $$N_{ADJUST} = 300 - \left(\frac{300 \times 1.008}{n_{eff}}\right)$$ (3) The n-factor value must be stored in twos-complement format, yielding an effective data range from -128 to +127. The n-factor value may be written to and read from pointer address 16h for remote channel 1, pointer address 17h for remote channel 2, and pointer address 18h for remote channel 3. The register power-on reset value is 00h, thus having no effect unless the register is written to. #### **BUS OVERVIEW** The device that initiates the transfer is called a *master*, and the devices controlled by the master are *slaves*. The bus must be controlled by a master device that generates the serial clock (SCL), controls the bus access, and generates START and STOP conditions. To address a specific device, the master initiates a START condition by pulling the data signal line (SDA) from a HIGH to a LOW logic level while SCL is HIGH. All slaves on the bus shift in the slave address byte on the rising edge of SCL, with the last bit indicating whether a read or write operation is intended. During the ninth clock pulse, the slave being addressed responds to the master by generating an Acknowledge and pulling SDA LOW. Figure 23. Typical Application Circuit Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010-REVISED MAY 2011 www.ti.com Data transfer is then initiated and eight bits of data are sent, followed by an *Acknowledge* bit. During data transfer, SDA must remain stable while SCL is HIGH. Any change in SDA while SCL is HIGH is interpreted as a START or STOP condition. Once all data have been transferred, the master generates a STOP condition, indicated by pulling SDA from LOW to HIGH while SCL is HIGH. The TMP512/13 includes a 28ms timeout on its interface to prevent locking up an SMBus. #### **SERIAL BUS ADDRESS** To communicate with the TMP512/13, the master must first address slave devices via a slave address byte. The slave address byte consists of seven address bits, and a direction bit indicating the intent of executing a read or write operation. The TMP512/13 feature an address pin to allow up to four devices to be addressed on a single bus. Table 1 describes the pin logic levels used to properly connect up to four devices. The state of the A0 pin is sampled on every bus communication and should be set before any activity on the interface occurs. The address pin is read at the start of each communication event. Table 1. TMP512/13 Address Pins and Slave Addresses | DEVICE TWO-WIRE
ADDRESS | A0 PIN CONNECTION | |----------------------------|-------------------| | 1011100 | Ground | | 1011101 | V+ | | 1011110 | SDA | | 1011111 | SCL | ### **SERIAL INTERFACE** The TMP512/13 operate only as slave devices on the two-wire bus and SMBus. SCL is an input only, and TMP512/13 cannot drive it. Connections to the bus are made via the open-drain I/O lines SDA and SCL. The SDA and SCL pins feature integrated spike suppression filters and
Schmitt triggers to minimize the effects of input spikes and bus noise. The TMP512/13 support the transmission protocol for fast (1kHz to 400kHz) and high-speed (1kHz to 3.4MHz) modes. All data bytes are transmitted MSB first. # WRITING TO/READING FROM THE TMP512/13 Accessing a particular register on the TMP512/13 is accomplished by writing the appropriate value to the register pointer. Refer to Table 3 for a complete list of registers and corresponding addresses. The value for the register pointer as shown in Figure 26 is the first byte transferred after the slave address byte with the R/\overline{W} bit LOW. Every write operation to the TMP512/13 requires a value for the register pointer. Writing to a register begins with the first byte transmitted by the master. This byte is the slave address, with the R/W bit LOW. The TMP512/13 then acknowledge receipt of a valid address. The next byte transmitted by the master is the address of the register to which data will be written. This register address value updates the register pointer to the desired register. The next two bytes are written to the register addressed by the register pointer. The TMP512/13 acknowledge receipt of each data byte. The master may terminate data transfer by generating a START or STOP condition. When reading from the TMP512/13, the last value stored in the register pointer by a write operation determines which register is read during a read operation. To change the register pointer for a read operation, a new value must be written to the register pointer. This write is accomplished by issuing a slave address byte with the R/\overline{W} bit LOW, followed by the register pointer byte. No additional data are required. The master then generates a START condition and sends the slave address byte with the R/W bit HIGH to initiate the read command. The next byte is transmitted by the slave and is the most significant byte of the register indicated by the register pointer. This byte is followed by an Acknowledge from the master; then the slave transmits the least significant byte. The master acknowledges receipt of the data byte. The master may terminate data transfer by generating a Not-Acknowledge after receiving any data byte, or generating a START or STOP condition. If repeated reads from the same register are desired, it is not necessary to continually send the register pointer bytes; the TMP512/13 retain the register pointer value until it is changed by the next write operation. Figure 24 and Figure 25 show read and write operation timing diagrams, respectively. Note that register bytes are sent most-significant byte first, followed by the least significant byte. See Figure 27 for an illustration of a typical register pointer configuration. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A - JUNE 2010-REVISED MAY 2011 Figure 24. Timing Diagram for Write Word Format Figure 25. Timing Diagram for Read Word Format SBOS491A - JUNE 2010-REVISED MAY 2011 www.ti.com Figure 26. Timing Diagram for SMBus ALERT Figure 27. Typical Register Pointer Set Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A - JUNE 2010-REVISED MAY 2011 #### **TIMING DIAGRAMS** Figure 28 describes the timing operations on the TMP512/13. Parameters for Figure 28 are defined in Table 2. Bus definitions are: Bus Idle: Both SDA and SCL lines remain high. **Start Data Transfer:** A change in the state of the SDA line, from high to low, while the SCL line is high, defines a START condition. Each data transfer initiates with a START condition. Denoted as *S* in Figure 28. **Stop Data Transfer:** A change in the state of the SDA line from low to high while the SCL line is high defines a STOP condition. Each data transfer terminates with a repeated START or STOP condition. Denoted as *P* in Figure 28. **Data Transfer:** The number of data bytes transferred between a START and a STOP condition is not limited and is determined by the master device. The receiver acknowledges data transfer. Acknowledge: Each receiving device, when addressed, is obliged to generate an Acknowledge bit. A device that acknowledges must pull down the SDA line during the Acknowledge clock pulse in such a way that the SDA line is stable low during the high period of the Acknowledge clock pulse. Setup and hold times must be taken into account. On a master receive, data transfer termination can be signaled by the master generating a Not-Acknowledge on the last byte that has been transmitted by the slave. Figure 28. Two-Wire Timing Diagram Table 2. Timing Characteristics for Figure 28 | | | FAST MODE | | HIGH-SPE | ED MODE | | |--|----------------------|------------------|------|------------------|---------|------| | PARAMETER | | MIN | MAX | MIN | MAX | UNIT | | SCL Operating Frequency | f _(SCL) | 0.001 | 0.4 | 0.001 | 3.4 | MHz | | Bus Free Time Between STOP and START Condition | t _(BUF) | 600 | | 160 | | ns | | Hold time after repeated START condition. After this period, the first clock is generated. | t _(HDSTA) | 100 | | 100 | | ns | | Repeated START Condition Setup Time | t _(SUSTA) | 100 | | 100 | | ns | | STOP Condition Setup Time | t _(SUSTO) | 100 | | 100 | | ns | | Data Hold Time | t _(HDDAT) | 0 ⁽¹⁾ | | 0 ⁽²⁾ | | ns | | Data Setup Time | t _(SUDAT) | 100 | | 10 | | ns | | SCL Clock LOW Period | t _(LOW) | 1300 | | 160 | | ns | | SCL Clock HIGH Period | t _(HIGH) | 600 | | 60 | | ns | | Clock/Data Fall Time | t _F | | 300 | | 160 | ns | | Clock/Data Rise Time | t _R | | 300 | | 160 | | | for SCL ≤ 100kHz | t_R | | 1000 | | | ns | ⁽¹⁾ For cases with fall time of SCL less than 20ns and/or the rise or fall time of SDA less than 20ns, the hold time should be greater than 20ns. ⁽²⁾ For cases with a fall time of SCL less than 10ns and/or the rise or fall time of SDA less than 10ns, the hold time should be greater than 10ns. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010 - REVISED MAY 2011 www.ti.com #### **HIGH-SPEED MODE** In order for the two-wire bus to operate at frequencies above 400kHz, the master device must issue a High-Speed mode (Hs-mode) master code (0000 1xxx) as the first byte after a START condition to switch the bus to high-speed operation. The TMP512/13 do not acknowledge this byte, but switch the input filters on SDA and SCL and the output filter on SDA to operate in Hs-mode, allowing transfers at up to 3.4MHz. After the Hs-mode master code has been issued, the master transmits a START condition to a two-wire slave address that initiates a data transfer operation. The bus continues to operate in Hs-mode until a STOP condition occurs on the bus. Upon receiving the STOP condition, the TMP512/13 switch the input and output filters back to Fast mode operation. ### **POWER-UP CONDITIONS** Power-up conditions apply to a software reset via the RST bit (bit 15) in the Configuration Register, or the two-wire bus General Call Reset. At device power up, all Status bits are masked, and the SMBus Alert function is disabled. All watchdog outputs default to active low and transparent (non-latched) modes. ### **SHUTDOWN MODE** The TMP512/13 shutdown mode of operation allows the user flexibility to shut down the shunt/bus voltage measurement and the temperature measurement functions individually. To shut down the shunt/bus voltage measurement function immediately, set bits 2 through 0 in Configuration Register 1 (00h) to '000' respectively. To shut down the shunt/bus voltage measurement after the end of the current conversion, set bits 2 through 0 in Configuration Resister 1 (00h) to '100' respectively. To shut down the temperature measurement function immediately, set bits 15 through 11 in Configuration Register 2 (01h) to '00000' respectively. To shut down the temperature measurement after the end of the current conversion, set bit 15 in Configuration Register 2 (01h) to '0'. ### **ONE-SHOT COMMAND** For the TMP512/13, when the temperature core is in shutdown and the voltage core is in triggered mode, a single conversion is started on all enabled channels by writing a '1' to the OS bit in Configuration Register 1. This write operation starts one conversion; the TMP512/13 returns to shutdown mode when that conversion completes. At the end of the conversion, the Conversion Ready flags (bit 6 and bit 5) in the Status Register are set to indicate end of conversion. ### **SENSOR FAULT** The TMP512/13 can sense an open circuit. Short-circuit conditions return a value of -256° C. The detection circuitry consists of a voltage comparator that trips when the voltage at DXP exceeds (V+) -0.6V (typical). The comparator output is continuously checked during a conversion. If a fault is detected, the OPEN bit (bit 0) in the temperature result register is set to '1' and the rest of the register bits should be ignored. When not using the remote sensor with the TMP512/13, the DXP and DXN inputs must be connected together to prevent meaningless fault warnings. #### UNDERVOLTAGE LOCKOUT The TMP512/13 sense when the power-supply voltage has reached a minimum voltage level for the ADC to function. The detection circuitry consists of a voltage comparator that enables the ADC after the power supply (V+) exceeds 2.7V (typical). The comparator output is continuously checked during a conversion. The TMP512/13 do not perform a temperature conversion if the power supply is not valid. The PVLD bit (see Status Register; Local Temperature Reset Register; Remote Temperature Reset 1, 2 and 3 Registers) of the individual Local/Remote Temperature Result Registers are set to '1' and the
temperature result may be incorrect. ### TEMPERATURE AVERAGING The TMP512/13 average the input diode voltages that determine the remote temperature by sampling multiple times throughout a conversion. The temperature result can be extracted from four different V_{BE} readings and is sampled 600 times in 130ms (max). Each V_{BE} voltage is sampled 150 times through integration capacitors that average the results throughout the conversion time. A delta-sigma $(\Delta\Sigma)$ modulator and digital filter integrate the V_{BE} voltages and create a sync filter averaging system. In addition, a low-pass filter is present at the input of the converter with a cutoff frequency of 65kHz. This integrating topology offers superior noise immunity. ### **FILTERING** Remote junction temperature sensors are usually implemented in a noisy environment. Noise is frequently generated by fast digital signals and if not filtered properly will induce errors that can corrupt temperature measurements. The TMP512/13 have a built-in 65kHz filter on the inputs of DXP and DXN to minimize the effects of noise. However, a bypass capacitor placed differentially across the inputs of the remote temperature sensor is recommended to make the application more robust against unwanted coupled signals. The value of this capacitor should be Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A - JUNE 2010-REVISED MAY 2011 between 100pF and 1nF. Some applications attain better overall accuracy with additional series resistance; however, this increased accuracy is application-specific. When series resistance is added, the total value should not be greater than $3k\Omega.$ If filtering is needed, suggested component values are 100pF and 50Ω on each input; exact values are application-specific. ### **GENERAL CALL RESET** The TMP512/13 support reset via the two-wire General Call address 00h (0000 0000b). The TMP512/13 acknowledge the General Call address and respond to the second byte. If the second byte is 06h (0000 0110b), the TMP512/13 execute a software reset state to all TMP512/13 registers, and abort any conversion in progress. The TMP512/13 take no action in response to other values in the second byte. ### **REMOTE SENSING** The TMP512/13 are designed to be used with either discrete transistors or substrate transistors built into processor chips and ASICs. Either NPN or PNP transistors can be used, as long as the base-emitter junction is used as the remote temperature sense. NPN transistors must be diode-connected. PNP transistors can either be transistor- or diode-connected, as Figure 19 and Figure 21 show. Errors in remote temperature sensor readings are typically the consequence of the ideality factor and current excitation used by the TMP512/13 versus the manufacturer-specified operating current for a given transistor. Some manufacturers specify a high-level and low-level current for the temperature-sensing substrate transistors. The TMP512/13 use 6 μ A for I_{LOW} and 120 μ A for I_{HIGH} . The ideality factor (n) is a measured characteristic of a remote temperature sensor diode as compared to an ideal diode. The TMP512/13 allow for different n-factor values; see the *n-Factor Correction Register* section. The ideality factor for the TMP512/13 is trimmed to be 1.008. For transistors that have an ideality factor that does not match the TMP512/13, Equation 4 can be used to calculate the temperature error. Note that for the equation to be used correctly, actual temperature (°C) must be converted to kelvins (K). $$T_{ERR} = \left(\frac{n - 1.008}{1.008}\right) \times \left[273.15 + T(^{\circ}C)\right]$$ (4) Where: n = ideality factor of remote temperature sensor. $T(^{\circ}C)$ = actual temperature. T_{ERR} = error in TMP512/13 because n \neq 1.008. Degree delta is the same for °C and K. For n = 1.004 and $T(^{\circ}C) = 100^{\circ}C$: $$T_{ERR} = \left(\frac{1.004 - 1.008}{1.008}\right) \times \left(273.15 + 100^{\circ}C\right)$$ $$T_{ERR} = 1.48^{\circ}C \tag{5}$$ If a discrete transistor is used as the remote temperature sensor with the TMP512/13, the best accuracy can be achieved by selecting the transistor according to the following criteria: - 1. Base-emitter voltage > 0.25V at $6\mu A$, at the highest sensed temperature. - 2. Base-emitter voltage < 0.95V at 120 μ A, at the lowest sensed temperature. - 3. Base resistance < 100Ω . - 4. Tight control of V_{BE} characteristics indicated by small variations in h_{FE} (that is, 50 to 150). Based on these criteria, two recommended small-signal transistors are the 2N3904 (NPN) or 2N3906 (PNP). ### **BASIC ADC FUNCTIONS** The two analog inputs to the TMP512/13, $V_{\text{IN+}}$ and $V_{\text{IN-}}$, connect to a shunt resistor in the bus of interest. The TMP512/13 are powered by an internal subregulator, which has a typical output of 3.3V. The bus being sensed can vary from 0V to 26V. There are no special considerations for power-supply sequencing (for example, a bus voltage can be present with the supply voltage off, and vice-versa). The TMP512/13 sense the small drop across the shunt for shunt voltage, and sense the voltage with respect to ground from $V_{\text{IN-}}$ for the bus voltage. See Figure 29 for an illustration of this operation. When the TMP512/13 are in the normal operating mode (that is, MODE bits of Configuration Register 1 are set to '111'), the devices continuously convert the shunt voltage up to the number set in the shunt voltage averaging function (Configuration Register 1, SADC bits). The devices then convert the bus voltage up to the number set in the bus voltage averaging (Configuration Register 1, BADC bits). The Mode control in Configuration Register 1 also permits selecting modes to convert only voltage or current, either continuously or in response to a two-wire command. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010 - REVISED MAY 2011 www.ti.com Figure 29. TMP512/13 Configured for Shunt and Bus Voltage Measurement All current and power calculations are performed in the background and do not contribute to conversion time; conversion times shown in the Electrical Characteristics table can be used to determine the actual conversion time. Power-Down mode reduces the quiescent current and turns off current into the TMP512/13 inputs, avoiding any supply drain. Full recovery from Power-Down requires 40µs. ADC Off mode (set by Configuration Register 1, MODE bits) stops all conversions. Although the TMP512/13 can be read at any time, and the data from the last conversion remain available, the Conversion Ready bit and the Conversion Ready Temperature bit (Status Register, CVR and CRT) are provided to help co-ordinate one-shot or triggered conversions. The Conversion Ready bit and the Conversion Ready Temperature bit are set after all conversions, averaging, and multiplication operations are complete. The Conversion Ready bit and the Conversion Ready Temperature bit clear when reading the Status Register or triggering a single-shot conversion. ### **POWER MEASUREMENT** Current and bus voltage are converted at different points in time, depending on the resolution and averaging mode settings. For instance, when configured for 12-bit and 128 sample averaging, up to 81ms in time between sampling these two values is possible. Again, these calculations are performed in the background and do not add to the overall conversion time. ### **PGA FUNCTION** If larger full-scale shunt voltages are desired, the TMP512/13 provide a PGA function that increases the full-scale range up to 2, 4, or 8 times (320mV). Additionally, the bus voltage measurement has two full-scale ranges: 16V or 32V. ### Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN TMP512 **TMP513** www.ti.com SBOS491A - JUNE 2010-REVISED MAY 2011 ### **COMPATIBILITY WITH TI HOT-SWAP CONTROLLERS** The TMP512/13 are designed for compatibility with hot-swap controllers such the TI TPS2490. The TPS2490 uses a high-side shunt with a limit at 50mV; the TMP512/13 full-scale range of 40mV enables the use of the same shunt for current sensing below this limit. When sensing is required at (or through) the 50mV sense point of the TPS2490, the PGA of the TMP512/13 can be set to ÷2 to provide an 80mV full-scale range. ### FILTERING AND INPUT CONSIDERATIONS Measuring current is often noisy, and such noise can be difficult to define. The TMP512/13 offer several options for filtering by choosing resolution and averaging in Configuration Register 1. These filtering options can be set independently for either voltage or current measurement. The internal ADC is based on a delta-sigma ($\Delta\Sigma$) front-end with a 500kHz (±10%) typical sampling rate. This architecture has good inherent noise rejection; however, transients that occur at or very close to the sampling rate harmonics can cause problems. Because these signals are at 1MHz and higher, they can be dealt with by incorporating filtering at the input of the TMP512/13. The high frequency enables the use of low-value series resistors on the filter for negligible effects on measurement accuracy. Figure 30 shows the TMP512/13 with an additional filter added at the input. Overload conditions are another consideration for the TMP512/13 inputs. The TMP512/13 inputs are specified to tolerate 26V across the inputs. A large differential scenario might be a short to ground on the load side of the shunt. This type of event can result in full power-supply voltage across the shunt (as long the power supply or energy storage capacitors support it). It must be remembered that removing a short to ground can result in inductive kickbacks
that could exceed the 26V differential and common-mode rating of the TMP512/13. Inductive kickback voltages are best dealt with by zener-type transient-absorbing devices (commonly called transzorbs) combined with sufficient energy storage capacitance. Figure 30. TMP512/13 with Input Filtering Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010-REVISED MAY 2011 www.ti.com In applications that do not have large energy storage electrolytics on one or both sides of the shunt, an input overstress condition may result from an excessive dV/dt of the voltage applied to the input. A hard physical short is the most likely cause of this event, particularly in applications with no large electrolytics present. This problem occurs because an excessive dV/dt can activate the ESD protection in the TMP512/13 in systems where large currents are available. Testing has demonstrated that the addition of 10Ω resistors in series with each input of the TMP512/13 sufficiently protects the inputs against dV/dt failure up to the 26V rating of the TMP512/13. These resistors have no significant effect on accuracy. #### **SMBus ALERT RESPONSE** The SMBus alert response functions only when the Alert pin is active and in latch mode (03h, bit 0 = 1); see Figure 26. The ALERT interrupt output signal is latched and can be cleared only by either reading the Status Register or by successfully responding to an alert response address. If the fault is still present, the ALERT pin re-asserts. Asserting the ALERT pin does not halt automatic conversions that are already in progress. The ALERT output pin is open-drain, allowing multiple devices to share a common interrupt line. The TMP512/13 respond to the SMBus alert response address, an interrupt pointer return-address feature. The SMBus alert response interrupt pointer provides quick fault identification for simple slave devices. When an ALERT occurs, the master can broadcast the alert response slave address (0001 100). Following this alert response, any slave devices that generated interrupts identify themselves by putting the respective addresses on the bus. The alert response can activate several different slave devices simultaneously, similar to the two-wire General Call. If more than one slave attempts to respond, bus arbitration rules apply; the device with the lower address code wins. The losing device does not generate an Acknowledge and continues to hold the ALERT line low until the interrupt is cleared. Successful completion of the read alert response protocol clears the SMBus ALERT pin, provided that the condition causing the alert no longer exists. The SMBus Alert flag is cleared separately by either reading the Status Register or by disabling the SMBus Alert function. The Status Register flags indicate which (if any) of the watchdogs have been activated. After power-on reset (POR), the normal state of all flag bits is '0', assuming that no alarm conditions exist. # EXTERNAL CIRCUITRY FOR ADDITIONAL V_{BUS} INPUT The TMP512/13 GPIO can be used to control an external circuit to switch the V_{BUS} measurement to an alternate location. Switching is most often done to perform bus voltage measurements on the opposite side of a MOSFET switch in series with the shunt resistor. Consideration must be given to the typical 20µA input current of each TMP512/13 input, along with the 320k Ω impedance present at the V_{IN} input where the bus voltage is measured. These effects can create errors through the resistance of any external switching method used. The easiest way to avoid these errors is by reducing this resistance to a minimum; select switching MOSFETs with the lowest possible $R_{DS(on)}$ values. The circuit shown in Figure 31 uses MOSFET pairs to reduce package count. Back-to-back MOSFETs must be used in each leg because of the built-in back diodes from source-to-drain. In this circuit, the normal connection for $V_{\rm IN-}$ is at the shunt, with the optional voltage measurement at the output of the control FET. TEXAS INSTRUMENTS # Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A - JUNE 2010-REVISED MAY 2011 Figure 31. External Circuitry for Additional V_{BUS} Input Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010 - REVISED MAY 2011 www.ti.com ### PROGRAMMING THE TMP512/13 POWER MEASUREMENT ENGINE ### **Calibration Register and Scaling** The Calibration Register makes it possible to set the scaling of the Current and Power Registers to whatever values are most useful for a given application. One strategy may be to set the Calibration Register such that the largest possible number is generated in the Current Register or Power Register at the expected full-scale point; this approach yields the highest resolution. The Calibration Register can also be selected to provide values in the Current and Power Registers that either provide direct decimal equivalents of the values being measured, or yield a round LSB number. After these choices have been made, the Calibration Register also offers possibilities for end user system-level calibration, where the value is adjusted slightly to cancel total system error. This section presents two examples for configuring the TMP512/13 calibration. Both examples are written so the information relates directly to the calibration setup found in the TMP512/13EVM software. ### Calibration Example 1: Calibrating the TMP512/13 with no possibility for overflow. #### **NOTE** The numbers used in this example are the same used with the TMP512/13EVM software as shown in Figure 32. 1. Establish the following parameters: $$V_{BUS_MAX} = 32$$ $$V_{SHUNT_MAX} = 0.32$$ $R_{SHUNT} = 0.5$ 2. Use Equation 6 to determine the maximum possible current . $$MaxPossible_I = \frac{V_{SHUNT_MAX}}{R_{SHUNT}}$$ $$MaxPossible_I = 0.64$$ (6) 3. Choose the desired maximum current value. This value is selected based on system expectations. $$Max_Expected_I = 0.6$$ 4. Calculate the possible range of current LSBs. To calculate this range, first compute a range of LSBs that is appropriate for the design. Next, select an LSB within this range. Note that the results will have the most resolution when the minimum LSB is selected. Typically, an LSB is selected to be the nearest round number to the minimum LSB value. $$Minimum_LSB = \frac{Max_Expected_I}{32767}$$ $$Minimum_LSB = 18.311 \times 10^{-6}$$ $$Maximum_LSB = \frac{Max_Expected_I}{4095}$$ $$Maximum_LSB = 146.520 \times 10^{-6}$$ (8) Choose an LSB in the range: Minimum LSB < Selected LSB < Maximum LSB Current LSB = $$20 \times 10^{-6}$$ #### Note: This value was selected to be a round number near the Minimum_LSB. This selection allows for good resolution with a rounded LSB. 5. Compute the Calibration Register value using Equation 9: Cal = trunc $$\left[\frac{0.04096}{\text{Current_LSB} \times \text{R}_{\text{SHUNT}}}\right]$$ Cal = 4096 (9) Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A - JUNE 2010 - REVISED MAY 2011 6. Calculate the Power LSB with Equation 10. Equation 10 shows a general formula; because the bus voltage measurement LSB is always 4mV, the power formula reduces to the calculated result. Power_LSB = $$400 \times 10^{-6}$$ (10) 7. Compute the maximum current and shunt voltage values (before overflow), as shown by Equation 11 and Equation 12. Note that both Equation 11 and Equation 12 involve an *If - then* condition: $$Max_Current = 0.65534$$ (11) If Max_Current ≥ MaxPossible_I then Max_Current_Before_Overflow = MaxPossible_I Fise Max_Current_Before_Overflow = Max_Current End If (Note that Max_Current is greater than MaxPossible_I in this example.) Max Current Before Overflow = 0.64 Max_ShuntVoltage = Max_Current_Before_Overflow × R_{SHUNT} If Max_ShuntVoltage $\geq V_{SHUNT_MAX}$ $Max_ShuntVoltage_Before_Overflow = V_{SHUNT_MAX}$ Else Max_ShuntVoltage_Before_Overflow= Max_ShuntVoltage End If (Note that Max_ShuntVoltage is greater than V_{SHUNT_MAX} in this example.) Max_ShuntVoltage_Before_Overflow = 0.32 8. Compute the maximum power with Equation 13. $$MaximumPower = Max_Current_Before_Overflow \times V_{BUS_MAX}$$ $$MaximumPower = 20.48$$ (13) 9. (Optional second Calibration step.) Compute corrected full-scale calibration value based on measured current. TMP513_Current = 0.63484 MeaShuntCurrent = 0.55 Figure 32 illustrates how to perform the same procedure discussed in this example using the automated TMP512/13EVM software. Note that the same numbers used in this nine-step example are used in the software example. Note also that Figure 32 illustrates which results correspond to which step (for example, the information entered in Step 1 is enclosed in a box in Figure 32 and labeled). Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010 - REVISED MAY 2011 www.ti.com Figure 32. TMP512/513EVM Calibration Software Automatically Computes Calibration Steps 1-9 Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A - JUNE 2010-REVISED MAY 2011 ### **Calibration Example 2 (Overflow Possible)** This design example uses the nine-step procedure for calibrating the TMP512/13 where overflow is possible. Figure 33 illustrates how the same procedure is performed using the automated TMP512/13EVN software. The same numbers used in the nine-step example are used in the software
example shown in Figure 33. Note also that Figure 33 illustrates which results correspond to which step (for example, the information entered in Step 1 is circled in Figure 33 and labeled). 1. Establish the following parameters: $$V_{BUS_MAX} = 32$$ $V_{SHUNT_MAX} = 0.32$ $$R_{SHUNT} = 5$$ 2. Determine the maximum possible current using Equation 15: $$MaxPossible_I = \frac{V_{SHUNT_MAX}}{R_{SHUNT}}$$ $$MaxPossible_I = 0.064$$ (15) 3. Choose the desired maximum current value: Max_Expected_I, ≤ MaxPossible_I. This value is selected based on system expectations. Max_Expected_I = 0.06 4. Calculate the possible range of current LSBs. This calculation is done by first computing a range of LSB's that is appropriate for the design. Next, select an LSB withing this range. Note that the results will have the most resolution when the minimum LSB is selected. Typically, an LSB is selected to be the nearest round number to the minimum LSB. $$Minimum_LSB = \frac{Max_Expected_I}{32767}$$ $$Minimum_LSB = 1.831 \times 10^{-6}$$ $$Maximum_LSB = \frac{Max_Expected_I}{4095}$$ $$Maximum_LSB = 14.652 \times 10^{-6}$$ $$(16)$$ Choose an LSB in the range: Minimum_LSB < Selected_LSB < Maximum_LSB Current_LSB = 1.9×10^{-6} ### Note: This value was selected to be a round number near the Minimum_LSB. This section allows for good resolution with a rounded LSB. 5. Compute the calibration register using Equation 18: Cal = trunc $$\left[\frac{0.04096}{\text{Current_LSB} \times \text{R}_{\text{SHUNT}}}\right]$$ Cal = 4311 (18) 6. Calculate the Power LSB using Equation 19. Equation 19 shows a general formula; because the bus voltage measurement LSB is always 4mV, the power formula reduces to calculate the result. Power_LSB = $$38 \times 10^{-6}$$ (19) Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010-REVISED MAY 2011 www.ti.com (20) 7. Compute the maximum current and shunt voltage values (before overflow), as shown by Equation 20 and Equation 21. Note that both Equation 20 and Equation 21 involve an *If - then* condition. If Max_Current ≥ MaxPossible_I then Max_Current_Before_Overflow = MaxPossible_I Else Max_Current_Before_Overflow = Max_Current End If (Note that Max_Current is less than MaxPossible_I in this example.) Max_Current_Before_Overflow = 0.06226 Max ShuntVoltage = Max Current Before Overflow × R_{SHUNT} If Max_ShuntVoltage ≥ V_{SHUNT MAX} Max_ShuntVoltage_Before_Overflow = V_{SHUNT_MAX} Else Max_ShuntVoltage_Before_Overflow= Max_ShuntVoltage End If (Note that Max_ShuntVoltage is less than V_{SHUNT_MAX} in this example.) Max_ShuntVoltage_Before_Overflow = 0.3113 8. Compute the maximum power with Equation 22. MaximumPower = Max_Current_Before_Overflow × V_{BUS_MAX} MaximumPower = 1.992 (22) (Optional second calibration step.) Compute the corrected full-scale calibration value based on measured current. TMP513_Current = 0.06226 MeaShuntCurrent = 0.05 $$Corrected_Full_Scale_Cal = trunc \left[\frac{Cal \times MeasShuntCurrent}{TMP513_Current} \right]$$ (23) Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A - JUNE 2010 - REVISED MAY 2011 Figure 33. TMP512/513EVM Calibration Software Automatically Computes Calibration Steps 1-9 Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010 - REVISED MAY 2011 www.ti.com ### **REGISTER INFORMATION** The TMP512/13 uses a bank of registers for holding configuration settings, measurement maximum/minimum limits, and status information. Table 3 summarizes the TMP512/13 registers. Register contents are updated 4µs after completion of the write command. Therefore, a 4µs delay is required between the completion of a write to a given register and a subsequent read of that register (without changing the pointer) when using SCL frequencies in excess of 1MHz. ### **Table 3. Summary of Register Set** | POINTER
ADDRESS | | | POWER-ON RESET | | | |--------------------|---|---|-------------------|-----------|---------| | HEX | REGISTER NAME | FUNCTION | BINARY | HEX | TYPE(1) | | 00 | Configuration Register 1 | All-register reset, settings for bus voltage range, PGA Gain, Bus ADC resolution/averaging, Shunt ADC resolution/averaging, one-shot, Operation Mode. | 00111001 10011111 | 399F | R/W | | 01 | Configuration Register 2
TMP512 | Settings for Temperature Continuous conversion, Remote Channels enable, Local Channel enable, resistance correction enable, Conversion rate bits, and GPIO mode bit and readback. | 10111111110000x00 | BF80/BF84 | R/W | | 01 | Configuration Register 2
TMP513 | Settings for Temperature Continuous conversion, Remote Channels enable, Local Channel enable, resistance correction enable, Conversion rate bits, and GPIO mode bit and readback. | | FF80/FF84 | R/W | | 02 | Status Register | Contains the alert and conversion ready flags. | 00000000 00000000 | 0000 | R | | 03 | SMBus Alert Mask/Enable
Control Register | Contains masks to enable/disable the alert functions. 00000000 00000000 | | 0000 | R/W | | 04 | Shunt Voltage Result | Shunt voltage measurement result. | 00000000 00000000 | 0000 | R | | 05 | Bus Voltage Result | Bus voltage measurement result. | 00000000 00000000 | 0000 | R | | 06 | Power Result | Power measurement result. | 00000000 00000000 | 0000 | R | | 07 | Shunt Current Result (2) | Contains the value of the current flowing through the shunt resistor. | 00000000 00000000 | 0000 | R | | 08 | Local Temperature Result | Contains local temperature measurement result. | 00000000 00000000 | 0000 | R | | 09 | Remote Temperature
Result 1 | Contains remote temperature measurement result. | 00000000 00000000 | 0000 | R | | 0A | Remote Temperature
Result 2 | Contains remote temperature measurement result. | 00000000 00000000 | 0000 | R | | 0B ⁽³⁾ | Remote Temperature
Result 3 | Contains remote temperature measurement result. | 00000000 00000000 | 0000 | R | | 0C | Shunt Voltage Positive
Limit | Contains the positive limit for Shunt Voltage. | 00000000 00000000 | 0000 | R/W | | 0D | Shunt Voltage Negative
Limit | Contains the negative limit for Shunt Voltage. | 00000000 00000000 | 0000 | R/W | | 0E | Bus Voltage Positive Limit | Contains the positive limit for Bus Voltage. | 00000000 00000000 | 0000 | R/W | | 0F | Bus Voltage Negative Limit | Contains the negative limit for Bus Voltage. | 00000000 00000000 | 0000 | R/W | | 10 | Power Limit | Contains the positive limit for Power. | 00000000 00000000 | 0000 | R/W | | 11 | Local Temperature Limit | Contains positive limit for local temperature. | 00101010 10000000 | 2A80 | R/W | Type: $\mathbf{R} = \text{Read-Only}$, $\mathbf{R}/\overline{\mathbf{W}} = \text{Read/Write}$. Current Register defaults to '0' because the Calibration Register defaults to '0', yielding a zero current value until the Calibration Register is programmed. For TMP513 only. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 SBOS491A -JUNE 2010-REVISED MAY 2011 ### www.ti.com ### Table 3. Summary of Register Set (continued) | POINTER
ADDRESS | | | POWER-ON R | ESET | | |--------------------|-------------------------------|---|-------------------|------|---------------------| | HEX | REGISTER NAME | FUNCTION | BINARY | HEX | TYPE ⁽¹⁾ | | 12 | Remote Temperature
Limit 1 | Contains positive limit for remote temperature. | 00101010 10000000 | 2A80 | R/W | | 13 | Remote Temperature
Limit 2 | Contains positive limit for remote temperature. | 00101010 10000000 | 2A80 | R/W | | 14 ⁽⁴⁾ | Remote Temperature
Limit 3 | Contains positive limit for remote temperature. | 00101010 10000000 | 2A80 | R/W | | 15 | Shunt Calibration Register | Sets the current that corresponds to a full-scale drop across the shunt. | 00000000 00000000 | 0000 | R/W | | 16 | n-Factor 1 | Contains the N-factor value for Remote Channel 1 and Hysteresis for temperature limits. | 00000000 00000000 | 0000 | R/W | | 17 | n-Factor 2 | Contains the N-factor value for Remote Channel 2. | 00000000 00000000 | 0000 | R/W | | 18 ⁽⁴⁾ | n-Factor 3 | Contains the N-factor value for Remote Channel 3. | 00000000 00000000 | 0000 | R/W | | 1E/FE | Manufacturer ID Register | Contains the Manufacturer ID. | 01010101 11111111 | 55FF | R | | 1F/FF | TMP512 Device ID
Register | Contains the Device ID. | 00100010 11111111 | 22FF | R | | 1F/FF | TMP513 Device ID
Register | Contains the Device ID. | 00100011 11111111 | 23FF | R | ⁽⁴⁾ For TMP513 only. ### **REGISTER DETAILS** All TMP512/13 registers are 16-bit registers. 16-bit register data are sent in two 8-bit bytes via the two-wire interface. ### Configuration Register 1—Shunt Measurement Configuration 00h (Read/Write) | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|-----|--------------|------|-----|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | BIT
NAME | RST | ONE-
SHOT | BRNG | PG1 | PG0 | BADC4 | BADC3 | BADC2 | BADC1 | SADC4 | SADC3 | SADC2 | SADC1 | MODE3 | MODE2 | MODE1 | | POR
VALUE | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | ### **Bit Descriptions** RST: Reset Bit Bit 15 Setting this bit to '1' generates a system reset that is the same as power-on reset. Resets all registers to default values; this bit self-clears. ONE-SHOT One-Shot Bit Bit 14 Setting
this bit to '1' generates a one-shot command. BRNG: Bus Voltage Range Bit 13 0 = 16V FSR 1 = 32V FSR (default value) PG: PGA (Shunt Voltage Only) Bits 12, 11 Sets PGA gain and range. Note that the PGA defaults to ÷8 (320mV range). Table 4 shows the gain and range for the various product gain settings. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010 - REVISED MAY 2011 www.ti.com ### Table 4. PG Bit Settings⁽¹⁾ | PG1 | PG0 | GAIN | RANGE | |-----|-----|------|--------| | 0 | 0 | 1 | ±40mV | | 0 | 1 | ÷2 | ±80mV | | 1 | 0 | ÷4 | ±160mV | | 1 | 1 | ÷8 | ±320mV | (1) Shaded values are default. BADC: **BADC Bus ADC Resolution/Averaging** Bits 10-7 These bits adjust the Bus ADC resolution (9-, 10-, 11-, or 12-bit) or set the number of samples used when averaging results for the Bus Voltage Register (05h). SADC: SADC Shunt ADC Resolution/Averaging Bits 6-3 These bits adjust the Shunt ADC resolution (9-, 10-, 11-, or 12-bit) or set the number of samples used when averaging results for the Shunt Voltage Register (04h). BADC (Bus) and SADC (Shunt) ADC resolution/averaging and conversion time settings are shown in Table 5. ## Table 5. ADC Settings⁽¹⁾ | ADC4 | ADC3 | ADC2 | ADC1 | MODE/SAMPLES | CONVERSION TIME | |------|------------------|------|------|--------------|-----------------| | 0 | X ⁽²⁾ | 0 | 0 | 9-bit | 105µs | | 0 | X ⁽²⁾ | 0 | 1 | 10-bit | 185µs | | 0 | X ⁽²⁾ | 1 | 0 | 11-bit | 345µs | | 0 | X ⁽²⁾ | 1 | 1 | 12-bit | 665µs | | 1 | 0 | 0 | 0 | 12-bit | 665µs | | 1 | 0 | 0 | 1 | 2 | 1.3ms | | 1 | 0 | 1 | 0 | 4 | 2.58ms | | 1 | 0 | 1 | 1 | 8 | 5.13ms | | 1 | 1 | 0 | 0 | 16 | 10.25ms | | 1 | 1 | 0 | 1 | 32 | 20.49ms | | 1 | 1 | 1 | 0 | 64 | 40.97ms | | 1 | 1 | 1 | 1 | 128 | 81.92ms | Shaded values are default. X = Don't care. #### MODE: **Operating Mode** Selects continuous, triggered, or power-down mode of operation. These bits default to continuous shunt and bus Bits 2-0 measurement mode. The mode settings are shown in Table 6. ### Table 6. Mode Settings⁽¹⁾ | MODE3 | MODE2 | MODE1 | MODE | |-------|-------|-------|---| | 0 | 0 | 0 | Power-Down ⁽²⁾ | | 0 | 0 | 1 | Shunt Voltage, Triggered ⁽³⁾ | | 0 | 1 | 0 | Bus Voltage, Triggered ⁽³⁾ | | 0 | 1 | 1 | Shunt and Bus, Triggered ⁽³⁾ | | 1 | 0 | 0 | ADC Off (disabled) ⁽⁴⁾ | | 1 | 0 | 1 | Shunt Voltage, Continuous | | 1 | 1 | 0 | Bus Voltage, Continuous | | 1 | 1 | 1 | Shunt and Bus, Continuous | Shaded values are default. Combination '000' stops converter immediately. Combination '100' stops the converter at conversion end. In triggered modes the converter goes to power down. It can be triggered by a write of '1' to bit 14 (3)(One-Shot) in Configuration Register 1 or by the delay scheme of the temperature sensor core. See # **Distributor of Texas Instruments: Excellent Integrated System Limited**Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A - JUNE 2010 - REVISED MAY 2011 ### Configuration Register 2—Temperature Measurement Configuration 01h (Read/Write) | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |------------------------|------|------|------|------|-----|-----|----|----|----|----|----|----|----|----|------|------| | BIT
NAME | CONT | REN3 | REN2 | REN1 | LEN | RC | R2 | R1 | R0 | - | _ | _ | _ | GP | GPM1 | GPM0 | | TMP512
POR
VALUE | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | Х | 0 | 0 | | TMP513
POR
VALUE | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | Х | 0 | 0 | CONT: Continuous Conversion Bit 15 0: When all bits 14 to 11 are '0', the temp sensor core goes immediately to shutdown mode. When all bits 14 to 11 are not '0', the temp sensor core stops when all enabled conversions are done. When this bit is '0', a one-shot command can be triggered by writing a "1" to bit 14 of Configuration Register 1. 1: Continuous temperature conversion mode. REN3: Remote Channel 3 Enable (TMP513 only) Bit 14 0: Remote channel 3 disabled. 1: Remote channel 3 enabled. REN2: Remote Channel 2 Enable Bit 13 0: Remote channel 2 disabled. 1: Remote channel 2 enabled. REN1: Remote Channel 1 Enable Bit 12 0: Remote channel 1 disabled. 1: Remote channel 1 enabled. LEN: Local Temperature Enable Bit 11 0: Local temperature disabled 0: Local temperature disabled.1: Local temperature enabled. RC: Resistance Correction Bit 10 0: Resistance correction disabled. 1: Resistance correction enabled. R2, R1, R0: Conversion Rate Bits 9-7 These bits set the conversion rate as shown in Table 7. ### Table 7. Conversion Rate Settings⁽¹⁾ | R2 | R1 | R0 | CONVERSIONS/SEC | |----|----|----|------------------| | 0 | 0 | 0 | 0.0625 | | 0 | 0 | 1 | 0.125 | | 0 | 1 | 0 | 0.25 | | 0 | 1 | 1 | 0.5 | | 1 | 0 | 0 | 1 | | 1 | 0 | 1 | 2 | | 1 | 1 | 0 | 4 ⁽²⁾ | | 1 | 1 | 1 | 8(3) | - (1) Shaded values are default. - (2) Conversion rate shown is for only one or two enabled measurement channels. When three channels are enabled, the conversion rate is 2 and 2/3 conversions per second. When four channels are enabled, the conversion rate is 2 per second. - (3) Conversion rate shown is for only one enabled measurement channel. When two channels are enabled, the conversion rate is 4 conversions per second. When three channels are enabled, the conversion rate is 2 and 2/3 conversions per second. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SBOS491A - JUNE 2010 - REVISED MAY 2011 www.ti.com When all of the following conditions are met, the temperature sensor core triggers a single conversion of the voltage measurement core at the same rate as the conversion rate shown by bits R2 to R0. - · The conversion rate is different than '111'; - There is at least one enabled temperature channel; and - · The voltage measurement core is in triggered mode of operation. The temperature sensor core triggers a single conversion of the ADC core at the same rate as the conversion rate shown by R2 to R0. GP: GPIO Read-Back Bit 2 Shows the state of the GPIO pin. GPM: GPIO Mode Bits 1-0 The GPIO mode settings are shown in Table 8. GPIO should not be left floating at start-up. #### Table 8. GPIO Mode Settings⁽¹⁾ | GPM[1] | GPM[0] | GPIO PIN | DESCRIPTION | |--------|--------|----------|-------------------------------------| | 0 | 0 | Hi-Z | Use as an input for either of these | | 0 | 1 | Hi-Z | modes. | | 1 | 0 | 0 | Use to output 0 to GPIO pin | | 1 | 1 | 1 | Use to output 1 to GPIO pin | (1) Shaded values are default. # **Distributor of Texas Instruments: Excellent Integrated System Limited**Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A - JUNE 2010 - REVISED MAY 2011 #### Status Register 02h (Read) | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|----|----| | BIT
NAME | SHP | SHN | BVP | BVN | PWR | LCL | RM1 | RM2 | RM3 | CVR | CRT | PVLD | SMBA | OVF | _ | _ | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | The Status Register flags activate whenever any limit is violated, and latch if the alert is in *latch* mode. In latch mode, these flags are cleared when the Status Register is read (if the limit is exceeded, then at next conversion end, the flag sets again). In transparent mode, these flags are cleared when any corresponding limit is not violated any longer. After power-up and initial setup, the Status Register should be read once to clear any flags set as a result of power-up values prior to setup. #### **Bit Descriptions** SHP: Shunt Positive Over-Voltage Bit 15 This bit is set to '1' when the result in the Shunt Voltage Register (04h) exceeds the level set in the Shunt Positive Limit Register (0Ch). SHN: Shunt Negative Under-Voltage Bit 14 This bit is set to '1' when the result in the Shunt Voltage Register (04h) goes below the level set in the Shunt Negative Limit Register (0Dh). BVP: Bus Positive Over-Voltage Bit 13 This bit is set to '1' when the result in the Bus Voltage Register (05h) exceeds the level set in the Bus Voltage Positive Limit Register (0Eh). BVN: Bus Negative Under-Voltage Bit 12 This bit is set to '1' when the result in the Bus Voltage Register (05h) goes below the level set in the Bus Voltage Negative Limit Register (0Fh). PWR: Power Over–Limit Bit 11 This bit is set to '1' when the result in the Power Register (06h) exceeds the level set in the Power Limit Register (10h). LCL: Local Temperature Over-Limit Bit 10 This bit is set to '1' when the result in the Local Temperature Result Register (08h) exceeds the level set in the Local Temperature Limit Register (11h) plus half of the temperature hysteresis. It clears in transparent mode when the result in the Local Temperature Result Register (08h) is below the level set in the Local Temperature Limit Register (11h) minus half of the temperature hysteresis. RM1: Remote Temperature 1 Over-Limit Bit 9 This bit is set to '1' when the result in the Remote Temperature Result 1 Register (09h) exceeds the level set in the Remote Temperature Limit 1 Register (12h) plus half of the temperature hysteresis. It also sets if, during conversion of remote channel 1, an open diode condition was detected. It clears in transparent mode when the result in the Remote Temperature Result 1 Register (09h) is below the level set in the Remote Temperature Limit 1 Register (12h) minus half of the temperature hysteresis, and the last conversion of channel 1 was done without *open-diode* detection. RM2: Remote Temperature 2 Over-Limit Bit 8 This bit is
set to '1' when the result in the Remote Temperature Result 2 Register (0Ah) exceeds the level set in the Remote Temperature Limit 2 Register (13h) plus half of the temperature hysteresis. It also sets if, during conversion of remote channel 2, an open diode condition was detected. It clears in transparent mode when the result in the Remote Temperature Result 2 Register (0Ah) is below the level set in the Remote Temperature Limit 2 Register (13h) minus half of the temperature hysteresis, and the last conversion of channel 2 was done without *open-diode* detection. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010 - REVISED MAY 2011 www.ti.com #### **Bit Descriptions (continued)** RM3: Remote Temperature 3 Over-Limit (TMP513 only) Bit 7 This bit is set to '1' when the result in the Remote Temperature Result 3 Register (0Bh) exceeds the level set in the Remote Temperature Limit 3 Register (14h) plus half of the temperature hysteresis. It sets also if during conversion of remote channel 3 an open diode condition was detected. It clears in transparent mode when the result in the Remote Temperature Result 3Register (0Bh) is below the level set in the Remote Temperature Limit 3 Register (14h) minus half of the temperature hysteresis and the last conversion of channel 3 was done without open-diode detection. CVR: **Conversion Ready** The Conversion Ready line is provided to help coordinate one-shot conversions for shunt voltage, bus voltage, Bit 6 current and power measurements. The Conversion bit is set after all conversions, averaging, and multiplication events are complete. Conversion Ready clears under the following conditions: Writing to the One-Shot bit in Configuration Register 1. 2. Reading the Status Register. CRT: **Conversion Ready Temperature** Bit 5 The Conversion Ready Temperature line is provided to help coordinate one-shot conversions for local and remote temperature measurements. The Conversion bit is set after all enabled channels complete the respective conversions. Conversion Ready Temperature clears under the following conditions: Writing to the One-Shot bit in Configuration Register 1. Reading the Status Register. PVLD: Power Valid Error Bit 4 In latch mode, this bit is set to '1' when the brown-out detect fires during a conversion. The flag sets to '1' at the conversion end. It clears by reading the Status Register. SMBA: This bit is set when the Alert pin is active. When in latch mode, it clears only on reading the Status Register, Bit 3 disabling the SMBus Alert function, or using SMBus Alert Response. In transparent mode, it clears when the triggering condition is not present. OVF: **Math Overflow** Bit 2 This bit is set to '1' if an arithmetic operation resulted in an overflow error. It indicates that current and power data may be meaningless. It does not set the Alert pin. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A - JUNE 2010-REVISED MAY 2011 #### SMBus Alert Register—Mask and Alert Control Functions 03h (Read/Write) | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|------|------|------|------|------|------|-----|-----|-----|------|------|------|-----|-----|-----|-------| | BIT
NAME | SHPM | SHNM | BVPM | BVNM | PWRM | LCLM | R1M | R2M | R3M | CVRM | CRTM | PVLM | FC1 | FC0 | POL | LATCH | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bits D4–D15 of the SMBus Alert Register mask correspond to bits D4 to D15 of the Status Register to prevent them from initiating an SMBus Alert. It does not prevent the Status Register bit from setting. Writing a '0' to an SMBus Alert Mask bit masks it from activating the SMBus Alert. All default values are '0'. #### **Bit Descriptions** SHPM: Shunt Positive Over-Voltage Mask Bit 15 0: SHP flag in Status Register cannot activate Alert pin. 1: SHP flag (when set to '1') in Status Register activates Alert pin. SHNM: Shunt Negative Under-Voltage Mask Bit 14 0: SHN flag in Status Register cannot activate Alert pin. 1: SHN flag (when set to '1') in Status Register activates Alert pin. BVPM: Bus Voltage Positive Over-Voltage Mask Bit 13 0: BVP flag in Status Register cannot activate Alert pin. 1: BVP flag (when set to '1') in Status Register activates Alert pin. BVNM: Bus Voltage Negative Under-Voltage Mask Bit 12 0: BVN flag in Status Register cannot activate Alert pin. 1: BVN flag (when set to '1') in Status Register activates Alert pin. PWRM: Power Over-Limit Mask Bit 11 0: PWR flag in Status Register cannot activate Alert pin. 1: PWR flag (when set to '1') in Status Register activates Alert pin. LCLM: Local Temperature Over-Limit Mask Bit 10 0: LCL flag in Status Register cannot activate Alert pin. 1: LCL flag (when set to '1') in Status Register activates Alert pin. R1M: Remote Temperature1 Over-Limit Mask Bit 9 0: RM1 flag in Status Register cannot activate Alert pin. 1: RM1 flag (when set to '1') in Status Register activates Alert pin. R2M: Remote Temperature2 Over-Limit Mask Bit 8 0: RM2 flag in Status Register cannot activate Alert pin. 1: RM2 flag (when set to '1') in Status Register activates Alert pin. R3M: Remote Temperature3 Over-Limit Mask (TMP513 only) Bit 7 0: RM3 flag in Status Register cannot activate Alert pin. 1: RM3 flag (when set to '1') in Status Register activates Alert pin. CVRM: Conversion Ready Mask Bit 6 0: CVR flag in Status Register cannot activate Alert pin. 1: CVR flag (when set to '1') in Status Register activates Alert pin. CRTM: Conversion Ready Temperature Mask Bit 5 0: CRT flag in Status Register cannot activate Alert pin. 1: CRT flag (when set to '1') in Status Register activates Alert pin. PVLM: Power Valid Limit Mask Bit 4 0: PVLD flag in Status Register cannot activate Alert pin. 1: PVLD flag (when set to '1') in Status Register activates Alert pin. Bit 0 # **Distributor of Texas Instruments: Excellent Integrated System Limited** Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010 - REVISED MAY 2011 www.ti.com #### **Bit Descriptions (continued)** FC0, FC1 **Fault Count Control Bits** The Fault Count Control Bits affect flags in SMBus Alert Register bits D15-D7. Bit 3, 2 00: These flags are activated after the first conversion result with a violated limit. > 01: These flags are activated after the second consecutive conversion result with a violated limit. 10: These flags are activated after the fourth consecutive conversion result with a violated limit. 11: These flags are activated after the eighth consecutive conversion result with a violated limit. POL: **Alert Polarity** Bit 1 0: Alert pin is active low. 1: Alert pin is active high. LATCH: **Alert Mode of Operation** 0: Alert pin works in transparent mode. The SMB alert response function does not function. Alert is deasserted when the triggering condition goes away. 1: Alert pin works in latch mode. The SMB alert response function functions when Alert pin is active. Alert will remain asserted even if the triggering condition goes away. Alert can be deasserted by reading the Status register (02h), using the SMBus Alert response function, resetting the part, or by disabling the alert function using the mask bits. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A - JUNE 2010-REVISED MAY 2011 #### Shunt Voltage Register 04h (Read-Only) The Shunt Voltage Register stores the current shunt voltage reading, V_{SHUNT} . Shunt Voltage Register bits are shifted according to the PGA setting selected in Configuration Register 1 (00h). When multiple sign bits are present, they will all be the same value. Negative numbers are represented in twos complement format. Generate the twos complement of a negative number by complementing the absolute value binary number and adding 1. Extend the sign, denoting a negative number by setting the MSB = '1'. Extend the sign to any additional sign bits to form the 16-bit word. Example: For a value of $V_{SHUNT} = -320 \text{mV}$: - 1. Take the absolute value (include accuracy to 0.01mV)==> 320.00 - 2. Translate this number to a whole decimal number ==> 32000 - 3. Convert it to binary==> 111 1101 0000 0000 - 4. Complement the binary result: 000 0010 1111 1111 - 5. Add 1 to the Complement to create the twos complement formatted result ==> 000 0011 0000 0000 - 6. Extend the sign and create the 16-bit word: 1000 0011 0000 0000 = 8300h (Remember to extend the sign to all sign-bits, as necessary based on the PGA setting.) At PGA = $\div 8$, full-scale range = ± 320 mV (decimal = 32000, positive value hex = 7D00, negative value hex = 8300), and LSB = 10μ V. | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | BIT
NAME | SIGN | SD14_8 | SD13_8 | SD12_8 | SD11_8 | SD10_8 | SD9_8 | SD8_8 | SD7_8 | SD6_8 | SD5_8 | SD4_8 | SD3_8 | SD2_8 | SD1_8 | SD0_8 | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | At PGA = $\div 4$, full-scale range = ± 160 mV (decimal = 16000, positive value hex = 3E80, negative value hex = C180), and LSB = 10μ V. | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|------|------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | BIT
NAME | SIGN | SIGN | SD13_4 | SD12_4 | SD11_4 | SD10_4 | SD9_4 | SD8_4 | SD7_4 |
SD6_4 | SD5_4 | SD4_4 | SD3_4 | SD2_4 | SD1_4 | SD0_4 | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | At PGA = $\div 2$, full-scale range = $\pm 80 \text{mV}$ (decimal = 8000, positive value hex = 1F40, negative value hex = E0C0), and LSB = $10 \mu \text{V}$. | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|------|------|------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | BIT
NAME | SIGN | SIGN | SIGN | SD12_2 | SD11_2 | SD10_2 | SD9_2 | SD8_2 | SD7_2 | SD6_2 | SD5_2 | SD4_2 | SD3_2 | SD2_2 | SD1_2 | SD0_2 | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | At PGA = \div 1, full-scale range = \pm 40mV (decimal = 4000, positive value hex = 0FA0, negative value hex = F060), and LSB = 10μ V. | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|------|------|------|------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | BIT
NAME | SIGN | SIGN | SIGN | SIGN | SD11_1 | SD10_1 | SD9_1 | SD8_1 | SD7_1 | SD6_1 | SD5_1 | SD4_1 | SD3_1 | SD2_1 | SD1_1 | SD0_1 | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010-REVISED MAY 2011 www.ti.com ### Table 9. Shunt Voltage Register Format⁽¹⁾ | V _{SHUNT} | Decimal | PGA = ÷ 8 | PGA = ÷ 4 | PGA = ÷ 2 | PGA = ÷ 1 | |--------------------|------------------|---------------------|--|---------------------|---------------------| | Reading (mV) | Value | (D15D0) | (D15D0) | (D15D0) | (D15D0) | | 320.02 | 32002 | 0111 1101 0000 0000 | 0011 1110 1000 0000 | 0001 1111 0100 0000 | 0000 1111 1010 0000 | | 320.01 | 32001 | 0111 1101 0000 0000 | 0011 1110 1000 0000 | 0001 1111 0100 0000 | 0000 1111 1010 0000 | | 320.00 | 32000 | 0111 1101 0000 0000 | 0011 1110 1000 0000 | 0001 1111 0100 0000 | 0000 1111 1010 0000 | | 319.99 | 31999 | 0111 1100 1111 1111 | 0011 1110 1000 0000 | 0001 1111 0100 0000 | 0000 1111 1010 0000 | | 319.98 | 31998 | 0111 1100 1111 1110 | 0011 1110 1000 0000 | 0001 1111 0100 0000 | 0000 1111 1010 0000 | | i | ÷ | i . | : | ; | : | | 160.02 | 16002 | 0011 1110 1000 0010 | 0011 1110 1000 0000 | 0001 1111 0100 0000 | 0000 1111 1010 0000 | | 160.01 | 16001 | 0011 1110 1000 0001 | 0011 1110 1000 0000 | 0001 1111 0100 0000 | 0000 1111 1010 0000 | | 160.00 | 16000 | 0011 1110 1000 0000 | 0011 1110 1000 0000 | 0001 1111 0100 0000 | 0000 1111 1010 0000 | | 159.99 | 15999 | 0011 1110 0111 1111 | 0011 1110 0111 1111 | 0001 1111 0100 0000 | 0000 1111 1010 0000 | | 159.98 | 15998 | 0011 1110 0111 1110 | 0011 1110 0111 1110 | 0001 1111 0100 0000 | 0000 1111 1010 0000 | | : | : | i . | : | ; | : | | 80.02 | 8002 | 0001 1111 0100 0010 | 0001 1111 0100 0010 | 0001 1111 0100 0000 | 0000 1111 1010 0000 | | 80.01 | 8001 | 0001 1111 0100 0001 | 0001 1111 0100 0001 | 0001 1111 0100 0000 | 0000 1111 1010 0000 | | 80.00 | 8000 | 0001 1111 0100 0000 | 0001 1111 0100 0000 | 0001 1111 0100 0000 | 0000 1111 1010 0000 | | 79.99 | 7999 | 0001 1111 0011 1111 | 0001 1111 0011 1111 | 0001 1111 0011 1111 | 0000 1111 1010 0000 | | 79.98 | 7998 | 0001 1111 0011 1110 | 0001 1111 0011 1110 | 0001 1111 0011 1110 | 0000 1111 1010 0000 | | 1 | : | | 1 | 1 | : | | 40.02 | 4002 | 0000 1111 1010 0010 | 0000 1111 1010 0010 | 0000 1111 1010 0010 | 0000 1111 1010 0000 | | 40.02 | 4002 | 0000 1111 1010 0010 | 0000 1111 1010 0010 | | | | 40.00 | 4001 | | 0000 1111 1010 0001 | 0000 1111 1010 0001 | 0000 1111 1010 0000 | | | | 0000 1111 1010 0000 | | | 0000 1111 1010 0000 | | 39.99 | 3999 | 0000 1111 1001 1111 | 0000 1111 1001 1111 | 0000 1111 1001 1111 | 0000 1111 1001 1111 | | 39.98 | 3998 | 0000 1111 1001 1110 | 0000 1111 1001 1110 | 0000 1111 1001 1110 | 0000 1111 1001 1110 | | : | : | <u> </u> | ! | 1 | : | | 0.02 | 2 | 0000 0000 0000 0010 | 0000 0000 0000 0010 | 0000 0000 0000 0010 | 0000 0000 0000 0010 | | 0.01 | 1 | 0000 0000 0000 0001 | 0000 0000 0000 0001 | 0000 0000 0000 0001 | 0000 0000 0000 0001 | | 0 | 0 | 0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000 0000 0000 | | -0.01 | -1 | 1111 1111 1111 1111 | 1111 1111 1111 1111 | 1111 1111 1111 1111 | 1111 1111 1111 1111 | | -0.02 | -2 | 1111 1111 1111 1110 | 1111 1111 1111 1110 | 1111 1111 1111 1110 | 1111 1111 1111 1110 | | : | ÷ | : | : | : | i | | -39.98 | -3998 | 1111 0000 0110 0010 | 1111 0000 0110 0010 | 1111 0000 0110 0010 | 1111 0000 0110 0010 | | -39.99 | -3999 | 1111 0000 0110 0001 | 1111 0000 0110 0001 | 1111 0000 0110 0001 | 1111 0000 0110 0001 | | -40.00 | -4000 | 1111 0000 0110 0000 | 1111 0000 0110 0000 | 1111 0000 0110 0000 | 1111 0000 0110 0000 | | -40.01 | -4001 | 1111 0000 0101 1111 | 1111 0000 0101 1111 | 1111 0000 0101 1111 | 1111 0000 0110 0000 | | -40.02 | -4002 | 1111 0000 0101 1110 | 1111 0000 0101 1110 | 1111 0000 0101 1110 | 1111 0000 0110 0000 | | ÷ | i | i . | : | i . | : | | -79.98 | -7998 | 1110 0000 1100 0010 | 1110 0000 1100 0010 | 1110 0000 1100 0010 | 1111 0000 0110 0000 | | -79.99 | -7999 | 1110 0000 1100 0001 | 1110 0000 1100 0001 | 1110 0000 1100 0001 | 1111 0000 0110 0000 | | -80.00 | -8000 | 1110 0000 1100 0000 | 1110 0000 1100 0000 | 1110 0000 1100 0000 | 1111 0000 0110 0000 | | -80.01 | -8001 | 1110 0000 1011 1111 | 1110 0000 1011 1111 | 1110 0000 1100 0000 | 1111 0000 0110 0000 | | -80.02 | -8002 | 1110 0000 1011 1110 | 1110 0000 1011 1110 | 1110 0000 1100 0000 | 1111 0000 0110 0000 | | 1 | : | | 1 | 1 | : | | -159.98 | | | | 1110 0000 1100 0000 | 1111 0000 0110 0000 | | -159.99 | -15998
-15999 | 1100 0001 1000 0010 | 1100 0001 1000 0010
1100 0001 1000 0001 | 1110 0000 1100 0000 | 1111 0000 0110 0000 | | | | | 1100 0001 1000 0001 | | | | -160.00 | -16000
16001 | 1100 0001 1000 0000 | | 1110 0000 1100 0000 | 1111 0000 0110 0000 | | -160.01 | -16001 | 1100 0001 0111 1111 | 1100 0001 1000 0000 | 1110 0000 1100 0000 | 1111 0000 0110 0000 | | -160.02 | -16002 | 1100 0001 0111 1110 | 1100 0001 1000 0000 | 1110 0000 1100 0000 | 1111 0000 0110 0000 | | | 1 | <u> </u> | : | : | : | | -319.98 | -31998 | 1000 0011 0000 0010 | 1100 0001 1000 0000 | 1110 0000 1100 0000 | 1111 0000 0110 0000 | | -319.99 | -31999 | 1000 0011 0000 0001 | 1100 0001 1000 0000 | 1110 0000 1100 0000 | 1111 0000 0110 0000 | | -320.00 | -32000 | 1000 0011 0000 0000 | 1100 0001 1000 0000 | 1110 0000 1100 0000 | 1111 0000 0110 0000 | | -320.01 | -32001 | 1000 0011 0000 0000 | 1100 0001 1000 0000 | 1110 0000 1100 0000 | 1111 0000 0110 0000 | | -320.02 | -32002 | 1000 0011 0000 0000 | 1100 0001 1000 0000 | 1110 0000 1100 0000 | 1111 0000 0110 0000 | (1) Out-of-range values are shaded. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A -JUNE 2010-REVISED MAY 2011 #### Bus Voltage Register 05h (Read-Only) The Bus Voltage Register stores the most recent bus voltage reading, V_{BUS}. At full-scale range = 32V (decimal = 8000, hex = 1F40), and LSB = 4mV. | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----| | BIT
NAME | BD12 | BD11 | BD10 | BD9 | BD8 | BD7 | BD6 | BD5 | BD4 | BD3 | BD2 | BD1 | BD0 | - | - | _ | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | At full-scale range = 16V (decimal = 4000, hex = 0FA0), and LSB = 4mV. | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|-----|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----| | BIT
NAME | 0 | BD11 | BD10 | BD9 | BD8 | BD7 | BD6 | BD5 | BD4 | BD3 | BD2 | BD1 | BD0 | _ | _ | _ | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | #### Power Register 06h (Read-Only) Full-scale range and LSB are set by the Calibration Register. See the *Programming the TMP512/13 Power Measurement Engine* section. | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | |--------------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--| | BIT
NAME | PD15 | PD14 | PD13 | PD12 | PD11 | PD10 | PD9 | PD8 | PD7 | PD6 | PD5 | PD4 | PD3 | PD2 | PD1 | PD0 | | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | The Power Register records power in watts by multiplying the values of the current with the value of the bus voltage according to the equation: Power = $$\frac{\text{Current} \times \text{BusVoltage}}{5000}$$ #### **Current Register 07h (Read-Only)** Full-scale range and LSB depend on the value entered in the Calibration Register. See the *Programming the TMP512/13 Power Measurement Engine* section. Negative values are stored in two complement format. | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|-------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | BIT
NAME | CSIGN | CD14 | CD13 | CD12 | CD11 | CD10 | CD9 | CD8 | CD7 | CD6 | CD5 | CD4 | CD3 | CD2 | CD1 | CD0 | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | The value of the Current Register is calculated by multiplying the value in the Shunt Voltage Register with the value in the Calibration Register according to the equation: Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010 - REVISED MAY
2011 www.ti.com #### Local Temperature Result Register 08h (Read-Only) | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|------|----| | BIT
NAME | T12 | T11 | T10 | Т9 | Т8 | T7 | Т6 | T5 | T4 | Т3 | T2 | T1 | T0 | - | PVLD | - | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | The data format is 13 bits, 0.0625°C per bit. Full-scale allows display up to ±256°C. T12-T0: **Temperature Result** Bits 15-3 Shows the temperature result according to the format shown in Table 10. Table 10. 13-Bit Temperature Data Format | TEMPERATURE (°C) | DIGITAL OUTPUT (BINARY) | HEX | |------------------|-------------------------|------| | 150 | 0 1001 0110 0000 | 0960 | | 128 | 0 1000 0000 0000 | 0800 | | 127.9375 | 0 0111 1111 1111 | 07FF | | 100 | 0 0110 0100 0000 | 0640 | | 80 | 0 0101 0000 0000 | 0500 | | 75 | 0 0100 1011 0000 | 04B0 | | 50 | 0 0011 0010 0000 | 0320 | | 25 | 0 0001 1001 0000 | 0190 | | 0.25 | 0 0000 0000 0100 | 0004 | | 0 | 0 0000 0000 0000 | 0000 | | -0.25 | 1 1111 1111 1100 | 1FFC | | -25 | 1 1110 0111 0000 | 1E70 | | – 55 | 1 1100 1001 0000 | 1C90 | For positive temperatures (for example, +50°C): Twos complement is not performed on positive numbers. Therefore, simply convert the number to binary code with the 13-bit, left-justified format, and MSB = 0 to denote a positive sign. Example: $(+50^{\circ}C)/(0.0625^{\circ}C/count) = 800 = 320h = 0011 0010 0000$ For negative temperatures (for example, -25°C): Generate the twos complement of a negative number by complementing the absolute value binary number and adding 1. Denote a negative number with MSB = 1. Example: $(-25^{\circ}\text{C})/(0.0625^{\circ}\text{C/count}) = 400 = 190\text{h} = 0001\ 1001\ 0000$ Twos complement format: 1110 0110 1111 + 1 = 1110 0111 0000 **PVLD Power Valid Flag** Bit 1 This bit is the power valid flag. > The TMP512/13 do not start a temperature conversion if the power supply is not valid. If the voltage is less than 2.7V during a conversion, the PVLD bit is set to '1' and the temperature result may be incorrect. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A - JUNE 2010-REVISED MAY 2011 # Remote Temperature Result 1 Register 09h, Remote Temperature Result 2 Register 0Ah, Remote Temperature Result 3 Register (TMP513 Only) 0Bh (Read-Only) | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|------|----| | BIT
NAME | RT12 | RT11 | RT10 | RT9 | RT8 | RT7 | RT6 | RT5 | RT4 | RT3 | RT2 | RT1 | RT0 | - | PVLD | DO | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | The data format is 13 bits, 0.0625°C per bit. Full-scale allows display up to ±256°C. RT12-RT0: Remote Temperature Result Bits 3-15 Shows the remote temperature measurement result. PVLD Power Valid Flag Bit 1 This bit is the power valid flag. The TMP512/13 do not start a temperature conversion if the power supply is not valid. If the voltage is less than 2.7V during a conversion, the PVLD bit is set to '1' and the temperature result may be incorrect. DO Diode Open Flag Bit 0 This bit is the diode open flag. If the Remote Channels are open during a conversion, then Diode Open bit is set at the end of the conversion. #### Shunt Positive Limit Register 0Ch (Read/Write) At full-scale range = ± 320 mV, 15-bit + sign, LSB = 10μ V (decimal = 32000, positive value hex = 7D00, negative value hex = 8300). | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|-------------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------| | BIT
NAME | SWP
SIGN | SWP14 | SWP13 | SWP12 | SWP11 | SWP10 | SWP9 | SWP8 | SWP7 | SWP6 | SWP5 | SWP4 | SWP3 | SWP2 | SWP1 | SWP0 | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | #### Shunt Negative Limit Register 0Dh (Read/Write) At full-scale range = ± 320 mV (decimal = 32000, positive value hex = 7D00, negative value hex = 8300). 15 bit + sign, LSB = 10μ V. | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|-------------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------| | BIT
NAME | SWN
SIGN | SWN14 | SWN13 | SWN12 | SWN11 | SWN10 | SWN9 | SWN8 | SWN7 | SWN6 | SWN5 | SWN4 | SWN3 | SWN2 | SWN1 | SWN0 | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | #### Bus Voltage Positive Limit Register 0Eh (Read/Write) At full-scale range = 32V (decimal = 8000, hex = 1F40), and LSB = 4mV. | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------|----|----|----| | BIT
NAME | BWU12 | BWU11 | BWU10 | BWU9 | BWU8 | BWU7 | BWU6 | BWU5 | BWU4 | BWU3 | BWU2 | BWU1 | BWU0 | - | - | 1 | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010 - REVISED MAY 2011 www.ti.com #### Bus Voltage Negative Limit Register 0Fh (Read/Write) At full-scale range = 32V (decimal = 8000, hex = 1F40), and LSB = 4mV. | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------|----|----|----| | BIT
NAME | BUO12 | BUO11 | BUO10 | BUO9 | BUO8 | BUO7 | BUO6 | BUO5 | BUO4 | BUO3 | BUO2 | BUO1 | BUO0 | 1 | ı | - | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | #### Power Limit Register 10h (Read/Write) At full-scale range, same as the Power Register (06h). | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | BIT
NAME | PW15 | PW14 | PW13 | PW12 | PW11 | PW10 | PW9 | PW8 | PW7 | PW6 | PW5 | PW4 | PW3 | PW2 | PW1 | PW0 | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | # Local Temperature Limit Register 11h, Remote Temperature Limit 1 Register 12h, Remote Temperature Limit 2 Register 13h, Remote Temperature Limit 3 Register 14h (TMP513 Only) (Read/Write) | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----| | BIT
NAME | TH12 | TH11 | TH10 | TH9 | TH8 | TH7 | TH6 | TH5 | TH4 | TH3 | TH2 | TH1 | TH0 | 1 | - | _ | | POR
VALUE | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | The data format is 13 bits. TH12-TH0: Temperature Limit Bits 15-3 Shows the temperature limit. #### Shunt Calibration Register 15h (Read/Write) Current and power calibration are set in the Calibration Register. Note that bit D0 is not used in the calculation. This register sets the current that corresponds to a full-scale drop across the shunt. Full-scale range and the LSB of the current and power measurement depend on the value entered in this register. See the *Programming the TMP512/13 Power Measurement Engine* section. This register is suitable for use in overall system calibration. Note that the '0' POR values are all default. | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 ⁽¹⁾ | |--------------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------------| | BIT
NAME | FS15 | FS14 | FS13 | FS12 | FS11 | FS10 | FS9 | FS8 | FS7 | FS6 | FS5 | FS4 | FS3 | FS2 | FS1 | FS0 | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (1) D0 is a void bit and is always '0'. It is not possible to write a '1' to D0. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 www.ti.com SBOS491A -JUNE 2010-REVISED MAY 2011 #### n-Factor 1 Register 16h (Read/Write) | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------| | BIT
NAME | NF7 | NF6 | NF5 | NF4 | NF3 | NF2 | NF1 | NF0 | HST7 | HST6 | HST5 | HST4 | HST3 | HST2 | HST1 | HST0 | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NF7-NF0: n-Factor Bits Bits 15-8 Shows the n-factor for Channel 1 according to the range indicated in Table 11. ### Table 11. n-Factor Range⁽¹⁾ | | N _{ADJUST} | | | |-----------|---------------------|---------|----------| | BINARY | HEX | DECIMAL | n | | 0111 1111 | 7F | 127 | 1.747977 | | 0000 1010 | 0A | 10 | 1.042759 | | 0000 1000 | 08 | 8 | 1.035616 | | 0000 0110 | 06 | 6 | 1.028571 | | 0000 0100 | 04 | 4 | 1.021622 | | 0000 0010 | 02 | 2 | 1.014765 | | 0000 0001 | 01 | 1 | 1.011371 | | 0000 0000 | 00 | 0 | 1.008 | | 1111 1111 | FF | -1 | 1.004651 | | 1111 1110 | FE | -2 | 1.001325 | | 1111 1100 | FC | -4 | 0.994737 | | 1111 1010 | FA | -6 | 0.988235 | | 1111 1000 | F8 | -8 | 0.981818 | | 1111 0110 | F6 | -10 | 0.975484 | | 1000 0000 | 80 | -128 | 0.706542 | (1) Shaded values are default. HST7-HST0: Hysteresis Register Bits Bits 7-0 The hysteresis register is binary coded. 1LSB is equal to
0.5°C, so the possible hysteresis range is 0°C to 127.5°C. #### n-Factor 2 Register 17h (Read/Write) | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----| | BIT
NAME | NF7 | NF6 | NF5 | NF4 | NF3 | NF2 | NF1 | NF0 | - | _ | - | _ | - | _ | - | _ | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NF7-NF0: n-Factor Bits Bits 15-8 Shows the n-factor for Channel 2 according to the range indicated in Table 11. #### n-Factor 3 Register 18h (TMP513 Only) (Read/Write) | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----| | BIT
NAME | NF7 | NF6 | NF5 | NF4 | NF3 | NF2 | NF1 | NF0 | - | - | _ | - | - | 1 | - | _ | | POR
VALUE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NF7-NF0: n-Factor Bits Bits 15-8 Shows the n-factor for Channel 3 according to the range indicated in Table 11. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SBOS491A - JUNE 2010-REVISED MAY 2011 www.ti.com #### Manufacturer ID Register 1Eh and FEh (Read-Only) | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |--------------|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----| | BIT
NAME | ID7 | ID6 | ID5 | ID4 | ID3 | ID2 | ID1 | ID0 | - | - | - | - | - | _ | - | _ | | POR
VALUE | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ID7-ID0: **Identification Register Bits** Bits 15-8 These bits provide the manufacturer ID. #### Device ID Register 1Fh and FFh (Read-Only) | BIT# | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |------------------------|------|------|------|------|------|------|------|------|----|----|----|----|----|----|----|----| | BIT
NAME | DID7 | DID6 | DID5 | DID4 | DID3 | DID2 | DID1 | DID0 | - | _ | - | _ | - | 1 | - | _ | | TMP512
POR
VALUE | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | TMP513
POR
VALUE | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | DID7-DID0: **Identification Register Bits** Bits 15-8 These bits provide the device ID. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com TMP512 TMP513 #### www.ti.com SBOS491A -JUNE 2010-REVISED MAY 2011 #### **REVISION HISTORY** NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | Cr | nanges from Original (June, 2010) to Revision A | Page | |----|---|------| | • | Removed product preview indications for QFN-16 package option of TMP513 throughout document | 1 | | • | Added package information for QFN-16 version of TMP512 | 2 | | • | Deleted footnote indicating TMP513 QFN-16 package currently unavailable | 2 | | • | Updated Thermal Information Tables to reflect new package availability for TMP512 | 3 | | • | Added RSA package pinout (QFN-16)and Pin Descriptions table for TMP512 | 6 | | • | Deleted footnote indicating that QFN package of TMP513 is product preview | 7 | Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM 11-Apr-2013 #### **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Top-Side Markings | Samples | |------------------|--------|--------------|---------|------|---------|----------------------------|------------------|---------------------|--------------|-------------------|---------| | | (1) | | Drawing | | Qty | (2) | | (3) | | (4) | | | TMP512AID | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TMP512A | Samples | | TMP512AIDR | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TMP512A | Samples | | TMP512AIRSAR | ACTIVE | QFN | RSA | 16 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TMP512A | Samples | | TMP512AIRSAT | ACTIVE | QFN | RSA | 16 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TMP512A | Samples | | TMP513AID | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TMP513A | Samples | | TMP513AIDR | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TMP513A | Samples | | TMP513AIRSAR | ACTIVE | QFN | RSA | 16 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TMP513A | Samples | | TMP513AIRSAT | ACTIVE | QFN | RSA | 16 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TMP513A | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): Ti's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 1 # **Distributor of Texas Instruments: Excellent Integrated System Limited**Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM www.ti.com 11-Apr-2013 (4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information that way not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### PACKAGE MATERIALS INFORMATION www.ti.com 26-Jan-2013 #### TAPE AND REEL INFORMATION | | A0 | Dimension designed to accommodate the component width | |-----|----|--| | - 1 | DΩ | Dimension designed to accommodate the component length | - B0 Dimension designed to accommodate the component length - K0 Dimension designed to accommodate the component thickness - W Overall width of the carrier tape - P1 Pitch between successive cavity centers #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TMP512AIDR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 | | TMP512AIRSAR | QFN | RSA | 16 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | TMP512AIRSAT | QFN | RSA | 16 | 250 | 180.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | |
TMP513AIDR | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | TMP513AIRSAR | QFN | RSA | 16 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | TMP513AIRSAT | QFN | RSA | 16 | 250 | 180.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## **PACKAGE MATERIALS INFORMATION** www.ti.com 26-Jan-2013 #### *All dimensions are nominal | 7 til dilliciololio die Hollindi | | | | | | | | |----------------------------------|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | TMP512AIDR | SOIC | D | 14 | 2500 | 367.0 | 367.0 | 38.0 | | TMP512AIRSAR | QFN | RSA | 16 | 3000 | 367.0 | 367.0 | 35.0 | | TMP512AIRSAT | QFN | RSA | 16 | 250 | 210.0 | 185.0 | 35.0 | | TMP513AIDR | SOIC | D | 16 | 2500 | 367.0 | 367.0 | 38.0 | | TMP513AIRSAR | QFN | RSA | 16 | 3000 | 367.0 | 367.0 | 35.0 | | TMP513AIRSAT | QFN | RSA | 16 | 250 | 210.0 | 185.0 | 35.0 | ### **MECHANICAL DATA** ## D (R-PDSO-G14) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AB. #### **LAND PATTERN DATA** # D (R-PDSO-G14) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. ### **MECHANICAL DATA** ## D (R-PDSO-G16) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AC. #### **LAND PATTERN DATA** # D (R-PDSO-G16) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. # RSA (S-PVQFN-N16) ### PLASTIC QUAD FLATPACK NO-LEAD NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - C. Quad Flatpack, No-leads (QFN) package configuration. - D. The package thermal pad must be soldered to the board for thermal and mechanical performance. - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. - F. Falls within JEDEC MO-220. Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### THERMAL PAD MECHANICAL DATA ### RSA (S-PVQFN-N16) #### PLASTIC QUAD FLATPACK NO-LEAD #### THERMAL INFORMATION This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC). For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com. The exposed thermal pad dimensions for this package are shown in the following illustration. Bottom View Exposed Thermal Pad Dimensions 4206364/N 07/13 NOTES: A. All linear dimensions are in millimeters #### LAND PATTERN DATA ## RSA (S-PVQFN-N16) ### PLASTIC QUAD FLATPACK NO-LEAD - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com https://www.ti.com. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - Customers should contact their board fabrication site for solder mask tolerances. # **Distributor of Texas Instruments: Excellent Integrated System Limited**Datasheet of TMP513AIRSAR - IC TEMP SNSR TRIPL REMOTE 16QFN Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such
components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications www.ti.com/audio Audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Industrial www.ti.com/clocks Industrial www.ti.com/industrial www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u> Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated