Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: Texas Instruments OPA170AID For any questions, you can email us directly: sales@integrated-circuit.com Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 # OPAx170 36-V, Single-Supply, SOT553, Low-Power Operational Amplifiers Value Line Series #### 1 Features Supply Range: 2.7 V to 36 V, ±1.35 V to ±18 V Low Noise: 19 nV/√Hz RFI Filtered Inputs • Input Range Includes the Negative Supply · Input Range Operates to Positive Supply Rail-to-Rail Output Gain Bandwidth: 1.2 MHz Low Quiescent Current: 110 µA per Amplifier High Common-Mode Rejection: 120 dB • Low Bias Current: 15 pA (Maximum) Industry-Standard Packages and micro Packages Available # 2 Applications - · Tracking Amplifier in Power Modules - Merchant Power Supplies - Transducer Amplifiers - Bridge Amplifiers - Temperature Measurements - · Strain Gauge Amplifiers - · Precision Integrators - Battery-Powered Instruments - Test Equipment ### 3 Description The OPA170, OPA2170, and OPA4170 devices (OPAx170) are a family of 36-V, single-supply, lownoise operational amplifiers that feature micro packages with the ability to operate on supplies ranging from 2.7 V (±1.35 V) to 36 V (±18 V). They offer good offset, drift, and bandwidth with low quiescent current. The single, dual, and quad versions all have identical specifications for maximum design flexibility. Unlike most operational amplifiers, which are specified at only one supply voltage, the OPAx170 family of operational amplifiers is specified from 2.7 V to 36 V. Input signals beyond the supply rails do not cause phase reversal. The OPAx170 family is stable with capacitive loads up to 300 pF. The input can operate 100 mV below the negative rail and within 2 V of the positive rail for normal operation. Note that these devices can operate with full rail-to-rail input 100 mV beyond the positive rail, but with reduced performance within 2 V of the positive rail. The OPAx170 operational amplifiers are specified from -40°C to 125°C. #### Device Information⁽¹⁾ | PART NUMBER | PACKAGE | BODY SIZE (NOM) | |-------------|-----------------------|-------------------| | | SOIC (8) | 4.90 mm × 3.91 mm | | OPA170 | SOT (5) | 1.60 mm × 1.20 mm | | | SOT-23 (5) | 2.90 mm × 1.60 mm | | | SOIC (8) | 4.90 mm × 3.91 mm | | OPA2170 | VSSOP (8) | 3.00 mm × 3.00 mm | | | VSSOP (8), micro size | 2.30 mm × 2.00 mm | | OPA4170 | SOIC (14) | 8.65 mm × 3.91 mm | | OFA4170 | TSSOP (14) | 5.00 mm × 4.40 mm | ⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet. #### **Smallest Packaging for 36-V Operational Amplifiers** Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 www.ti.com **Page** | Ta | h | l۵ | of | Co | nte | nts | |----|---|----|----|----|------|------| | | w | ıc | v | UU | 1116 | 11.0 | | 1 | Features 1 | 7.4 Device Functional Modes2 | |---|--------------------------------------|---| | 2 | Applications 1 | 8 Application and Implementation 22 | | 3 | Description 1 | 8.1 Application Information | | 4 | Revision History2 | 8.2 Typical Application | | 5 | Pin Configuration and Functions | 9 Power Supply Recommendations 24 | | 6 | Specifications6 | 10 Layout 24 | | - | 6.1 Absolute Maximum Ratings 6 | 10.1 Layout Guidelines24 | | | 6.2 ESD Ratings | 10.2 Layout Example24 | | | 6.3 Recommended Operating Conditions | 11 Device and Documentation Support 26 | | | 6.4 Thermal Information: OPA170 | 11.1 Device Support | | | 6.5 Thermal Information: OPA21707 | 11.2 Documentation Support | | | 6.6 Thermal Information: OPA41707 | 11.3 Related Links | | | 6.7 Electrical Characteristics | 11.4 Community Resources27 | | | 6.8 Typical Characteristics | 11.5 Trademarks | | 7 | Detailed Description | 11.6 Electrostatic Discharge Caution | | • | 7.1 Overview | 11.7 Glossary27 | | | 7.2 Functional Block Diagram | 12 Mechanical, Packaging, and Orderable Information | | | 7.5 Teature Description | | #### 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. ### #### Changes from Revision A (September 2011) to Revision B Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com www.ti.com OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011-REVISED MARCH 2016 # 5 Pin Configuration and Functions #### OPA170: DBV Package 5-Pin SOT-23 Top View #### OPA170: D Package 8-Pin SOIC Top View #### **Pin Functions: OPA170** | | PIN | | | I/O | DESCRIPTION | | |-------------------|-----|--------|---------|-----|---|--| | NAME | SOT | SOT-23 | D | 1/0 | DESCRIPTION | | | IN- (-IN) | 3 | 4 | 2 | I | Negative (inverting) input | | | IN+ (+IN) | 1 | 3 | 3 | I | I Positive (noninverting) input | | | NC ⁽¹⁾ | _ | _ | 1, 5, 8 | _ | No internal connection (can be left floating) | | | OUT | 4 | 1 | 6 | 0 | Output | | | V+ | 5 | 5 | 7 | _ | Positive (highest) power supply | | | V- | 2 | 2 | 4 | _ | Negative (lowest) power supply | | (1) NC indicates no internal connection. Copyright © 2011–2016, Texas Instruments Incorporated Submit Documentation Feedback 3 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 www.ti.com #### OPA2170: D, DGK, and DCU Packages 8-Pin VSSOP, SOIC, and VSSOP (*micro* size) Top View ### **Pin Functions: OPA2170** | | | PIN | | | DESCRIPTION | | |-------|------|-------|-----------------------|-----|---------------------------------|--| | NAME | SOIC | VSSOP | VSSOP
(micro size) | 1/0 | | | | -IN A | 2 | 2 | 2 | - 1 | Inverting input, channel A | | | –IN B | 6 | 6 | 6 | I | I Inverting input, channel B | | | +IN A | 3 | 3 | 3 | | Noninverting input, channel A | | | +IN B | 5 | 5 | 5 | I | Noninverting input, channel B | | | OUT A | 1 | 1 | 1 | 0 | Output, channel A | | | OUT B | 7 | 7 | 7 | 0 | Output, channel B | | | V- | 4 | 4 | 4 | | Negative (lowest) power supply | | | V+ | 8 | 8 | 8 | _ | Positive (highest) power supply | | Submit Documentation Feedback Copyright © 2011–2016, Texas Instruments Incorporated Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com www.ti.com OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 ### OPA4170: D and PW Packages 14-Pin SOIC and TSSOP Top View ### **Pin Functions: OPA4170** | | PIN | | 1/0 | DESCRIPTION | | |-------|------|-------|-----|---------------------------------|--| | NAME | SOIC | TSSOP | 1/0 | DESCRIPTION | | | –IN A | 2 | 2 | I | Inverting input, channel A | | | –IN B | 6 | 6 | I | Inverting input, channel B | | | -IN C | 9 | 9 | I | erting input, channel C | | | –IN D | 13 | 13 | I | Inverting input, channel D | | | +IN A | 3 | 3 | I | ninverting input, channel A | | | +IN B | 5 | 5 | I | Noninverting input, channel B | | | +IN C | 10 | 10 | I | Noninverting input, channel C | | | +IN D | 12 | 12 | I | Noninverting input, channel D | | | OUT A | 1 | 1 | 0 | Output, channel A | | | OUT B | 7 | 7 | 0 | Output, channel B | | | OUT C | 8 | 8 | 0 | Output, channel C | | | OUT D | 14 | 14 | 0 | Output, channel D | | | V- | 11 | 11 | _ | Negative (lowest) power supply | | | V+ | 4 | 4 | _ | Positive (highest) power supply | | Product Folder Links: OPA170 OPA2170 OPA4170 Copyright © 2011–2016, Texas Instruments Incorporated Submit Documentation Feedback 5 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 www.ti.com ### 6 Specifications ### 6.1 Absolute Maximum Ratings Over operating free-air temperature range, unless otherwise noted. (1) | | | MIN | MAX | UNIT | |---|---|-------------|------------|------| | Supply voltage | | -20 | 20 | V | | Single supply voltage | | | 40 | V | | Signal input pin voltage | (| (V–) – 0.5 | (V+) + 0.5 | V | | Signal input pin current | | -10 | 10 | mA | | Output short-circuit current ⁽²⁾ | | Contir | nuous | | | Operating ambient temperature, T _A | | - 55 | 150 | °C | | Junction temperature, T _J | | | 150 | °C | | Storage temperature, T _{stg} | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. # 6.2 ESD Ratings | | | | VALUE | UNIT | |------------------------------------|-------------------------|--|-------|----------| | V | Flootroptotic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) | ±4000 | V | | V _(ESD) Electrostatic d | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ | ±750 | v | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ### 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | | MIN | MAX | UNIT | |-------|--------------------------|-----|-----
------| | Vs | Supply voltage (V+ – V–) | 2.7 | 36 | V | | T_A | Operating temperature | -40 | 125 | °C | Product Folder Links: OPA170 OPA2170 OPA4170 Submit Documentation Feedback Copyright © 2011–2016, Texas Instruments Incorporated ⁽²⁾ Short-circuit to ground, one amplifier per package. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com www.ti.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011-REVISED MARCH 2016 #### 6.4 Thermal Information: OPA170 | | | OPA170 | | | | | |----------------------|--|----------|--------------|-----------|------|--| | | THERMAL METRIC ⁽¹⁾ | D (SOIC) | DBV (SOT-23) | DRL (SOT) | UNIT | | | | | 8 PINS | 5 PINS | 5 PINS | | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 149.5 | 245.8 | 208.1 | °C/W | | | $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance | 97.9 | 133.9 | 0.1 | °C/W | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 87.7 | 83.6 | 42.4 | °C/W | | | ψ_{JT} | Junction-to-top characterization parameter | 35.5 | 18.2 | 0.5 | °C/W | | | ΨЈВ | Junction-to-board characterization parameter | 89.5 | 83.1 | 42.2 | °C/W | | | $R_{\theta JC(bot)}$ | Junction-to-case (bottom) thermal resistance | _ | _ | - | °C/W | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953). # 6.5 Thermal Information: OPA2170 | | THERMAL METRIC ⁽¹⁾ | D (SOIC) | DCU (VSSOP,
micro size) | DGK (VSSOP) | UNIT | |-----------------------|--|----------|----------------------------|-------------|------| | | | 8 PINS | 8 PINS | 8 PINS | | | R _{θJA} | Junction-to-ambient thermal resistance | 134.3 | 175.2 | 180 | °C/W | | $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance | 72.1 | 74.9 | 55 | °C/W | | R _{eJB} | Junction-to-board thermal resistance | 60.6 | 22.2 | 130 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 18.2 | 1.6 | 5.3 | °C/W | | ΨЈВ | Junction-to-board characterization parameter | 53.8 | 22.8 | 120 | °C/W | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | _ | _ | _ | °C/W | For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953). #### 6.6 Thermal Information: OPA4170 | | | OPA4170 | | | | |----------------------|--|----------|------------|------|--| | | THERMAL METRIC ⁽¹⁾ | D (SOIC) | PW (TSSOP) | UNIT | | | | | 14 PINS | 14 PINS | | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 93.2 | 106.9 | °C/W | | | $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance | 51.8 | 24.4 | °C/W | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 49.4 | 59.3 | °C/W | | | ΨЈТ | Junction-to-top characterization parameter | 13.5 | 0.6 | °C/W | | | ψ_{JB} | Junction-to-board characterization parameter | 42.2 | 54.3 | °C/W | | | $R_{\theta JC(bot)}$ | Junction-to-case (bottom) thermal resistance | _ | _ | °C/W | | For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953). Product Folder Links: OPA170 OPA2170 OPA4170 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 www.ti.com ### 6.7 Electrical Characteristics at $T_A = 25$ °C, $V_{CM} = V_{OUT} = V_S$ / 2, and $R_L = 10$ k Ω connected to V_S / 2 (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------|--|--|------------|----------|----------|--------------------------| | OFFSET | /OLTAGE | | | | | | | . , | | T _A = 25°C | | 0.25 | ±1.8 | mV | | V _{OS} | Input offset voltage | $T_A = -40$ °C to 125°C | | | ±2 | mV | | dV _{OS} /dT | Input offset voltage drift | $T_A = -40$ °C to 125°C | | ±0.3 | ±2 | μV/°C | | PSRR | Input offset voltage vs power supply | V _S = 4 V to 36 V, T _A = -40°C to 125°C | | 1 | ±5 | μV/V | | | Channel separation, dc | | | 5 | | μV/V | | INPUT BI | AS CURRENT | | II. | | | | | I Input biog ourrors | | T _A = 25°C | | ±8 | ±15 | pA | | I _B | Input bias current | $T_A = -40$ °C to 125°C | | | ±3.5 | nA | | | | T _A = 25°C | | ±4 | ±15 | pA | | los | Input offset current | $T_A = -40$ °C to 125°C | | | ±3.5 | nA | | NOISE | | | 11 | | | | | | Input voltage noise | f = 0.1 Hz to 10 Hz | | 2 | | μV _{PP} | | | | f = 100 Hz | | 22 | | nV/√ Hz | | e _n | Input voltage noise density | f = 1 kHz | | 19 | | nV/√ Hz | | INPUT VO | DLTAGE | | I . | | | | | V _{CM} | Common-mode voltage range ⁽¹⁾ | | (V-) - 0.1 | | (V+) - 2 | V | | | | $V_S = \pm 2 \text{ V}, \text{ (V-)} - 0.1 \text{ V} < V_{CM} < \text{(V+)} - 2 \text{ V}, $ $T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$ | 90 | 104 | | dB | | CMRR | Common-mode rejection ratio | $V_S = \pm 18 \text{ V}, (V-) - 0.1 \text{ V} < V_{CM} < (V+) - 2 \text{ V},$
$T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$ | 104 | 120 | | dB | | INPUT IM | PEDANCE | | II. | | | | | | Differential | | | 100 3 | | MΩ pF | | | Common-mode | | | 6 3 | | 10 ¹² Ω pF | | OPEN-LO | OP GAIN | | I | | l | | | A _{OL} | Open-loop voltage gain | $V_S = 4 \text{ V to } 36 \text{ V},$
$(V-) + 0.35 \text{ V} < V_O < (V+) - 0.35 \text{ V},$
$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ | 110 | 130 | | dB | | FREQUE | NCY RESPONSE | | | | | | | GBP | Gain bandwidth product | | | 1.2 | | MHz | | SR | Slew rate | G = +1 | | 0.4 | | V/µs | | - | | To 0.1%, V _S = ±18 V, G = +1, 10-V step | | 20 | | μs | | t _S | Settling time | To 0.01% (12-bit), $V_S = \pm 18 \text{ V}$, $G = +1$, 10-V step | | 28 | | μs | | | Overload recovery time | V _{IN} × Gain > V _S | | 2 | | μs | | THD+N | Total harmonic distortion + noise | $G = +1, f = 1 \text{ kHz}, V_O = 3 V_{RMS}$ | | 0.0002% | | | ⁽¹⁾ The input range can be extended beyond (V+) – 2 V up to V+. See the *Typical Characteristics* and *Application and Implementation* sections for additional information. Submit Documentation Feedback Copyright © 2011–2016, Texas Instruments Incorporated Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com www.ti.com # OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011-REVISED MARCH 2016 # **Electrical Characteristics (continued)** at T_A = 25°C, V_{CM} = V_{OUT} = V_S / 2, and R_L = 10 k Ω connected to V_S / 2 (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP MA | X UNI | |--|---|--|-----------------------------|------------|-------| | OUTPUT | | | | | | | \/ | Voltage cutout outing from positive will | I _L = 0 mA, V _S = 4 V to 36 V | 10 | | m\ | | V _O Voltage output swing from positive rail | I_L sourcing 1 mA, $V_S = 4 \text{ V to } 36 \text{ V}$ | 115 | | m\ | | | | Voltage cutout outing from negative reil | I _L = 0 mA, V _S = 4 V to 36 V | | | 8 m\ | | V _O Voltage output swing from | Voltage output swing from negative rail | I _L sinking 1 mA, V _S = 4 V to 36 V | | 70 m\ | | | V _O Voltage output swing from rail | | $V_S = 5 \text{ V}, R_L = 10 \text{ k}\Omega; T_A =
-40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$ | (V-) + 0.03 | (V+) - 0.0 |)5 V | | | R_L = 10 kΩ, A_{OL} ≥ 110 dB,
T_A = -40°C to 125°C | (V+) - 0.3 | 35 V | | | | I _{SC} | Short-circuit current | | -20 | , | 7 m/ | | C _{LOAD} | Capacitive load drive | | See Typical Characteristics | | | | Ro | Open-loop output resistance | f = 1 MHz, I _O = 0 A | 900 | | | | POWER | SUPPLY | | | | | | Vs | Specified voltage range | | 2.7 | | 36 V | | | Outros de la companya del companya de la companya del companya de la | I _O = 0 A; T _A = 25°C | | 110 14 | l5 μA | | IQ | Quiescent current per amplifier | I _O = 0 A; T _A = -40°C to 125°C | | 15 | 55 μA | | TEMPER | ATURE | | | | · | | | Specified range | | -40 | 12 | 25 °C | | | Operating range | | -55 | 15 | 0 °C | Copyright © 2011–2016, Texas Instruments Incorporated Submit Documentation Feedback Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 www.ti.com # 6.8 Typical Characteristics $V_S=\pm 18~V,~V_{CM}=V_S~/~2,~R_{LOAD}=10~k\Omega~connected~to~V_S~/~2,~and~C_L=100~pF,~unless~otherwise~noted.$ #### **Table 1. Characteristic Performance Measurements** | DESCRIPTION | FIGURE | |--|----------------------| | Offset Voltage Production Distribution | Figure 1 | | Offset Voltage Drift Distribution | Figure 2 | | Offset Voltage vs Temperature | Figure 3 | | Offset Voltage vs Common-Mode Voltage | Figure 4 | | Offset Voltage vs Common-Mode Voltage (Upper Stage) | Figure 5 | | Offset Voltage vs Power Supply | Figure 6 | | I _B and I _{OS} vs Common-Mode Voltage | Figure 7 | | Input Bias Current vs Temperature | Figure 8 | | Output Voltage Swing vs Output Current (Maximum Supply) | Figure 9 | | CMRR and PSRR vs Frequency (Referred-to-Input) | Figure 10 | | CMRR vs Temperature | Figure 11 | | PSRR vs Temperature | Figure 12 | | 0.1-Hz to 10-Hz Noise | Figure 13 | | Input Voltage Noise Spectral Density vs Frequency | Figure 14 | | THD+N Ratio vs Frequency | Figure 15 | | THD+N vs Output Amplitude | Figure 16 | | Quiescent Current vs Temperature | Figure 17 | | Quiescent Current vs Supply Voltage | Figure 18 | | Open-Loop Gain and Phase vs Frequency | Figure 19 | | Closed-Loop Gain vs Frequency | Figure 20 | | Open-Loop Gain vs Temperature | Figure 21 | | Open-Loop Output Impedance vs Frequency | Figure 22 | | Small-Signal Overshoot vs Capacitive Load (100-mV Output Step) | Figure 23, Figure 24 | | No Phase Reversal | Figure 25 | | Positive Overload Recovery | Figure 26 | | Negative Overload Recovery | Figure 27 | | Small-Signal Step Response (100 mV) | Figure 28, Figure 29 | | Large-Signal Step Response | Figure 30, Figure 31 | | Large-Signal Settling Time (10-V Positive Step) | Figure 32 | | Large-Signal Settling Time (10-V Negative Step) | Figure 33 | | Short-Circuit Current vs Temperature | Figure 34 | | Maximum Output Voltage vs Frequency | Figure 35 | | EMIRR IN+ vs Frequency | Figure 36 | Submit Documentation Feedback Copyright © 2011–2016, Texas Instruments Incorporated Product Folder Links: OPA170 OPA2170 OPA4170 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com www.ti.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011-REVISED MARCH 2016 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 www.ti.com Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 -AUGUST 2011-REVISED MARCH 2016 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 www.ti.com Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### www.ti.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011-REVISED MARCH 2016 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 www.ti.com Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com www.ti.com OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011-REVISED MARCH 2016 ### 7 Detailed Description #### 7.1 Overview The OPAx170 family of operational amplifiers provides high overall performance, making them ideal for many general-purpose applications. The excellent offset drift of only 2 μ V/°C provides excellent stability over the entire temperature range. In addition, the device offers very good overall performance with high CMRR, PSRR, and A_{Ol} . #### 7.2 Functional Block Diagram ### 7.3 Feature Description ### 7.3.1 Operating Characteristics The OPAx170 family of amplifiers is specified for operation from 2.7 V to 36 V (±1.35 V to ±18 V). Many of the specifications apply from -40°C to 125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in the *Typical Characteristics*. Product Folder Links: OPA170 OPA2170 OPA4170 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 www.ti.com # **Feature Description (continued)** #### 7.3.2 Phase-Reversal Protection The OPAx170 family has an internal phase-reversal protection. Many operational amplifiers exhibit a phase reversal when the input is driven beyond its linear common-mode range. This condition is most often encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The input of the OPAx170 prevents phase reversal with excessive common-mode voltage. Instead, the output limits into the appropriate rail. This performance is shown in Figure 37. Figure 37. No Phase Reversal #### 7.3.3 Electrical Overstress Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress. These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly. A good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is helpful. Figure 38 illustrates the ESD circuits contained in the OPAx170 (indicated by the dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation. Product Folder Links: OPA170 OPA2170 OPA4170 www.ti.com OPA170, OPA2170, OPA4170 ### SBOS557C - AUGUST 2011-REVISED MARCH 2016 #### **Feature Description (continued)** Figure 38. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-current pulse when discharging through a semiconductor device. The ESD protection circuits are designed to provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the protection circuitry is then dissipated as heat. When an ESD voltage develops across two or more amplifier device pins, current flows through one or more steering diodes. Depending on the path that the current takes, the absorption device can activate. The absorption device has a trigger, or threshold voltage, that is above the normal operating voltage of the OPAx170 but below the device breakdown voltage level. When this threshold is exceeded, the absorption device quickly activates and clamps the voltage across the supply rails to a safe level. When the operational amplifier connects into a circuit (refer to Figure 38), the ESD protection components are intended to remain inactive and do not become involved in the application circuit operation. However, circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. If this condition occurs, there is a risk that some internal ESD protection circuits can turn on and conduct current. Any such current flow occurs through steering-diode paths and rarely involves the absorption device. Figure 38 shows a specific example where the input voltage (V_{IN}) exceeds the positive supply voltage (V+) by 500 mV or more. Much of what happens in the circuit depends on the supply characteristics. If V+ can sink the current, one of the upper input steering diodes conducts and directs current to V+. Excessively high current levels can flow with increasingly higher V_{IN} . As a result, the data sheet specifications recommend that applications limit the input current to 10 mA. If the supply is not capable of sinking the current, V_{IN} can begin sourcing current to the operational amplifier and then take over as the source of positive supply voltage. The danger in this case is that
the voltage can rise to levels that exceed the operational amplifier absolute maximum ratings. Copyright © 2011–2016, Texas Instruments Incorporated Submit Documentation Feedback 19 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 www.ti.com #### **Feature Description (continued)** Another common question involves what happens to the amplifier if an input signal is applied to the input when the power supplies (V+ or V-) are at 0 V. Again, this question depends on the supply characteristic when at 0 V. or at a level below the input signal amplitude. If the supplies appear as high impedance, then the input source supplies the operational amplifier current through the current-steering diodes. This state is not a normal bias condition; most likely, the amplifier does not operate normally. If the supplies are low impedance, then the current through the steering diodes can become quite high. The current level depends on the ability of the input source to deliver current, and any resistance in the input path. If there is any uncertainty about the ability of the supply to absorb this current, add external Zener diodes to the supply pins; see Figure 38. Select the Zener voltage so that the diode does not turn on during normal operation. However, the Zener voltage must be low enough so that the Zener diode conducts if the supply pin begins to rise above the safe-operating, supply-voltage level. The OPAx170 input pins are protected from excessive differential voltage with back-to-back diodes; see Figure 38. In most circuit applications, the input protection circuitry has no effect. However, in low-gain or G = 1 circuits, fast-ramping input signals can forward-bias these diodes because the output of the amplifier cannot respond rapidly enough to the input ramp. If the input signal is fast enough to create this forward-bias condition, limit the input signal current to 10 mA or less. If the input signal current is not inherently limited, an input series resistor can be used to limit the input signal current. This input series resistor degrades the low-noise performance of the OPAx170. Figure 38 illustrates an example configuration that implements a current-limiting feedback resistor. #### 7.3.4 Capacitive Load and Stability The dynamic characteristics of the OPAx170 have been optimized for common operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be isolated from the output. The simplest way to achieve this isolation is to add a small resistor (for example, R_{OUT} equal to 50 Ω) in series with the output. Refer to Figure 39 and Figure 40 illustrate graphs of small-signal overshoot versus capacitive load for several values of ROUT. Also, refer to applications bulletin AB-028, Feedback Plots Define Op Amp AC Performance (SBOA015), for details of analysis techniques and application circuits. Product Folder Links: OPA170 OPA2170 OPA4170 Submit Documentation Feedback Copyright © 2011-2016. Texas Instruments Incorporated 20 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011-REVISED MARCH 2016 www.ti.com #### 7.4 Device Functional Modes #### 7.4.1 Common-Mode Voltage Range The input common-mode voltage range of the OPAx170 series extends 100 mV below the negative rail and within 2 V of the top rail for normal operation. This device can operate with full rail-to-rail input 100 mV beyond the top rail, but with reduced performance within 2 V of the top rail. The typical performance in this range is summarized in Table 2. Table 2. Typical Performance for Common-Mode Voltages Within 2 V of the Positive Supply | | PARAMETER | MIN | TYP | MAX | UNIT | | |------------------------|----------------|----------|-----|------------|-------|--| | Input common-mode volt | age | (V+) - 2 | | (V+) + 0.1 | V | | | Offset voltage | | | 7 | | | | | | vs temperature | | 12 | | μV/°C | | | Common-mode rejection | | | 65 | | dB | | | Open-loop gain | | | 60 | | dB | | | Gain-bandwidth product | | | 0.3 | | | | | Slew rate | | | 0.3 | | V/µs | | #### 7.4.2 Overload Recovery Overload recovery is defined as the time required for the operational amplifier output to recover from the saturated state to the linear state. The output devices of the operational amplifier enter the saturation region when the output voltage exceeds the rated operating voltage, either resulting from the high input voltage or the high gain. After the device enters the saturation region, the charge carriers in the output devices need time to return back to the normal state. After the charge carriers return back to the equilibrium state, the device begins to slew at the normal slew rate. Thus, the propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time. The overload recovery time for the OPAx170 is approximately 2 µs. Copyright © 2011-2016. Texas Instruments Incorporated Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 www.ti.com ### **Application and Implementation** #### **NOTE** Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. Ti's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. ### 8.1 Application Information The OPAx170 family of operational amplifiers provides high overall performance in a large number of generalpurpose applications. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling capacitors placed close to the device pins. In most cases, 0.1-µF capacitors are adequate. Follow the additional recommendations in Layout Guidelines in order to achieve the maximum performance from this device. Many applications may introduce capacitive loading to the output of the amplifier (potentially causing instability). One method of stabilizing the amplifier in such applications is to add an isolation resistor between the amplifier output and the capacitive load. The design process for selecting this resistor is given in Typical Application. ### 8.2 Typical Application This circuit can be used to drive capacitive loads such as cable shields, reference buffers, MOSFET gates, and diodes. The circuit uses an isolation resistor (Riso) to stabilize the output of an operational amplifier. Riso modifies the open-loop gain of the system to ensure the circuit has sufficient phase margin. Figure 41. Unity-Gain Buffer With R_{ISO} Stability Compensation #### 8.2.1 Design Requirements The design requirements are: - Supply voltage: 30 V (±15 V) - Capacitive loads: 100 pF, 1000 pF, 0.01 μ F, 0.1 μ F, and 1 μ F - Phase margin: 45° and 60° #### 8.2.2 Detailed Design Procedure Figure 41 shows a unity-gain buffer driving a capacitive load. Equation 1 shows the transfer function for the circuit in Figure 41. Not shown in Figure 41 is the open-loop output resistance of the operational amplifier, R_o. $$T(s) = \frac{1 + C_{LOAD} \times R_{ISO} \times s}{1 + (R_o + R_{ISO}) \times C_{LOAD} \times s}$$ (1) The transfer function in Equation 1 has a pole and a zero. The frequency of the pole (f_D) is determined by (R_O + R_{ISO}) and C_{LOAD}. Components R_{ISO} and C_{LOAD} determine the frequency of the zero (f_z). A stable system is obtained by selecting R_{ISO} such that the rate of closure (ROC) between the open-loop gain (A_{OL}) and 1/β is 20 dB/decade. Figure 42 depicts the concept. The 1/β curve for a unity-gain buffer is 0 dB. Submit Documentation Feedback Copyright © 2011-2016. Texas Instruments Incorporated Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com www.ti.com OPA170, OPA2170, OPA4170 #### SBOS557C - AUGUST 2011-REVISED MARCH 2016 ### **Typical Application (continued)** Figure 42. Unity-Gain Amplifier With RISO Compensation ROC stability analysis is typically simulated. The validity of the analysis depends on multiple factors, especially the accurate modeling of Ro. In addition to simulating the ROC, a robust stability analysis includes a measurement of overshoot percentage and ac gain peaking of the circuit using a function generator, oscilloscope, and gain and phase analyzer. Phase margin is then calculated from these measurements. Table 3 shows the overshoot percentage and ac gain peaking that correspond to phase margins of 45° and 60°. For more details on this design and other alternative devices that can be used in place of the OPA170, refer to the Precision Design, Capacitive Load Drive Solution Using an Isolation Resistor (TIPD128). Table 3. Phase Margin versus Overshoot and AC Gain Peaking | PHASE
MARGIN | OVERSHOOT | AC GAIN PEAKING | |-----------------|-----------|-----------------| | 45° | 23.3% | 2.35 dB | | 60° | 8.8% | 0.28 dB | ### 8.2.3 Application Curve Using the described methodology, the values of R_{ISO} that yield phase margins of 45° and 60° for various capacitive loads were determined. The results are shown in Figure 43. Figure 43. Isolation Resistor Required for Various Capacitive Loads to Achieve a Target Phase Margin Product Folder Links: OPA170 OPA2170 OPA4170 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 www.ti.com ### 9 Power
Supply Recommendations The OPAx170 is specified for operation from 2.7 V to 36 V (±1.35 V to ±18 V); many specifications apply from –40°C to 85°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in the *Typical Characteristics*. #### **CAUTION** Supply voltages larger than 40 V can permanently damage the device; see the *Absolute Maximum Ratings*. Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, see the *Layout* section. ### 10 Layout ### 10.1 Layout Guidelines For best operational performance of the device, use good printed-circuit board (PCB) layout practices, including: - Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the operational amplifier itself. Bypass capacitors are used to reduce the coupled noise by providing lowimpedance power sources local to the analog circuitry. - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications. - Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current. For more detailed information, see application report SLOA089, Circuit Board Layout Techniques. - In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicularly is much better than in parallel with the noisy trace. - Place the external components as close to the device as possible. As illustrated in Figure 45, keeping R_F and R_G close to the inverting input minimizes parasitic capacitance. - Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. - Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. #### 10.2 Layout Example Figure 44. Schematic Representation 24 Submit Documentation Feedback Copyright © 2011–2016, Texas Instruments Incorporated Product Folder Links: OPA170 OPA2170 OPA4170 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com **OPA170, OPA2170, OPA4170**SBOS557C – AUGUST 2011 – REVISED MARCH 2016 www.ti.com # **Layout Example (continued)** Figure 45. Operational Amplifier Board Layout for a Noninverting Configuration Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 www.ti.com # 11 Device and Documentation Support #### 11.1 Device Support #### 11.1.1 Third-Party Products Disclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE. #### 11.1.2 Development Support #### 11.1.2.1 TINA-TI™ (Free Software Download) TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI™ is a free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities. Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool. #### NOTE These files require that either the TINA software (from DesignSoft[™]) or TINA-TI software be installed. Download the free TINA-TI software from the TINA-TI folder. #### 11.1.2.2 DIP Adapter EVM The DIP Adapter EVM tool provides an easy, low-cost way to prototype small surface mount ICs. The evaluation tool these TI packages: D or U (SOIC-8), PW (TSSOP-8), DGK (MSOP-8), DBV (SOT23-6, SOT23-5 and SOT23-3), DCK (SC70-6 and SC70-5), and DRL (SOT563-6). The DIP Adapter EVM may also be used with terminal strips or may be wired directly to existing circuits. #### 11.1.2.3 Universal Operational Amplifier EVM The Universal Op Amp EVM is a series of general-purpose, blank circuit boards that simplify prototyping circuits for a variety of IC package types. The evaluation module board design allows many different circuits to be constructed easily and quickly. Five models are offered, with each model intended for a specific package type. PDIP, SOIC, MSOP, TSSOP and SOT23 packages are all supported. #### NOTE These boards are unpopulated, so users must provide their own ICs. TI recommends requesting several op amp device samples when ordering the Universal Op Amp EVM. ### 11.1.2.4 TI Precision Designs TI Precision Designs are analog solutions created by TI's precision analog applications experts and offer the theory of operation, component selection, simulation, complete PCB schematic and layout, bill of materials, and measured performance of many useful circuits. TI Precision Designs are available online at http://www.ti.com/ww/en/analog/precision-designs/. Submit Documentation Feedback Copyri Product Folder Links: OPA170 OPA2170 OPA4170 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com www.ti.com OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011-REVISED MARCH 2016 ### **Device Support (continued)** ### 11.1.2.5 WEBENCH® Filter Designer WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH Filter Designer lets you create optimized filter designs using a selection of TI operational amplifiers and passive components from TI's vendor partners. Available as a web-based tool from the WEBENCH® Design Center, WEBENCH® Filter Designer allows you to design, optimize, and simulate complete multistage active filter solutions within minutes. #### 11.2 Documentation Support #### 11.2.1 Related Documentation For related documentation, see the following (available for download from www.ti.com): - Feedback Plots Define Op Amp AC Performance (SBOA015) - Capacitive Load Drive Solution Using an Isolation Resistor (TIPD128) - Circuit Board Layout Techniques (SLOA089) #### 11.3 Related Links Table 4 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 4. Related Links | PARTS | PRODUCT FOLDER | SAMPLE & BUY | TECHNICAL DOCUMENTS | TOOLS &
SOFTWARE | SUPPORT & COMMUNITY | |---------|----------------|--------------|---------------------|---------------------|---------------------| | OPA170 | Click here | | OPA2170 | Click here | | OPA4170 | Click here | #### 11.4 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. **Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support. #### 11.5 Trademarks TINA-TI, E2E are trademarks of Texas Instruments. WEBENCH is a registered trademark of Texas Instruments. TINA, DesignSoft are trademarks of DesignSoft, Inc. All other trademarks are the property of their respective owners. #### 11.6 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. ### 11.7 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. Copyright © 2011–2016, Texas Instruments Incorporated Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### OPA170, OPA2170, OPA4170 SBOS557C - AUGUST 2011 - REVISED MARCH 2016 www.ti.com # 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Documentation Feedback 28 Copyright © 2011–2016, Texas Instruments Incorporated Product Folder Links: OPA170 OPA2170 OPA4170 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM 20-Jan-2016 #### PACKAGING INFORMATION | Orderable Device |
Status
(1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish (6) | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Sample | |------------------|---------------|--------------|--------------------|------|----------------|----------------------------|----------------------|---------------------|--------------|----------------------|--------| | OPA170AID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | O170A | Sample | | OPA170AIDBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OSVI | Sample | | OPA170AIDBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OSVI | Sample | | OPA170AIDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | O170A | Sample | | OPA170AIDRLR | ACTIVE | SOT | DRL | 5 | 4000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | DAQ | Sample | | OPA170AIDRLT | ACTIVE | SOT | DRL | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | DAQ | Sample | | OPA2170AID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 2170A | Sample | | OPA2170AIDCUR | ACTIVE | VSSOP | DCU | 8 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | OPQC | Sample | | OPA2170AIDCUT | ACTIVE | VSSOP | DCU | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | OPQC | Sample | | OPA2170AIDGK | ACTIVE | VSSOP | DGK | 8 | 80 | Green (RoHS
& no Sb/Br) | CU NIPDAUAG | Level-2-260C-1 YEAR | -40 to 125 | OPNI | Sample | | OPA2170AIDGKR | ACTIVE | VSSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAUAG | Level-2-260C-1 YEAR | -40 to 125 | OPNI | Sample | | OPA2170AIDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 2170A | Sample | | OPA4170AID | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | -40 to 125 | OPA4170 | Sample | | OPA4170AIDR | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | -40 to 125 | OPA4170 | Sample | | OPA4170AIPW | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OPA4170 | Sample | | OPA4170AIPWR | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OPA4170 | Sampl | ⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. Addendum-Page 1 ### **Distributor of Texas Instruments: Excellent Integrated System Limited** Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM 20-Jan-2016 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): Ti's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "-" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis #### OTHER QUALIFIED VERSIONS OF OPA170: ● Enhanced Product: OPA170-EP Enhanced Product - Supports Defense, Aerospace and Medical Applications Addendum-Page 2 Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com # PACKAGE MATERIALS INFORMATION www.ti.com 20-Jan-2016 #### TAPE AND REEL INFORMATION - A0 Dimension designed to accommodate the component width - B0 Dimension designed to accommodate the component length - K0 Dimension designed to accommodate the component thickness - W Overall width of the carrier tape - P1 Pitch between successive cavity centers #### **QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE** #### *All dimensions are nominal | an dimensions are norminal | | | | | | | | | | | | | |----------------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|-----------------| | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadran | | OPA170AIDBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 8.4 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | OPA170AIDBVR | SOT-23 | DBV | 5 | 3000 | 179.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | OPA170AIDBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 8.4 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | OPA170AIDBVT | SOT-23 | DBV | 5 | 250 | 179.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | OPA170AIDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | OPA170AIDRLR | SOT | DRL | 5 | 4000 | 180.0 | 8.4 | 1.98 | 1.78 | 0.69 | 4.0 | 8.0 | Q3 | | OPA170AIDRLT | SOT | DRL | 5 | 250 | 180.0 | 8.4 | 1.98 | 1.78 | 0.69 | 4.0 | 8.0 | Q3 | | OPA2170AIDCUR | VSSOP | DCU | 8 | 3000 | 180.0 | 8.4 | 2.25 | 3.35 | 1.05 | 4.0 | 8.0 | Q3 | | OPA2170AIDCUT | VSSOP | DCU | 8 | 250 | 180.0 | 8.4 | 2.25 | 3.35 | 1.05 | 4.0 | 8.0 | Q3 | | OPA2170AIDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | OPA2170AIDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | OPA4170AIDR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 | | OPA4170AIPWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com # **PACKAGE MATERIALS INFORMATION** www.ti.com 20-Jan-2016 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|--------------|-----------------|------|------|-------------|------------|-------------| | OPA170AIDBVR | SOT-23 | DBV | 5 | 3000 | 223.0 | 270.0 | 35.0 | | OPA170AIDBVR | SOT-23 | DBV | 5 | 3000 | 195.0 | 200.0 | 45.0 | | OPA170AIDBVT | SOT-23 | DBV | 5 | 250 | 202.0 | 201.0 | 28.0 | | OPA170AIDBVT | SOT-23 | DBV | 5 | 250 | 195.0 | 200.0 | 45.0 | | OPA170AIDR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 35.0 | | OPA170AIDRLR | SOT | DRL | 5 | 4000 | 202.0 | 201.0 | 28.0 | | OPA170AIDRLT | SOT | DRL | 5 | 250 | 202.0 | 201.0 | 28.0 | | OPA2170AIDCUR | VSSOP | DCU | 8 | 3000 | 202.0 | 201.0 | 28.0 | | OPA2170AIDCUT | VSSOP | DCU | 8 | 250 | 202.0 | 201.0 | 28.0 | | OPA2170AIDGKR | VSSOP | DGK | 8 | 2500 | 366.0 | 364.0 | 50.0 | | OPA2170AIDR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 35.0 | | OPA4170AIDR | SOIC | D | 14 | 2500 | 367.0 | 367.0 | 38.0 | | OPA4170AIPWR | TSSOP | PW | 14 |
2000 | 367.0 | 367.0 | 35.0 | # **MECHANICAL DATA** DBV (R-PDSO-G5) PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-178 Variation AA. # LAND PATTERN DATA # DBV (R-PDSO-G5) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. # **MECHANICAL DATA** # DGK (S-PDSO-G8) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end. - Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side. - E. Falls within JEDEC MO-187 variation AA, except interlead flash. DGK (S-PDSO-G8) PLASTIC SMALL OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. # DCU (R-PDSO-G8) PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN) - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-187 variation CA. DCU (S-PDSO-G8) PLASTIC SMALL OUTLINE PACKAGE (DIE DOWN) NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. # DRL (R-PDSO-N5) ### PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. B. This drawing is subject to change without notice. Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side. D. JEDEC package registration is pending. ### Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### LAND PATTERN DATA ### DRL (R-PDSO-N5) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. - E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening. ### D (R-PDSO-G14) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AB. ## D (R-PDSO-G14) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. PW (R-PDSO-G14) PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 ## PW (R-PDSO-G14) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. ### D (R-PDSO-G8) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AA. ## D (R-PDSO-G8) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. # Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of OPA170AID - IC OPAMP GP 1.2MHZ RRO 8SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all
associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. #### Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com **Products** OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated