Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: Texas Instruments SN74LV132AD For any questions, you can email us directly: sales@integrated-circuit.com Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN54LV132A, SN74LV132A SCLS394J-APRIL 1999-REVISED FEBRUARY 2015 # SNx4LV132A Quadruple Positive-NAND Gates With Schmitt-Trigger Inputs #### **Features** - 2-V to 5.5-V V_{CC} Operation - Max t_{pd} of 9 ns at 5 V - Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$ - Typical V_{OHV} (Output V_{OH} Undershoot) >2.3 V at $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$ - Support Mixed-Mode Voltage Operation on All - Latch-Up Performance Exceeds 250 mA per JESD 17 - I_{off} Supports Live Insertion, Partial Power-Down Mode, and Back Drive Protection - ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) - 200-V Machine Model (A115-A) - 1000-V Charged-Device Model (C101) # 2 Applications - Industrial PC: Rugged PC and Laptop - Access Control and Security: Camera Surveillance IP Network - Vending, Payment and Change Machines - Patient Monitoring STB / DVR / Streaming Media (Withdraw) - Other Motor Drives (Such as Switch Reluctance) #### 3 Description The 'LV132A devices are quadruple positive-NAND gates designed for 2-V to 5.5-V V_{CC} operation. The 'LV132A devices perform the Boolean function Y $= \overline{A \cdot B}$ or $Y = \overline{A} + \overline{B}$ in positive logic. Each circuit functions as a NAND gate, but because of the Schmitt trigger, it has different input threshold levels for positive- and negative-going signals. These circuits are temperature compensated and can be triggered from the slowest of input ramps and still give clean jitter-free output signals. #### Device Information⁽¹⁾ | PART NUMBER | PACKAGE | BODY SIZE (NOM) | |-------------|------------|-----------------------| | | SOIC (14) | 8.65 mm × 3.91 mm | | | SOP (14) | 10.30 mm × 5.30
mm | | LV132A | SSOP (14) | 6.20 mm × 5.30 mm | | | TSSOP (14) | 5.00 mm × 4.40 mm | | | TVSOP (14) | 3.60 mm × 4.40 mm | (1) For all available packages, see the orderable addendum at the end of the data sheet. # **Logic Diagram (Positive Logic)** Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN54LV132A, SN74LV132A SCLS394J-APRIL 1999-REVISED FEBRUARY 2015 www.ti.com | - | | L | | | 0- | | 4- | |---|---|---|----|----|----|-----|------| | | а | D | ıe | ОТ | Lo | nte | !nts | | 1 | Features 1 | 9 | Detailed Description | 9 | |---|--|----|--------------------------------------|----| | 2 | Applications 1 | | 9.1 Overview | | | 3 | Description 1 | | 9.2 Functional Block Diagram | 9 | | 4 | Logic Diagram (Positive Logic) 1 | | 9.3 Feature Description | 9 | | 5 | Revision History | | 9.4 Device Functional Modes | 9 | | 6 | Pin Configuration and Functions | 10 | Application and Implementation | 10 | | 7 | Specifications | | 10.1 Application Information | 10 | | • | 7.1 Absolute Maximum Ratings | | 10.2 Typical Application | 10 | | | 7.2 ESD Ratings | 11 | Power Supply Recommendations | 11 | | | 7.3 Recommended Operating Conditions 4 | 12 | Layout | 11 | | | 7.4 Thermal Information | | 12.1 Layout Guidelines | 11 | | | 7.5 Electrical Characteristics 5 | | 12.2 Layout Example | 11 | | | 7.6 Switching Characteristics 6 | 13 | Device and Documentation Support | 12 | | | 7.7 Switching Characteristics | | 13.1 Related Links | 12 | | | 7.8 Switching Characteristics 6 | | 13.2 Trademarks | 12 | | | 7.9 Noise Characteristics for SN74LV132A | | 13.3 Electrostatic Discharge Caution | 12 | | | 7.10 Operating Characteristics | | 13.4 Glossary | 12 | | | 7.11 Typical Characteristics 7 | 14 | 3, | | | 8 | Parameter Measurement Information 8 | | Information | 12 | # 5 Revision History #### Changes from Revision I (June 2010) to Revision J Page | • | Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation | |---|--| | | section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and | | | Mechanical, Packaging, and Orderable Information section | | | 3, a de la companya d | Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com www.ti.com SN54LV132A, SN74LV132A SCLS394J - APRIL 1999 - REVISED FEBRUARY 2015 # 6 Pin Configuration and Functions SN54LV132A: J or W Package SN74LV132A: D, DB, DGV, NS, or PW Package (Top View) # SN54LV132A: FK Package (Top View) A. NC - No internal connection ### **Pin Functions** | | · m · unouono | | | | | | | | | |-----|-----------------|-------------|-----------------|--|--|--|--|--|--| | | PIN | I /O | DESCRIPTION | | | | | | | | NO. | NAME | 1/0 | DESCRIPTION | | | | | | | | 1 | 1A | I | 1A input | | | | | | | | 2 | 1B | I | 1B | | | | | | | | 3 | 1Y | 0 | 1Y | | | | | | | | 4 | 2A | I | 2A | | | | | | | | 5 | 2B | I | 2B | | | | | | | | 6 | 2Y | 0 | 2Y | | | | | | | | 7 | GND | _ | GND | | | | | | | | 8 | 3Y | 0 | 3Y | | | | | | | | 9 | 3A | I | 3A | | | | | | | | 10 | 3B | I | 3B | | | | | | | | 11 | 4Y | 0 | 4Y | | | | | | | | 12 | 4A | 1 | 4A | | | | | | | | 13 | 4B | I | 4B | | | | | | | | 14 | V _{CC} | _ | V _{CC} | | | | | | | Copyright © 1999–2015, Texas Instruments Incorporated Submit Documentation Feedback 3 Product Folder Links: SN54LV132A SN74LV132A Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN54LV132A, SN74LV132A SCLS394J-APRIL 1999-REVISED FEBRUARY 2015 www.ti.com # 7 Specifications ### 7.1 Absolute Maximum Ratings⁽¹⁾ over operating free-air temperature (unless otherwise noted) | | | | MIN | MAX | UNIT | |------------------|---|--|------|-----------------------|------| | V_{CC} | Supply voltage | | -0.5 | 7 | V | | V _I | Input voltage ⁽²⁾ | roltage ⁽²⁾ | | 7 | V | | Vo | Voltage applied to any output in the h | applied to any output in the high-impedance or power-off state (2) | | 7 | V | | Vo | Output voltage (2) (3) | Output voltage ^{(2) (3)} | | V _{CC} + 0.5 | V | | I _{IK} | Input clamp current | V _I < 0 | | -20 | mA | | I _{OK} | Output clamp current | V _O < 0 | | -50 | mA | | Io | Continuous output current | $V_O = 0$ to V_{CC} | -25 | 25 | mA | | | Continuous current through V _{CC} or GND | | -50 | 50 | mA | | T _{stg} | Storage temperature | 3 33 | | 150 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### 7.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | | | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±2000 | | | V _(ESD) | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) | ±1000 | V | | | districtings | Machine model (A115-A) | 200 | | ¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. #### 7.3 Recommended Operating Conditions See (1)(2) | | | | MIN | MAX | UNIT | | |-----------------|--------------------------------|--|-----|----------|------|--| | V _{CC} | Supply voltage | | 2 | 5.5 | V | | | VI | Input voltage | | 0 | 5.5 | V | | | Vo | Output voltage | | 0 | V_{CC} | V | | | | | V _{CC} = 2 V | | -50 | μA | | | | High-level output current | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | -2 | mA | | | Гон | | $V_{CC} = 3 \text{ V to } 3.6 \text{ V}$ | | -6 | | | | | | V _{CC} = 4.5 V to 5.5 V | | -12 | | | | | | V _{CC} = 2 V | | 50 | μA | | | | Lour lovel output ourrent | V _{CC} = 2.3 V to 2.7 V | | 2 | | | | I _{OL} | Low-level output current | $V_{CC} = 3 \text{ V to } 3.6 \text{ V}$ | | 6 | mA | | | | | V _{CC} = 4.5 V to 5.5 V | | 12 | | | | _ | | SN54LV132A | -55 | 125 | °C | | | T _A | Operating free-air temperature | SN74LV132A | -40 | 125 | | | All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004. ⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. ⁽³⁾ The value is limited to 5.5-V maximum. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. ⁽²⁾ SN54LV132A is in product preview Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC www.ti.com #### SN54LV132A, SN74LV132A SCLS394J - APRIL 1999 - REVISED FEBRUARY 2015 ### 7.4 Thermal Information over operating free-air temperature range (unless otherwise noted) | | THERMAL METRIC ⁽¹⁾ | D | DB | DGV | NS | PW | UNIT | | |----------------------|--|------|---------|-------|------|-------|------|--| | | THERMAL METRIC | | 14 PINS | | | | | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 90.6 | 107.1 | 129.0 | 90.7 | 122.6 | | | | $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance | 50.9 | 59.6 | 52.1 | 48.3 | 51.4 | | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 44.8 | 54.4 | 62.0 | 49.4 | 64.4 | °C/W | | | Ψ_{JT} | Junction-to-top characterization parameter | 14.7 | 20.5 | 6.5 | 14.6 | 6.7 | | | | ψ_{JB} | Junction-to-board characterization parameter | 44.5 | 53.8 | 61.3 | 49.1 | 63.8 | | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. #### 7.5 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) | | DADAMETED | TEST SOMBITIONS | ., | SN54L | .V132A ⁽¹⁾ | SN74 | LV132A | | |------------------|--|----------------------------------|-----------------|-----------------------|-----------------------|-----------------------|---------|------| | | PARAMETER | TEST CONDITIONS | V _{CC} | MIN | TYP MAX | MIN | TYP MAX | UNIT | | | | | 2.5 V | 1 | 1.75 | 1 | 1.75 | | | V_{T+} | Positive-going input
threshold voltage | | 3.3 V | 1.31 | 2.31 | 1.31 | 2.31 | V | | | tineshola voltage | | 5 V | 1.95 | 3.5 | 1.95 | 3.5 | | | | | | 2.5 V | 0.75 | 1.5 | 0.75 | 1.5 | | | V_{T-} | Negative-going input
threshold voltage | | 3.3 V | 0.99 | 2.07 | 0.99 | 2.07 | V | | | an concid voltage | | 5 V | 1.5 | 3.05 | 1.5 | 3.05 | | | | | | 2.5 V | 0.25 | 1 | 0.25 | 1 | | | ΔV_{T} | Hysteresis
(V _{T+} - V _{T-}) | | 3.3 V | 0.33 | 1.32 | 0.33 | 1.32 | V | | | | | 5 V | 0.5 | 2 | 0.5 | 2 | | | | | I _{OH} = -50 μA | 2 to 5.5 V | V _{CC} - 0.1 | | V _{CC} – 0.1 | | | | V | | $I_{OH} = -2 \text{ mA}$ | 2.3 V | 2 | | 2 | | V | | V _{OH} | | $I_{OH} = -6 \text{ mA}$ | 3 V | 2.48 | | 2.48 | | | | | | $I_{OH} = -12 \text{ mA}$ | 4.5 V | 3.8 | | 3.8 | | | | | | $I_{OL} = 50 \mu A$ | 2 to 5.5 V | | 0.1 | | 0.1 | | | V | | $I_{OL} = 2 \text{ mA}$ | 2.3 V | | 0.4 | | 0.4 | V | | V_{OL} | | $I_{OL} = 6 \text{ mA}$ | 3 V | | 0.44 | | 0.44 | V | | | | I _{OL} = 12 mA | 4.5 V | | 0.55 | | 0.55 | | | I _I | | $V_I = 5.5 \text{ V or GND}$ | 0 to 5.5 V | | ±1 | | ±1 | μΑ | | I _{CC} | | $V_I = V_{CC}$ or GND, $I_O = 0$ | 5.5 V | | 20 | | 20 | μA | | I _{off} | | V_I or $V_O = 0$ to 5.5 V | 0 V | | 5 | | 5 | μA | | Ci | | $V_I = V_{CC}$ or GND | 3.3 V | | 1.9 | | 1.9 | pF | ⁽¹⁾ SN54LV132A is in product preview Copyright © 1999–2015, Texas Instruments Incorporated Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN54LV132A, SN74LV132A SCLS394J-APRIL 1999-REVISED FEBRUARY 2015 www.ti.com #### 7.6 Switching Characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V ±0.2 V (unless otherwise noted) (see Figure 3) | DADAMETED | EDOM (INDUT) | TO (OUTPUT) | LOAD | Т | _A = 25°C | | SN54LV | 132A ⁽¹⁾ | SN74LV | 132A | LINIT | |-----------------|--------------|-------------|-------------------------|-----|---------------------|---------------------|--------|---------------------|--------|------|-------| | PARAMETER | FROM (INPUT) | TO (OUTPUT) | CAPACITANCE | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNIT | | | A or B | V | C _L = 15 pF | | 7.9 ⁽²⁾ | 16.5 ⁽²⁾ | 1 (2) | 18.5 ⁽²⁾ | 1 | 18.5 | 2 | | ¹ pd | AUIB | 1 | $C_{L} = 50 \text{ pF}$ | | 10.8 | 20.2 | 1 | 23 | 1 | 23 | ns | ⁽¹⁾ SN54LV132A is in product preview #### 7.7 Switching Characteristics over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 3) | DADAMETED | EDOM (INDUE) | TO (OUTPUT) | LOAD | Т | _A = 25°C | | SN54LV1 | 32A ⁽¹⁾ | SN74LV | 132A | LINUT | |-----------------|--------------|-------------|------------------------|-----|---------------------|---------------------|------------------|--------------------|--------|------|-------| | PARAMETER | FROM (INPUT) | TO (OUTPUT) | CAPACITANCE | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNIT | | | A or B | V | C _L = 15 pF | | 5.6 ⁽²⁾ | 11.9 ⁽²⁾ | 1 ⁽²⁾ | 14 ⁽²⁾ | 1 | 14 | 20 | | l _{pd} | AOIB | Ť | C _L = 50 pF | | 7.6 | 15.4 | 1 | 17.5 | 1 | 17.5 | ns | ⁽¹⁾ SN54LV132A is in product preview # 7.8 Switching Characteristics over recommended operating free-air temperature range, V_{CC} = 5 V ±0.5 V (unless otherwise noted) (see Figure 3) | DADAMETED | FROM | то | LOAD | Т | _A = 25°C | | SN54LV1 | 32A ⁽¹⁾ | SN74LV | 132A | LINUT | |-----------------|---------|----------|------------------------|-----|---------------------|--------------------|---------|--------------------|--------|------|-------| | PARAMETER | (INPUT) | (OUTPUT) | CAPACITANCE | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNIT | | | A as D | V | C _L = 15 pF | | 3.9 ⁽²⁾ | 7.7 ⁽²⁾ | 1 (2) | 9(2) | 1 | 9 | | | ^L pd | A or B | ĭ | C _L = 50 pF | | 5.3 | 9.7 | 1 | 11 | 1 | 11 | ns | ¹⁾ SN54LV132A is in product preview #### 7.9 Noise Characteristics for SN74LV132A $V_{CC} = 3.3 \text{ V}, C_{L} = 50 \text{ pF}, T_{A} = 25^{\circ}\text{C}^{(1)}$ | | PARAMETER | MIN | TYP | MAX | UNIT | |--------------------|---|------|-------|------|------| | $V_{OL(P)}$ | Quiet output, maximum dynamic V _{OL} | | 0.21 | 0.8 | | | $V_{OL(V)}$ | Quiet output, minimum dynamic V _{OL} | | -0.09 | -0.8 | | | V _{OH(V)} | Quiet output, minimum dynamic V _{OH} | | 3.12 | | V | | $V_{IH(D)}$ | High-level dynamic input voltage | 2.31 | | | | | $V_{IL(D)}$ | Low-level dynamic input voltage | | | 0.99 | | ⁽¹⁾ Characteristics are for surface-mount packages only. ### 7.10 Operating Characteristics $T_A = 25^{\circ}C$ | | PARAMETER | TEST CONDITIONS | V _{cc} | TYP | UNIT | |-----|--------------------------------|---|-----------------|------|------| | | Davier dissination conscitones | C 50 75 6 40 MHz | 3.3 V | 7.5 | , | | Cpd | Power dissipation capacitance | $C_L = 50 \text{ pF, f} = 10 \text{ MHz}$ | 5 V | 11.2 | pF | Product Folder Links: SN54LV132A SN74LV132A ⁽²⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested. ⁽²⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested. On products compliant to MIL-PRF-38535, this parameter is not production tested. Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com www.ti.com ### SN54LV132A, SN74LV132A ### SCLS394J - APRIL 1999 - REVISED FEBRUARY 2015 # 7.11 Typical Characteristics Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN54LV132A, SN74LV132A SCLS394J-APRIL 1999-REVISED FEBRUARY 2015 www.ti.com #### 8 Parameter Measurement Information - A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 3 ns, $t_f \leq$ 3 ns. - D. The outputs are measured one at a time, with one input transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis}. - F. t_{PZL} and tPZH are the same as t_{en} . - G. t_{PHL} and t_{PLH} are the same as t_{pd}. - H. All parameters and waveforms are not applicable to all devices. Figure 3. Load Circuit and Voltage Waveforms Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com SN54LV132A, SN74LV132A SCLS394J-APRIL 1999-REVISED FEBRUARY 2015 www.ti.com # Detailed Description ### 9.1 Overview The SN74LV132A Is a quadruple 2-input positive NAND gate with low drive that produces slow rise and fall times. This reduces ringing on the output signal. Each circuit functions as a NAND gate, but because of the Schmitt trigger, it has different input threshold levels for positive- and negative-going signals. These circuits are temperature compensated and can be triggered from the slowest of input ramps and still give clean jitter-free output signals. #### 9.2 Functional Block Diagram Figure 4. Logic Diagram (Positive Logic) #### 9.3 Feature Description - Wide operating voltage range, operates from 2 to 5.5 V - Allows down voltage translation, inputs accept voltages to 5.5 V #### 9.4 Device Functional Modes **Table 1. Function Table** | INP | UTS | OUTPUT | |-----|-----|--------| | Α | Υ | | | Н | Н | ٦ | | L | Χ | Н | | Χ | L | Н | Copyright © 1999–2015, Texas Instruments Incorporated Submit Documentation Feedback Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN54LV132A, SN74LV132A SCLS394J-APRIL 1999-REVISED FEBRUARY 2015 www.ti.com ### 10 Application and Implementation #### **NOTE** Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. # 10.1 Application Information The SN74LV132A is a low-drive CMOS device that can be used for a multitude of bus interface type applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs. The inputs can accept voltages to 5.5 V at any valid V_{CC} making it Ideal for down translation. #### 10.2 Typical Application Figure 5. Typical Application Schematic #### 10.2.1 Design Requirements This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing. The Schmitt trigger inputs allow for slow or noisy inputs while producing clean outputs. Product Folder Links: SN54LV132A SN74LV132A #### 10.2.2 Detailed Design Procedure - 1. Recommended input conditions - Specified high and low levels. See (V_{IH} and V_{IL}) in Recommended Operating Conditions. - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC} - 2. Recommend output conditions - Load currents should not exceed 25 mA per output and 50 mA total for the part - Outputs should not be pulled above V_{CC} Submit Documentation Feedback Copyright © 1999-2015, Texas Instruments Incorporated www.ti.com SN54LV132A, SN74LV132A SCLS394J – APRIL 1999 – REVISED FEBRUARY 2015 #### **Typical Application (continued)** #### 10.2.3 Application Curve Figure 6. Switching Characteristics Comparison ### 11 Power Supply Recommendations The power supply can be any voltage between the min and max supply voltage rating located in *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends 0.1 μ F and if there are multiple V_{CC} terminals then TI recommends .01 μ F or .022 μ F for each power terminal. It is okay to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results. ### 12 Layout #### 12.1 Layout Guidelines When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or $V_{\rm CC}$ whichever make more sense or is more convenient. It is generally okay to float outputs unless the part is a transceiver. If the transceiver has an output enable pin it will disable the outputs section of the part when asserted. This will not disable the input section of the IOs so they also cannot float when disabled. #### 12.2 Layout Example Figure 7. Layout Recommendation Product Folder Links: SN54LV132A SN74LV132A Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### SN54LV132A, SN74LV132A SCLS394J-APRIL 1999-REVISED FEBRUARY 2015 www.ti.com ### 13 Device and Documentation Support #### 13.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. #### Table 2. Related Links | PARTS | PARTS PRODUCT FOLDER | | TECHNICAL DOCUMENTS | TOOLS &
SOFTWARE | SUPPORT & COMMUNITY | | |------------|-----------------------|------------|---------------------|---------------------|---------------------|--| | SN54LV132A | Click here | | | SN74LV132A | SN74LV132A Click here | | Click here | Click here | Click here | | #### 13.2 Trademarks All trademarks are the property of their respective owners. #### 13.3 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. #### 13.4 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. # 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 12 Submit Documentation Feedback Copyright © 1999–2015, Texas Instruments Incorporated Product Folder Links: SN54LV132A SN74LV132A Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM 5-Mar-2015 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |------------------|--------|--------------|---------|------|---------|----------------------------|------------------|--------------------|--------------|----------------|---------| | | (1) | | Drawing | | Qty | (2) | (6) | (3) | | (4/5) | | | SN74LV132AD | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LV132A | Samples | | SN74LV132ADBR | ACTIVE | SSOP | DB | 14 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LV132A | Samples | | SN74LV132ADG4 | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LV132A | Samples | | SN74LV132ADGVR | ACTIVE | TVSOP | DGV | 14 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LV132A | Samples | | SN74LV132ADGVRE4 | ACTIVE | TVSOP | DGV | 14 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LV132A | Samples | | SN74LV132ADR | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LV132A | Samples | | SN74LV132ADRE4 | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LV132A | Samples | | SN74LV132ANSR | ACTIVE | SO | NS | 14 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 74LV132A | Samples | | SN74LV132APW | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LV132A | Samples | | SN74LV132APWE4 | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LV132A | Samples | | SN74LV132APWR | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LV132A | Samples | | SN74LV132APWRG4 | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LV132A | Samples | | SN74LV132APWT | ACTIVE | TSSOP | PW | 14 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | LV132A | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 1 Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM www.ti.com 5-Mar-2015 (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): Ti's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Til Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): Ti defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "--" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com # PACKAGE MATERIALS INFORMATION www.ti.com 12-Feb-2015 #### TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | D1 | Pitch between successive cavity centers | # QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74LV132ADBR | SSOP | DB | 14 | 2000 | 330.0 | 16.4 | 8.2 | 6.6 | 2.5 | 12.0 | 16.0 | Q1 | | SN74LV132ADGVR | TVSOP | DGV | 14 | 2000 | 330.0 | 12.4 | 6.8 | 4.0 | 1.6 | 8.0 | 12.0 | Q1 | | SN74LV132ADR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 | | SN74LV132ANSR | SO | NS | 14 | 2000 | 330.0 | 16.4 | 8.2 | 10.5 | 2.5 | 12.0 | 16.0 | Q1 | | SN74LV132APWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | SN74LV132APWT | TSSOP | PW | 14 | 250 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com # **PACKAGE MATERIALS INFORMATION** www.ti.com 12-Feb-2015 #### *All dimensions are nominal | 7 til dillionsions are nominal | | | | | | | | |--------------------------------|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | SN74LV132ADBR | SSOP | DB | 14 | 2000 | 367.0 | 367.0 | 38.0 | | SN74LV132ADGVR | TVSOP | DGV | 14 | 2000 | 367.0 | 367.0 | 35.0 | | SN74LV132ADR | SOIC | D | 14 | 2500 | 367.0 | 367.0 | 38.0 | | SN74LV132ANSR | SO | NS | 14 | 2000 | 367.0 | 367.0 | 38.0 | | SN74LV132APWR | TSSOP | PW | 14 | 2000 | 367.0 | 367.0 | 35.0 | | SN74LV132APWT | TSSOP | PW | 14 | 250 | 367.0 | 367.0 | 35.0 | Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ### **MECHANICAL DATA** MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000 ### DGV (R-PDSO-G**) #### **24 PINS SHOWN** #### **PLASTIC SMALL-OUTLINE** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side. D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins - MO-194 # **MECHANICAL DATA** # D (R-PDSO-G14) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AB. ### LAND PATTERN DATA # D (R-PDSO-G14) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. # **MECHANICAL DATA** PW (R-PDSO-G14) PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 ## **LAND PATTERN DATA** # PW (R-PDSO-G14) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC ### **MECHANICAL DATA** # NS (R-PDSO-G**) 14-PINS SHOWN ### PLASTIC SMALL-OUTLINE PACKAGE - All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com # **MECHANICAL DATA** MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001 ### DB (R-PDSO-G**) 28 PINS SHOWN #### PLASTIC SMALL-OUTLINE # 0,65 28 15 5,60 5,00 7,40 | PINS ** | 14 | 16 | 20 | 24 | 28 | 30 | 38 | |---------|------|------|------|------|-------|-------|-------| | A MAX | 6,50 | 6,50 | 7,50 | 8,50 | 10,50 | 10,50 | 12,90 | | A MIN | 5,90 | 5,90 | 6,90 | 7,90 | 9,90 | 9,90 | 12,30 | 4040065 /E 12/01 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. 14 D. Falls within JEDEC MO-150 Datasheet of SN74LV132AD - IC GATE NAND 4CH 2-INP 14-SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. #### **Applications** Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Security Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com www.ti.com/security Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com **Products** Logic **OMAP Applications Processors TI E2E Community** www.ti.com/omap e2e.ti.com www.ti.com/wirelessconnectivity Wireless Connectivity logic.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated