

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

[Texas Instruments](#)
[ISO7421AQDRQ1](#)

For any questions, you can email us directly:

sales@integrated-circuit.com

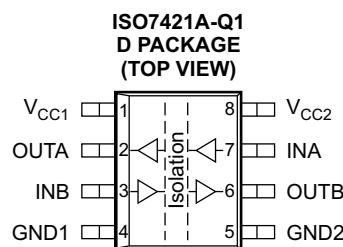
LOW-POWER DUAL DIGITAL ISOLATORS

FEATURES

- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 1: -40°C to 125°C Ambient Operating Temperature Range
 - Device HBM ESD Classification Level H3A
 - Device CDM ESD Classification Level C5
- High Signaling Rate: 50 Mbps
- Low Power Consumption
- Low Propagation Delay – 9 ns (Typical)
- Low Skew – 300 ps (Typical)
- 4-kVpeak Maximum Isolation, 2.5 kVRms per UL 1577, IEC/VDE and CSA Approved, IEC 60950-1, IEC 61010-1 End Equipment Standards Approved. All Approvals Pending.
- 50 kV/ μs Transient Immunity (Typical)
- Over 25-Year Isolation Integrity at Rated Voltage
- Operates From 3-V to 5.5-V Supply and Logic Levels

DESCRIPTION

The ISO7421A-Q1 provides galvanic isolation up to 2.5 kVRms for 1 minute per UL. This digital isolator has two isolated channels with bidirectional channel configuration. Each isolation channel has a logic input and output buffer separated by a silicon dioxide (SiO_2) insulation barrier. Used in conjunction with isolated power supplies, these devices prevent noise currents on a data bus or other circuit from entering the local ground and interfering with or damaging sensitive circuitry.


The devices have TTL input thresholds and require two supply voltages from 3 V to 5.5 V, or any combination. All inputs are 5-V tolerant when supplied from a 3-V supply.

ORDERING INFORMATION⁽¹⁾

T_A	PACKAGE⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 125°C	SOIC – D	Reel of 2500	ISO7421AQDRQ1	7421AQ

(1) For the most-current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ISO7421A-Q1

SLLSE14B – MARCH 2012 – REVISED SEPTEMBER 2013

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

PIN FUNCTIONS

PIN		I/O	DESCRIPTION
NAME	NO.		
GND1	4	–	Ground connection for V_{CC1}
GND2	5	–	Ground connection for V_{CC2}
INA	7	I	Input, channel A
INB	3	I	Input, channel B
OUTA	2	O	Output, channel A
OUTB	6	O	Output, channel B
V_{CC1}	1	–	Power supply, V_{CC1}
V_{CC2}	8	–	Power supply, V_{CC2}

Table 1. FUNCTION TABLE⁽¹⁾

INPUT SIDE VCC	OUTPUT SIDE VCC	INPUT IN	OUTPUT OUT
PU	PU	H	H
		L	L
		Open	H
PD	PU	X	H

(1) PU = Powered up ($V_{CC} \geq 3$ V), PD = Powered down ($V_{CC} \leq 2.4$ V),
 X = Irrelevant, H = High level, L = Low level

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

V_{CC}	Supply voltage ⁽²⁾ , V_{CC1} , V_{CC2}	-0.5 V to 6 V	
V_I	Voltage at IN, OUT	-0.5 V to 6 V	
I_O	Output current	± 15 mA	
ESD	Human-body model (HBM) AEC-Q100 Classification Level H3A	All pins	4 kV
	Charged-device model (CDM) AEC-Q100 Classification Level C5		1.5 kV
	Machine model (MM)		200 V
$T_{J(Max)}$	Maximum junction temperature	150°C	

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values except differential I/O bus voltages are with respect to network ground terminal and are peak voltage values.

RECOMMENDED OPERATING CONDITIONS

		MIN	TYP	MAX	UNIT
V_{CC1} , V_{CC2}	Supply voltage	3	5.5	V	
I_{OH}	High-level output current	–4		mA	
I_{OL}	Low-level output current		4	mA	
V_{IH}	High-level input voltage	2	V_{CC}	V	
V_{IL}	Low-level input voltage	0	0.8	V	
T_A	Operating temperature	–40	125	°C	

ELECTRICAL CHARACTERISTICS

$V_{CC1} = V_{CC2} = 5 \text{ V} \pm 10\%$, $T_A = -40^\circ\text{C}$ to 125°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -4 \text{ mA}$, see Figure 1	$V_{CC} - 0.8$	4.6		V
		$I_{OH} = -20 \mu\text{A}$, see Figure 1	$V_{CC} - 0.1$	5		
V_{OL}	Low-level output voltage	$I_{OL} = 4 \text{ mA}$, see Figure 1		0.2	0.4	V
		$I_{OL} = 20 \mu\text{A}$, see Figure 1		0	0.1	
$V_{I(HYS)}$	Input threshold voltage hysteresis			400		mV
I_{IH}	High-level input current	IN from 0 V or V_{CC}			10	μA
I_{IL}	Low-level input current			-10		μA
C_I	Input capacitance to ground	IN at V_{CC} , $V_I = 0.4 \sin(4E6\pi t)$		1.2		pF
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 V, see Figure 3	25	50		kV/ μs

SUPPLY CURRENT (All inputs switching with square wave clock signal for dynamic I_{CC} measurement)

I_{CC1}	Supply current for V_{CC1} and V_{CC2}	DC to 1 Mbps	DC Input: $V_I = V_{CC}$ or 0 V AC Input: $C_L = 15 \text{ pF}$	2.3	3.6	mA
I_{CC2}				2.3	3.6	
I_{CC1}		10 Mbps	$C_L = 15 \text{ pF}$	2.9	4.5	
I_{CC2}				2.9	4.5	
I_{CC1}		25 Mbps	$C_L = 15 \text{ pF}$	4.3	6	
I_{CC2}				4.3	6	
I_{CC1}		50 Mbps	$C_L = 15 \text{ pF}$	6	9.1	
I_{CC2}				6	9.1	

SWITCHING CHARACTERISTICS

$V_{CC1} = V_{CC2} = 5 \text{ V} \pm 10\%$, $T_A = -40^\circ\text{C}$ to 125°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL}	Propagation delay time	See Figure 1		9	14	ns
PWD ⁽¹⁾	Pulse duration distortion $ t_{PHL} - t_{PLH} $			0.3	3.7	ns
$t_{sk(pp)}$	Part-to-part skew time				4.9	ns
$t_{sk(o)}$	Channel-to-channel output skew time				3.6	ns
t_r	Output signal rise time	See Figure 1		1		ns
t_f	Output signal fall time			1		ns
t_{fs}	Fail-safe output delay time from input power loss	See Figure 2		6		μs
t_{ui}	Input pulse duration		7			ns
$1 / t_{ui}$	Signaling rate		0		50	Mbps

(1) Also known as pulse skew

ISO7421A-Q1

SLLSE14B – MARCH 2012 – REVISED SEPTEMBER 2013

www.ti.com

ELECTRICAL CHARACTERISTICS

$V_{CC1} = 5 \text{ V} \pm 10\%$, $V_{CC2} = 3.3 \text{ V} \pm 10\%$, $T_A = -40^\circ\text{C}$ to 125°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -4 \text{ mA}$, see Figure 1 , 5-V side	$V_{CC} - 0.8$		0.4	V
		$I_{OH} = -20 \text{ }\mu\text{A}$, see Figure 1	$V_{CC} - 0.1$			
V_{OL}	Low-level output voltage	$I_{OL} = 4 \text{ mA}$, see Figure 1			0.1	V
		$I_{OL} = 20 \text{ }\mu\text{A}$, see Figure 1			0.4	
$V_{I(HYS)}$	Input threshold voltage hysteresis		400		mV	
I_{IH}	High-level input current	IN from 0 V or V_{CC}			10	μA
I_{IL}	Low-level input current				-10	μA
C_I	Input capacitance to ground	IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$			1.2	pF
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 V, see Figure 3	25	40	kV/ μs	

SUPPLY CURRENT (All inputs switching with square wave clock signal for dynamic I_{CC} measurement)

I_{CC1}	Supply current for V_{CC1} and V_{CC2}	DC to 1 Mbps	DC Input: $V_I = V_{CC}$ or 0 V	2.3	3.6	mA
I_{CC2}			AC Input: $C_L = 15 \text{ pF}$	1.8	2.8	
I_{CC1}		10 Mbps		2.9	4.5	
I_{CC2}				2.2	3.2	
I_{CC1}		25 Mbps		4.3	6	
I_{CC2}				2.8	4.1	
I_{CC1}		50 Mbps		6	9.1	
I_{CC2}				3.8	5.8	

SWITCHING CHARACTERISTICS

$V_{CC1} = 5 \text{ V} \pm 10\%$, $V_{CC2} = 3.3 \text{ V} \pm 10\%$, $T_A = -40^\circ\text{C}$ to 125°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL}	Propagation delay time	See Figure 1	10	17	ns	
PWD ⁽¹⁾	Pulse duration distortion $ t_{PHL} - t_{PLH} $		0.5	5.6	ns	
$t_{sk(pp)}$	Part-to-part skew time		6.3	ns		
$t_{sk(o)}$	Channel-to-channel output skew time		4	ns		
t_r	Output signal rise time	See Figure 1	2	ns		
t_f	Output signal fall time		2	ns		
t_{fs}	Fail-safe output delay time from input power loss	See Figure 2	6	μs		
t_{ui}	Input pulse duration		7	ns		
$1 / t_{ui}$	Signaling rate		0	50	Mbps	

(1) Also known as pulse skew

ELECTRICAL CHARACTERISTICS

$V_{CC1} = 3.3 \text{ V} \pm 10\%$, $V_{CC2} = 5 \text{ V} \pm 10\%$, $T_A = -40^\circ\text{C}$ to 125°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -4 \text{ mA}$, see Figure 1 , 3.3-V side	$V_{CC} - 0.4$			V
		$I_{OH} = -20 \mu\text{A}$, see Figure 1	$V_{CC} - 0.1$			
V_{OL}	Low-level output voltage	$I_{OL} = 4 \text{ mA}$, see Figure 1		0.4		V
		$I_{OL} = 20 \mu\text{A}$, see Figure 1		0	0.1	
$V_{I(HYS)}$	Input threshold voltage hysteresis			400		mV
I_{IH}	High-level input current	IN from 0 V or V_{CC}			10	μA
I_{IL}	Low-level input current			-10		μA
C_I	Input capacitance to ground	IN at V_{CC} , $V_I = 0.4 \sin(4E6\pi t)$		1		pF
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 V, see Figure 3	25	40		kV/ μs

SUPPLY CURRENT (All inputs switching with square wave clock signal for dynamic I_{CC} measurement)

I_{CC1}	Supply current for V_{CC1} and V_{CC2}	DC to 1 Mbps	DC Input: $V_I = V_{CC}$ or 0 V AC Input: $C_L = 15 \text{ pF}$	1.8	2.8	mA
I_{CC2}				2.3	3.6	
I_{CC1}		10 Mbps		2.2	3.2	
I_{CC2}				2.9	4.5	
I_{CC1}				2.8	4.1	
I_{CC2}				4.3	6	
I_{CC1}		25 Mbps		3.8	5.8	
I_{CC2}				6	9.1	
I_{CC1}		50 Mbps				
I_{CC2}						

SWITCHING CHARACTERISTICS

$V_{CC1} = 3.3 \text{ V} \pm 10\%$, $V_{CC2} = 5 \text{ V} \pm 10\%$, $T_A = -40^\circ\text{C}$ to 125°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL}	Propagation delay time	See Figure 1		10	17	ns
PWD ⁽¹⁾	Pulse duration distortion $ t_{PHL} - t_{PLH} $			0.5	4	ns
$t_{sk(pp)}$	Part-to-part skew time				8.5	ns
$t_{sk(o)}$	Channel-to-channel output skew time				4	ns
t_r	Output signal rise time	See Figure 1		2		ns
t_f	Output signal fall time			2		ns
t_{fs}	Fail-safe output delay time from input power loss	See Figure 2		6		μs
t_{ui}	Input pulse duration		7			ns
$1 / t_{ui}$	Signaling rate		0		50	Mbps

(1) Also known as pulse skew

ISO7421A-Q1

SLLSE14B – MARCH 2012 – REVISED SEPTEMBER 2013

www.ti.com

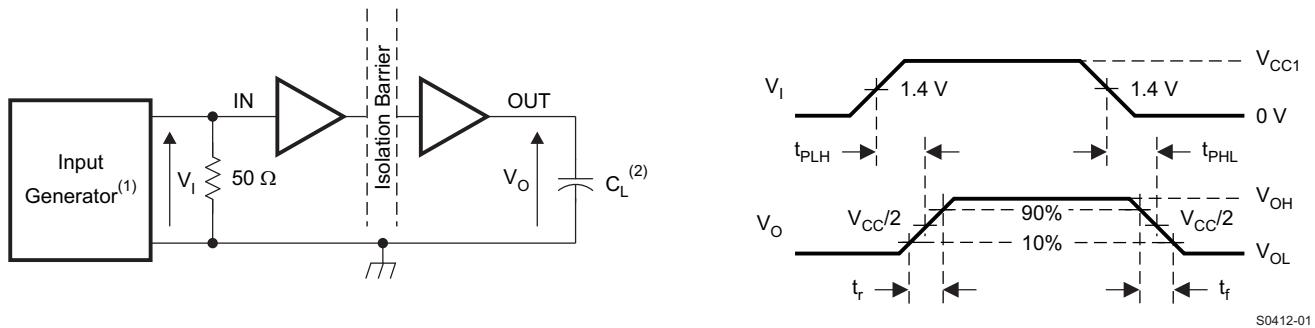
ELECTRICAL CHARACTERISTICS

$V_{CC1} = V_{CC2} = 3.3 \text{ V} \pm 5\%$, $T_A = -40^\circ\text{C}$ to 125°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -4 \text{ mA}$, see Figure 1	$V_{CC} - 0.4$	3		V
		$I_{OH} = -20 \mu\text{A}$, see Figure 1	$V_{CC} - 0.1$	3.3		
V_{OL}	Low-level output voltage	$I_{OL} = 4 \text{ mA}$, see Figure 1		0.2	0.4	V
		$I_{OL} = 20 \mu\text{A}$, see Figure 1		0	0.1	
$V_{I(HYS)}$	Input threshold voltage hysteresis			400		mV
I_{IH}	High-level input current	IN from 0 V or V_{CC}			10	μA
I_{IL}	Low-level input current			-10		μA
C_I	Input capacitance to ground	IN at V_{CC} , $V_I = 0.4 \sin(4E6\pi t)$		1		pF
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 V, see Figure 3 .	25	40		kV/ μs

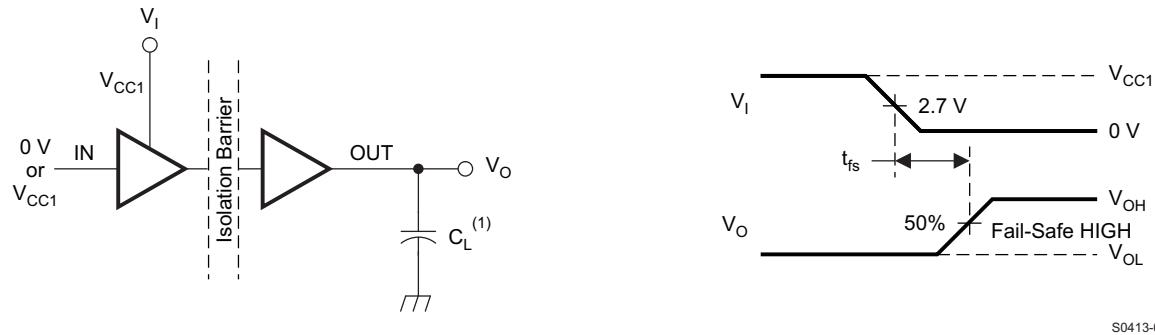
SUPPLY CURRENT (All inputs switching with square wave clock signal for dynamic I_{CC} measurement)

I_{CC1}	Supply current for V_{CC1} and V_{CC2}	DC to 1 Mbps	DC Input: $V_I = V_{CC}$ or 0 V AC Input: $C_L = 15 \text{ pF}$	1.8	2.8	mA
I_{CC2}				1.8	2.8	
I_{CC1}		10 Mbps		2.2	3.2	
I_{CC2}				2.2	3.2	
I_{CC1}		25 Mbps		2.8	4.1	
I_{CC2}				2.8	4.1	
I_{CC1}		50 Mbps		3.8	5.8	
I_{CC2}				3.8	5.8	


SWITCHING CHARACTERISTICS

$V_{CC1} = V_{CC2} = 3.3 \text{ V} \pm 5\%$, $T_A = -40^\circ\text{C}$ to 125°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL}	Propagation delay time	See Figure 1		12	20	ns
PWD ⁽¹⁾	Pulse duration distortion $ t_{PHL} - t_{PLH} $			1	5	ns
$t_{sk(pp)}$	Part-to-part skew time			6.8		ns
$t_{sk(o)}$	Channel-to-channel output skew time			5.5		ns
t_r	Output signal rise time	See Figure 1		2		ns
t_f	Output signal fall time			2		ns
t_{fs}	Fail-safe output delay time from input power loss	See Figure 2		6		μs
t_{ui}	Input pulse duration		7			ns
$1 / t_{ui}$	Signaling rate		0	50		Mbps


(1) Also known as pulse skew

PARAMETER MEASUREMENT INFORMATION

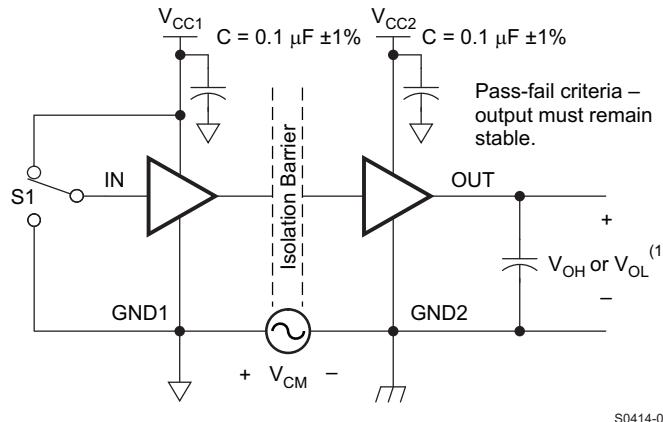

- (1) The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq 3$ ns, $t_f \leq 3$ ns, $Z_0 = 50 \Omega$.
- (2) $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 1. Switching Characteristic Test Circuit and Voltage Waveforms

- (1) $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 2. Fail-Safe Output Delay-Time Test Circuit and Voltage Waveforms

- (1) $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 3. Common-Mode Transient Immunity Test Circuit

ISO7421A-Q1

SLLSE14B – MARCH 2012 – REVISED SEPTEMBER 2013

www.ti.com

DEVICE INFORMATION

PACKAGE CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L(I01)	Minimum air gap (clearance)	4.8			mm
L(I02)	Minimum external tracking (creepage)	4.3			mm
CTI	Tracking resistance (comparative tracking index)	>175			V
	Minimum internal gap (internal clearance)	0.008			mm
R_{IO}	Input to output, $V_{IO} = 500$ V, all pins on each side of the barrier tied together creating a two-terminal device, $T_A < 100^\circ\text{C}$		$>10^{12}$		Ω
	Input to output		$>10^{11}$		Ω
C_{IO}	Barrier capacitance, input to output $V_I = 0.4 \sin (4E6\pi t)$		1		pF

NOTE

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance.

Creepage and clearance on a printed-circuit board become equal according to the measurement techniques shown in the Isolation Glossary. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.

INSULATION CHARACTERISTICS⁽¹⁾

over recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SPECIFICATION	UNIT
V_{IORM}	Maximum working insulation voltage	560	V
V_{PR}	Input-to-output test voltage $t = 1$ s (100% production), partial discharge 5 pC	1050	V
V_{IOTM}	Transient overvoltage $t = 60$ s (qualification)	4000	V
	$t = 1$ s (100% production)		
V_{ISO}	Isolation voltage per UL $t = 60$ s (qualification)	2500	Vrms
	$t = 1$ s (100% production)	3000	
R_S	Insulation resistance $V_{IO} = 500$ V at T_S	$>10^9$	Ω
Pollution degree		2	

(1) Climatic Classification 40/125/21

Table 2. IEC 60664-1 RATINGS TABLE

PARAMETER	TEST CONDITIONS	SPECIFICATION
Basic isolation group	Material group	III-a
Installation classification	Rated mains voltage ≤ 150 Vrms	I-IV
	Rated mains voltage ≤ 300 Vrms	I-III
	Rated mains voltage ≤ 400 Vrms	I-II

REGULATORY INFORMATION

VDE	CSA	UL
Certified according to IEC 60747-5-2	Approved under CSA Component Acceptance Notice	Recognized under 1577 Component Recognition Program ⁽¹⁾
File number: pending (40016131)	File number: pending (1698195)	File number: pending (E181974)

(1) Production tested \geq 3000 Vrms for 1 second in accordance with UL 1577.

LIFE EXPECTANCY versus WORKING VOLTAGE

G001

Figure 4. Life Expectancy versus Working Voltage

IEC SAFETY LIMITING VALUES

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _S Safety input, output, or supply current	$\theta_{JA} = 212^\circ\text{C/W}$, $V_I = 5.5\text{ V}$, $T_J = 170^\circ\text{C}$, $T_A = 25^\circ\text{C}$			112	mA
	$\theta_{JA} = 212^\circ\text{C/W}$, $V_I = 3.6\text{ V}$, $T_J = 170^\circ\text{C}$, $T_A = 25^\circ\text{C}$			171	
T _S Maximum case temperature				150	°C

The safety-limiting constraint is the absolute-maximum junction temperature specified in the *Absolute Maximum Ratings* table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the *Thermal Characteristics* table is that of a device installed in the JESD51-3, Low-Effective-Thermal-Conductivity Test Board for Leaded Surface-Mount Packages and is conservative. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

ISO7421A-Q1

SLLSE14B – MARCH 2012 – REVISED SEPTEMBER 2013

www.ti.com

PACKAGE THERMAL CHARACTERISTICS

(over recommended operating conditions unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
θ_{JA} Junction-to-air thermal resistance	Low-K thermal resistance ⁽¹⁾	212			$^{\circ}\text{C}/\text{W}$
	High-K thermal resistance ⁽¹⁾	122			$^{\circ}\text{C}/\text{W}$
θ_{JB} Junction-to-board thermal resistance			37		$^{\circ}\text{C}/\text{W}$
θ_{JC} Junction-to-case thermal resistance			69.1		$^{\circ}\text{C}/\text{W}$
P_D Device power dissipation	$V_{CC1} = V_{CC2} = 5.5 \text{ V}$, $T_J = 150^{\circ}\text{C}$, $C_L = 15 \text{ pF}$, Input a 150-Mbps 50% duty-cycle square wave		390		mW

(1) Tested in accordance with the low-K or high-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages

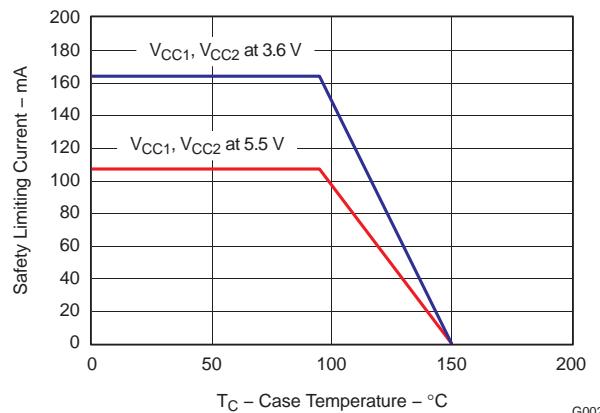


Figure 5. θ_{JC} Thermal Derating Curve per IEC 60747-5-2

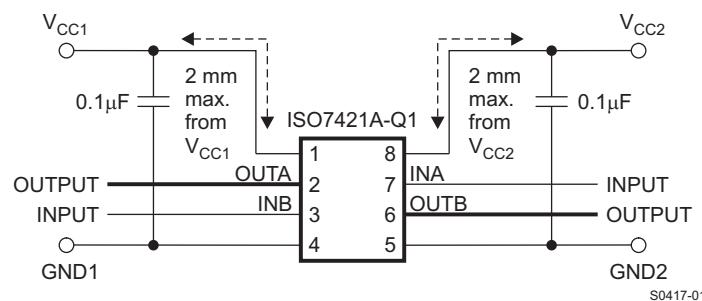
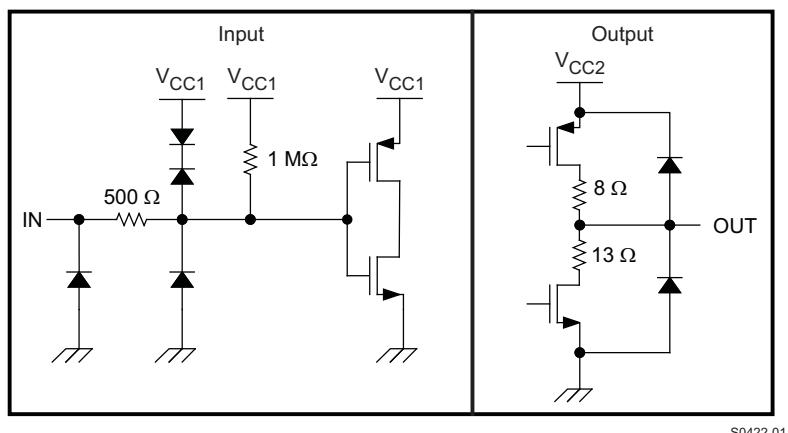



Figure 6. Typical ISO7421A-Q1 Application Circuit

S0422-01

Figure 7. Device I/O Schematics

ISO7421A-Q1

SLLSE14B – MARCH 2012 – REVISED SEPTEMBER 2013

www.ti.com

TYPICAL CHARACTERISTICS

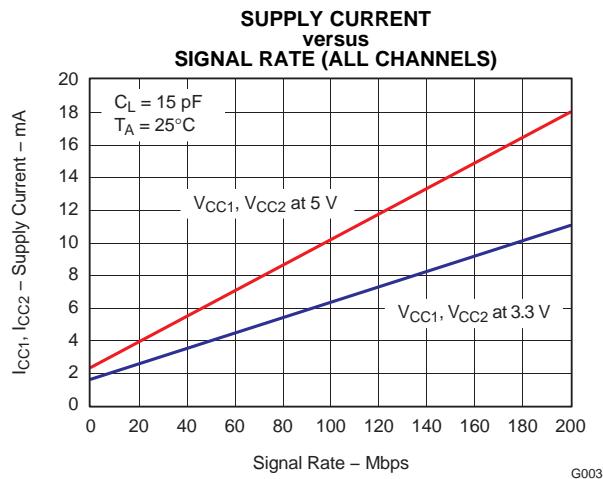


Figure 8.

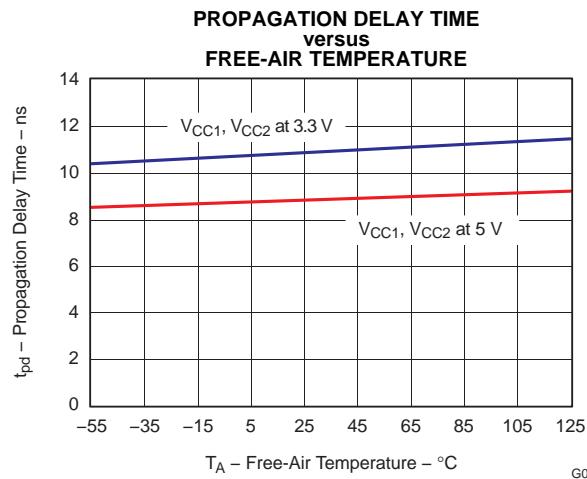


Figure 9.

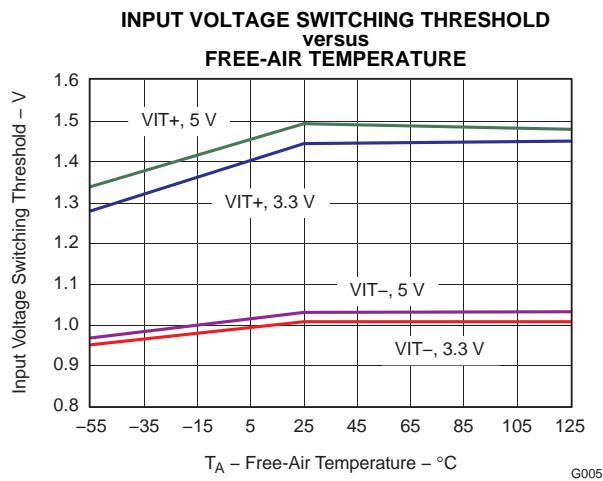


Figure 10.

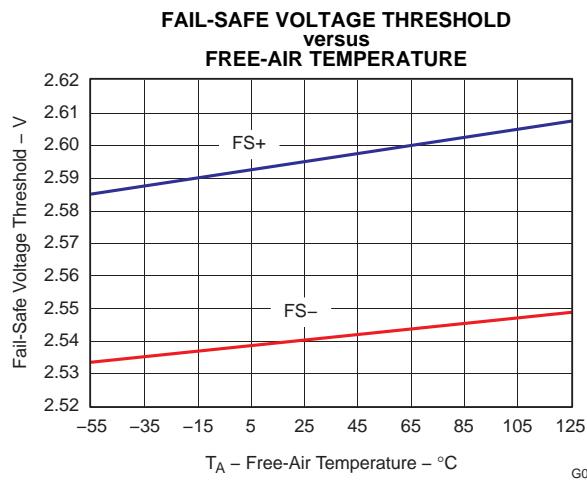


Figure 11.

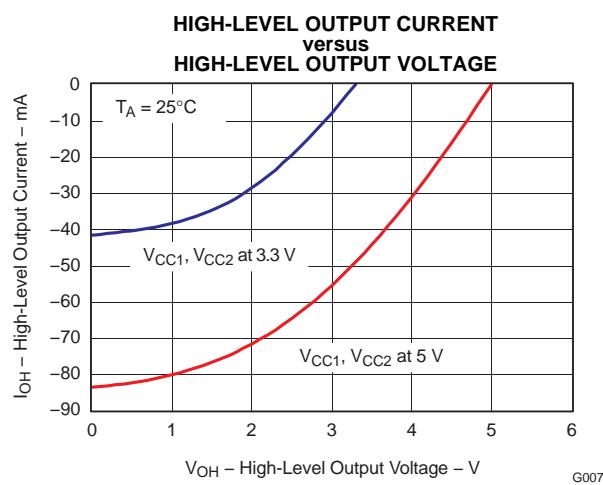


Figure 12.

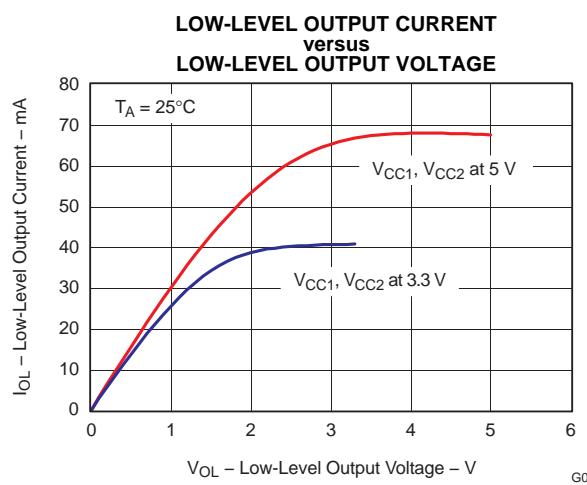


Figure 13.

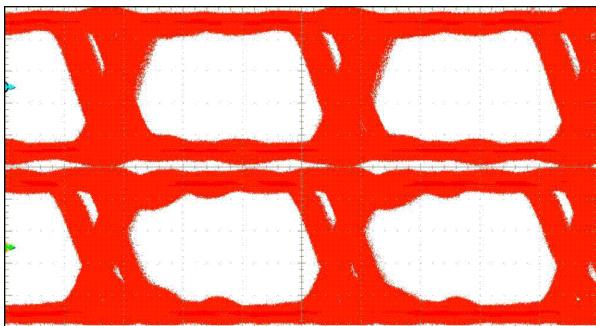

TYPICAL CHARACTERISTICS (continued)

Figure 14. Eye Diagram at 250 MBPS, 5-V V_{CC} , Typical

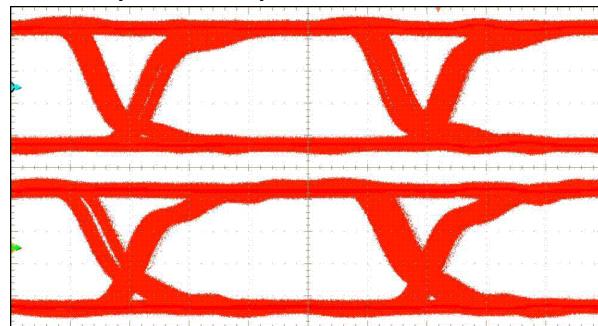


Figure 15. Eye Diagram at 200 MBPS, 5-V V_{CC} , 125°C

ISO7421A-Q1

SLLSE14B – MARCH 2012 – REVISED SEPTEMBER 2013

www.ti.com

REVISION HISTORY

Changes from Revision A (September 2012) to Revision B	Page
• Deleted ISO7420-Q1 part number from header of every page	1
• Deleted ISO7420-Q1 package from pinout drawing	1
• Deleted ISO7420-Q1 part number from Description sectoin	1
• Deleted ISO7420-Q1 from Ordering Information table	1
• Deleted ISO7420-Q1 from Pin Functions table	2
• Deleted ISO7420-Q1 from Supply Current section of 5-V, 5-V Electrical Characteristics table	3
• Deleted ISO7420-Q1 from Supply Current section of 5-V, 3.3-V Electrical Characteristics table	4
•	5
• Deleted ISO7420-Q1 from Supply Current section of 3.3-V, 5-V Electrical Characteristics table	5
• Deleted ISO7420-Q1 from Supply Current section of 3.3-V, 5-V Electrical Characteristics table	6
• Corrected part number in Typical Application Circuit diagram	10

Changes from Original (March, 2012) to Revision A	Page
• Changed High Signaling Rate from 1 to 50 Mbps.	1
• Replaced Supply Current section with marked up table from commercial datasheet SLLSE45, 8.5 max value changed to 9.1.	3
• Changed Signaling rate max value from 1 to 50.	3
• Replaced Supply Current section with marked up table from commercial datasheet SLLSE45, 8.5 max value changed to 9.1 and 5.5 changed to 5.8.	4
• Changed Signaling rate from 1 to 50 Mbps.	4
• Replaced Supply Current section with marked up table from commercial datasheet SLLSE45, 5.5 max value changed to 5.8 and 8.5 changed to 9.1.	5
• Changed Signaling rate from 1 to 50 Mbps.	5
• Replaced Supply Current section with marked up table from commercial datasheet SLLSE45, 5.5 max value changed to 5.8.	6
• Changed Signaling rate from 1 to 50 Mbps.	6

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
ISO7421AQDRQ1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	7421AQ	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

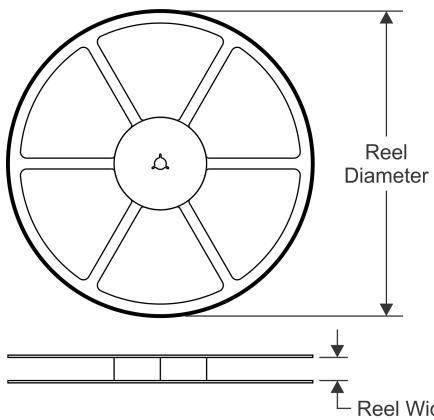
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

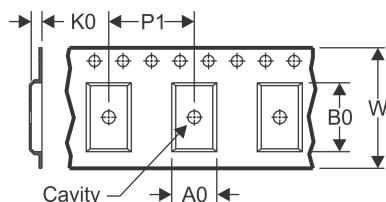
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

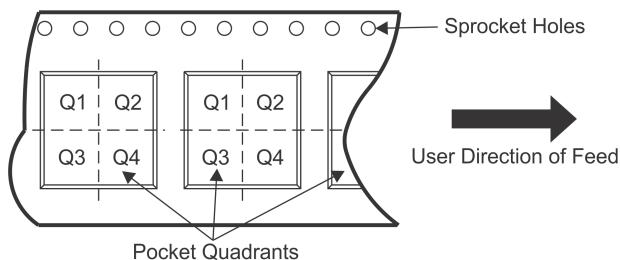

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "-" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

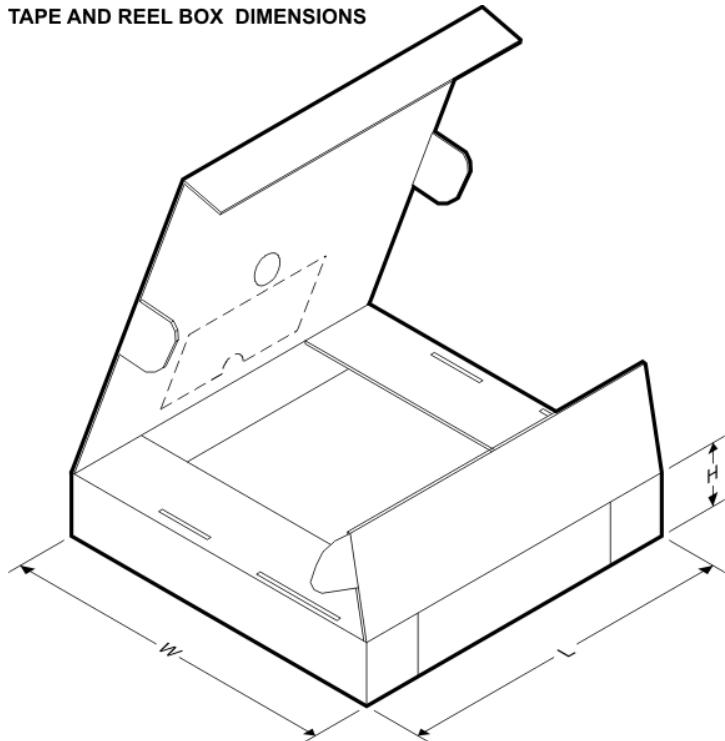

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



TAPE DIMENSIONS

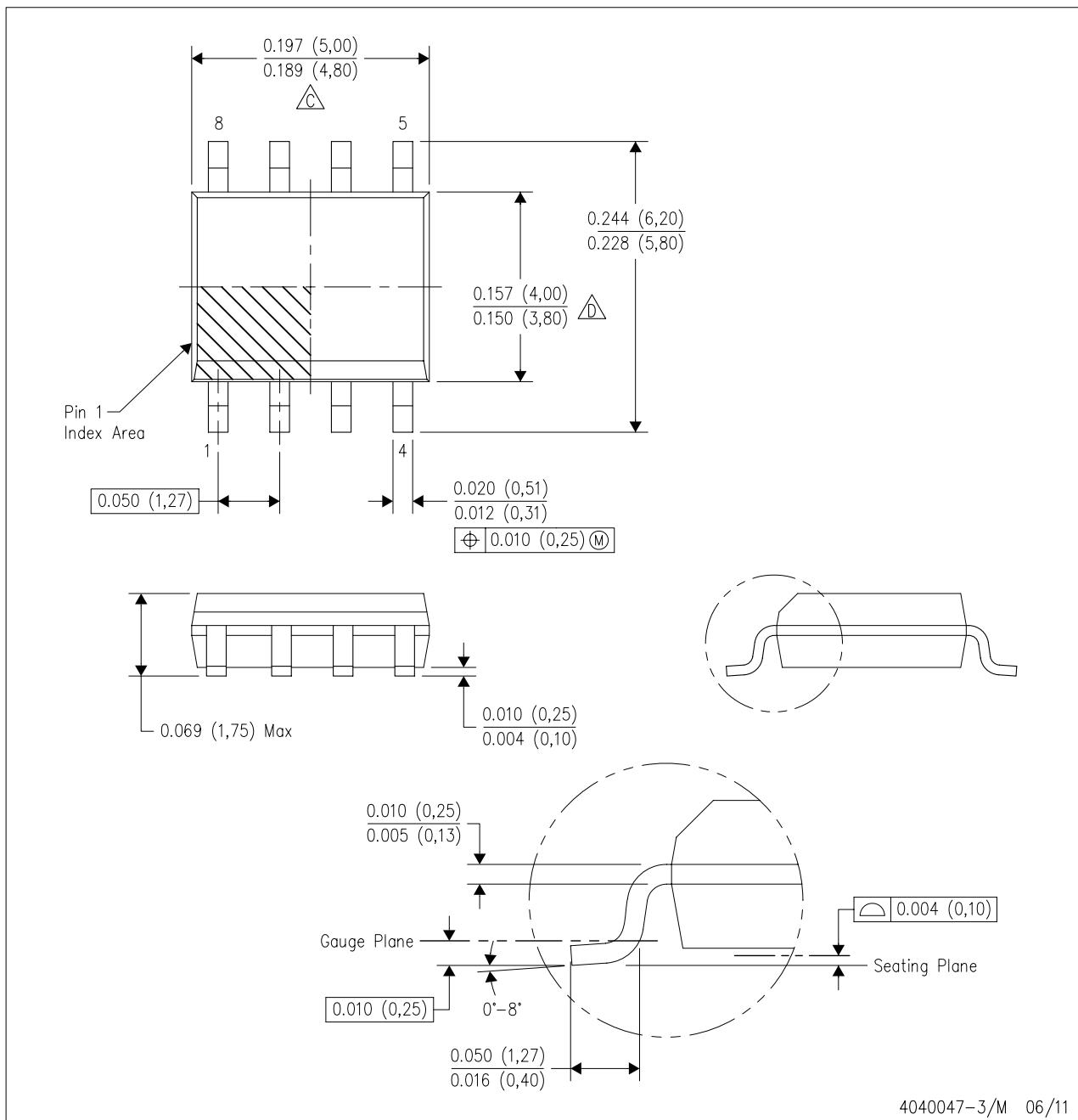

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO7421AQDRQ1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TAPE AND REEL BOX DIMENSIONS


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO7421AQDRQ1	SOIC	D	8	2500	367.0	367.0	38.0

MECHANICAL DATA

D (R-PDSO-G8)

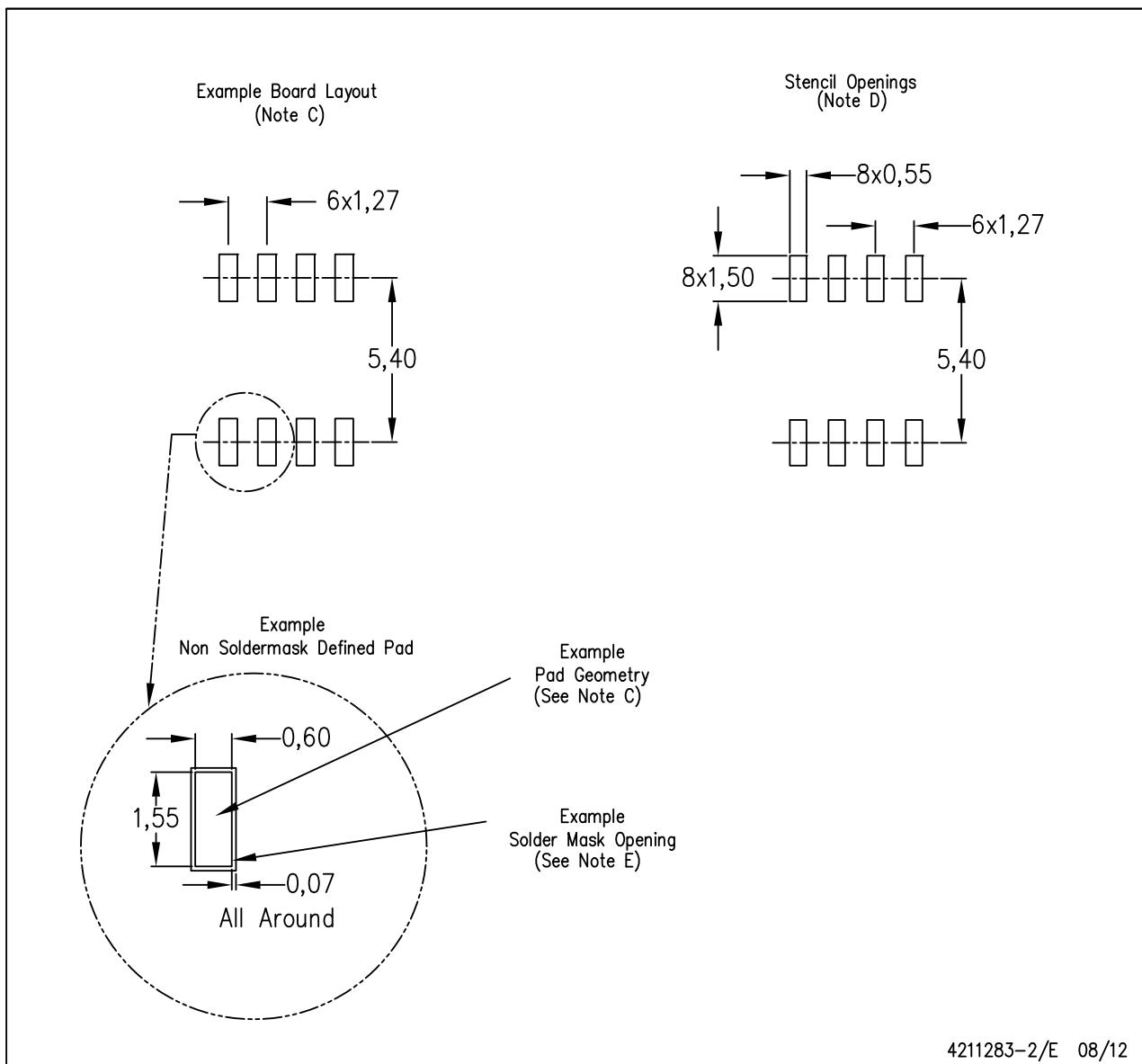
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

 Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.

 Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
 Reference JEDEC MS-012 variation AA

E. Reference JEDEC MS-012 variation AA.



Digitized by srujanika@gmail.com

LAND PATTERN DATA

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

4211283-2/E 08/12

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video

TI E2E Community

e2e.ti.com