

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Texas Instruments</u> <u>ISO7421EQDWRQ1</u>

For any questions, you can email us directly: sales@integrated-circuit.com

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ISO7421E-Q1

SLLSEA5B -MARCH 2012-REVISED JUNE 2012

Low-Power Dual Digital Isolators

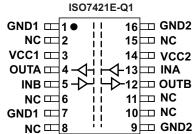
Check for Samples: ISO7421E-Q1

FEATURES

www.ti.com

- Qualified for Automotive Applications
- AEC-Q100 Qualified with the following results:
 - Device Temperature Grade 1: -40°C to +125°C Ambient Operating Temperature Range
 - Device HBM ESD Classification Level H3A
 - Device CDM ESD Classification Level C4
- Propagation Delay Less Than 20 ns
- Low Power Consumption
- Wide Ambient Temperature: –40°C to 125°C
- Safety and Regulatory Approvals
 - 4 kV peak Maximum Isolation, 2.5 kVrms per UL 1577, IEC/VDE and CSA Approved, IEC 60950-1, IEC 61010-1 End Equipment Standards Approved. All Approvals Pending.
- 50 kV/µs Transient Immunity Typical
- Operates From 3.3 V or 5 V Supply and Logic Levels

APPLICATIONS


- Opto-Coupler Replacement in:
 - Servo Control Interface
 - Motor Control
 - Power Supply
 - Battery Packs

DESCRIPTION

The ISO7421E-Q1 provides double galvanic isolation of up to 2.5 KVrms for 1 minute per UL. This digital isolator has two isolation channels in a bi-directional configuration. Each isolation channel has a logic input and output buffer separated by a silicon oxide (SiO₂) insulation barrier. Used in conjunction with isolated power supplies, these devices prevent noise currents on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry.

The devices have TTL input thresholds and require two supply voltages, 3.3 V or 5 V, or any combination. All inputs are 5-V tolerant when supplied from a 3.3-V supply.

Note: The ISO7421E-Q1 is specified for signaling rates up to 50 Mbps. Due to their fast response time, under most cases, these devices will also transmit data with much shorter pulse widths. Designers should add external filtering to remove spurious signals with input pulse duration < 20 ns if desired.

NC = No Internal Connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ISO7421E-Q1

SLLSEA5B - MARCH 2012-REVISED JUNE 2012

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Table 1. PIN DESCRIPTIONS

	PIN	1/0	DECORIDATION
NAME	ISO7421E-Q1	1/0	DESCRIPTION
INA	13	I	Input, channel A
INB	5	-	Input, channel B
GND1	1, 7	-	Ground connection for V _{CC1}
GND2	9, 16	0	Ground connection for V _{CC2}
OUTA	4	0	Output, channel A
OUTB	12	-	Output, channel B
V _{CC1}	14	_	Power supply, V _{CC1}
V _{CC2}	14	-	Power supply, V _{CC2}
NC	2, 6, 8, 10, 11, 15		No Connect Pin

DEVICE FUNCTION TABLE

INPUT SIDE (VCC)(1)	OUTPUT SIDE (VCC) ⁽¹⁾	INPUT (IN) ⁽¹⁾	OUTPUT (OUT) ⁽¹⁾
		Н	Н
PU	PU	L	L
		Open	Н
PD	PU	X	Н

⁽¹⁾ PU = Powered Up ($V_{CC} \ge 3.15V$); PD = Powered Down ($V_{CC} \le 2.4V$); X = Irrelevant; H = High Level; L = Low Level

AVAILABLE OPTIONS

PRODUCT	RATED T _A	MARKED AS	ORDERING NUMBER
ISO7421E-Q1	-40°C to 125°C	ISO7421EQ	ISO7421EQDWRQ1

ABSOLUTE MAXIMUM RATINGS(1)

					VA	LUE	UNIT
					MIN	MAX	
V _{CC}	Supply voltage	⁽²⁾ , V _{CC1} , V _{CC2}			-0.5	6	V
VI	Voltage at IN, 0	DUT			-0.5	6	V
Io	Output Current					±15	mA
FOD	Electrostatic	Human Body Model	AEC-Q100 Classification Level H3A	A.II i		4	kV
ESD	discharge Charged Device Model AEC-Q100 Classification Level C4					1	kV
TJ	Maximum junct	ion temperature				150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

⁽²⁾ All voltage values except differential I/O bus voltages are with respect to network ground terminal and are peak voltage values.

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ISO7421E-Q1

SLLSEA5B -MARCH 2012-REVISED JUNE 2012

www.ti.com

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾	1SO7421E-Q1 DW (16 Pins) 79.9 44.6 51.2 18.0 42.2	LINUTO
	THERMAL METRIC"	DW (16 Pins)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	79.9	
θ_{JCtop}	Junction-to-case (top) thermal resistance	44.6	
θ_{JB}	Junction-to-board thermal resistance	51.2	°C/\\
Ψ_{JT}	Junction-to-top characterization parameter	18.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	42.2	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	n/a	
P_D	Device power dissipation, Vcc1 = Vcc2 = 5.25 V, T_J = 150 °C, C_L = 15 pF, Input a 0.5 MHz 50 % duty cycle square wave	42	mW

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	TYP	MAX	UNIT
V _{CC1} , V _{CC2}	Supply voltage - 3.3V Operation	3.15	3.3	3.45	V
	Supply voltage - 5V Operation	4.75	5	5.25	
I _{OH}	High-level output current	-4			mA
I _{OL}	Low-level output current			4	mA
V _{IH}	High-level output voltage	2		V_{CC}	V
V _{IL}	Low-level output voltage	0		8.0	V
T _A	Ambient Temperature	-40		125	°C
T _J ⁽¹⁾	Junction temperature	-40		136	°C
1/t _{ui}	Signaling rate	0		50	Mbps
t _{ui}	Input pulse duration	1			μs

⁽¹⁾ To maintain the recommended operating conditions for T_J, see the *Package Thermal Characteristics* table and the *Icc Equations* section of this data sheet

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ISO7421E-Q1

SLLSEA5B - MARCH 2012 - REVISED JUNE 2012

www.ti.com

ELECTRICAL CHARACTERISTICS

 V_{CC1} and V_{CC2} at 5 V ± 5%, $T_A = -40$ °C to 125°C

	PARAMETER	-	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V	High level output voltage	$I_{OH} = -4 \text{ mA}; S$	See Figure 1	V _{CC} -0.8	4.6		V
V _{OH}	High-level output voltage	$I_{OH} = -20 \mu A;$	See Figure 1	V _{CC} -0.1	5		V
.,		I _{OL} = 4 mA; Se	e Figure 1		0.2	0.4	V
V_{OL}	Low-level output voltage	$I_{OL} = 20 \mu A; Second$	ee Figure 1		0	0.1	V
V _{I(HYS)}	Input threshold voltage hysteresis				400		mV
I _{IH}	High-level input current	IND: =4 0 1/ == 1	INx at 0 V or V _{CC}			10	μΑ
I _{IL}	Low-level input current	INX at 0 v or v					μΑ
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 \	/; See Figure 3	25	50		kV/μs
SUPPLY	Y CURRENT (All inputs switching w	ith square wave	clock signal for dynamic I _{CC} r	neasurement)		· ·	
	ISO7420x						
I _{CC1}		DC to 1 Mbno	DC Input: V _I = V _{CC} or 0 V		0.4	8.0	
I _{CC2}		DC to 1 Mbps	AC Input: C _L = 15 pF		3.4	5	
I _{CC1}	Cumbic current for V and V	10 Mbps			0.6	1	
I _{CC2}		TO IVIDPS			4.5	6	т Л
I _{CC1}	Supply current for V _{CC1} and V _{CC2}			1	1.5	mA	
I _{CC2}		25 Mbps	C _L = 15 pF		6.2	8	
I _{CC1}		50 Mhna			1.7	2.5	
I _{CC2}		50 Mbps			9	12	
	ISO7421x						
I _{CC1}		DC to 1 Mbps	DC Input: $V_I = V_{CC}$ or 0 V		2.3	3.6	
I _{CC2}		DC to 1 Mbps	AC Input: C _L = 15 pF		2.3	3.6	
I _{CC1}		10 Mhna			2.9	4.5	
I _{CC2}	Cumbic oursest for V and V	10 Mbps			2.9	4.5	т Л
I _{CC1}	Supply current for V _{CC1} and V _{CC2}	25 Mbps	C _ 15 pE		4.3	6	mA
I _{CC2}		25 Mbps	C _L = 15 pF		4.3	6	
I _{CC1}		50 Mb = -			6	9.1	
I _{CC2}	7	50 Mbps			6	9.1	

SWITCHING CHARACTERISTICS

 V_{CC1} and V_{CC2} at 5 V ± 5%. $T_A = -40^{\circ}$ C to 125°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1		9	14	ns
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}			0.3	3.7	ns
t _{sk(pp)}	Part-to-part skew time				4.9	ns
t _{sk(o)}	Channel-to-channel output skew time				3.6	ns
t _r	Output signal rise time	See Figure 1		1		ns
t _f	Output signal fall time			1		ns
t _{fs}	Fail-safe output delay time from input power loss	See Figure 2		6		μs

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC

ISO7421E-Q1

SLLSEA5B - MARCH 2012 - REVISED JUNE 2012

www.ti.com

ELECTRICAL CHARACTERISTICS

 V_{CC1} at 5 V ± 5%, V_{CC2} at 3.3 V ± 5%, $T_A = -40$ °C to 105°C

	PARAMETER	Т	EST CONDITIONS	MIN	TYP	MAX	UNIT			
		$I_{OH} = -4 \text{ mA};$	5-V side	V _{CC} -0.8	4.6					
V_{OH}	High-level output voltage	See Figure 1	3.3-V side	V _{CC} -0.4	3		V			
		$I_{OH} = -20 \mu A;$	See Figure 1	V _{CC} -0.1	V _{CC}					
	The desired states and the second	I _{OL} = 4 mA; Se	e Figure 1		0.2	0.4				
V_{OL}	Low-level output voltage	I _{OL} = 20 μA; Se	ee Figure 1		0	0.1	V			
V _{I(HYS)}	Input threshold voltage hysteresis				400		mV			
I _{IH}	High-level input current	IN				10	μA			
I _{IL}	Low-level input current	INx at 0 V or V	CC	-10			μΑ			
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 V	; See Figure 3	25	40		kV/μs			
SUPPL	Y CURRENT (All inputs switching w	vith square wave	e clock signal for dynamic I _{CC}	measurement))	1				
	ISO7420x									
I _{CC1}		DC to 4 Mb	DC Input: V _I = V _{CC} or 0 V		0.4	0.8				
I _{CC2}		DC to 1 Mbps	AC Input: C _L = 15 pF		2.6	3.7				
I _{CC1}		10 Mbps	,	•	urrent for V _{CC1} and V _{CC2}			0.6	1	
I _{CC2}	Supply current for V							3.3	4.3	A
I _{CC1}	Supply current for V_{CC1} and V_{CC2}					OF Mhno	25 Mbns	OF Mhno	25 Mbpo	0 45 5
I _{CC2}		25 Mbps	C _L = 15 pF		4.4	5.6				
I _{CC1}		50 Mb			1.7	2.5				
I _{CC2}		50 Mbps			6.2	7.5				
	ISO7421x									
I _{CC1}		DC to 4 Mb	DC Input: V _I = V _{CC} or 0 V		2.3	3.6				
I _{CC2}		DC to 1 Mbps	AC Input: C _L = 15 pF		1.8	2.8				
I _{CC1}		40 Mb = -			2.9	4.5				
I _{CC2}	Constitution of the Market Mar	10 Mbps			2.2	3.2	0			
I _{CC1}	Supply current for V _{CC1} and V _{CC2}	OF Mhno	C 45 pF		4.3	6	mA			
I _{CC2}		25 Mbps	C _L = 15 pF		2.8	4.1				
I _{CC1}		50 Mb			6	9.1				
I _{CC2}		50 Mbps		3.8	5.8					

SWITCHING CHARACTERISTICS

 V_{CC1} at 5 V ± 5%, V_{CC2} at 3.3 V ± 5%, $T_A = -40$ °C to 125°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1		10	17	ns
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}			0.5	5.6	ns
t _{sk(pp)}	Part-to-part skew time				6.3	ns
t _{sk(o)}	Channel-to-channel output skew time				4	ns
t _r	Output signal rise time	See Figure 1		2		ns
t _f	Output signal fall time			2		ns
t _{fs}	Fail-safe output delay time from input power loss	See Figure 2		6		μs

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ISO7421E-Q1

SLLSEA5B -MARCH 2012-REVISED JUNE 2012

www.ti.com

ELECTRICAL CHARACTERISTICS

 V_{CC1} at 3.3 V ± 5%, V_{CC2} at 5 V ± 5%, T_A = -40°C to 125°C

	PARAMETER	Т	EST CONDITIONS	MIN	TYP	MAX	UNIT
		$I_{OH} = -4 \text{ mA};$	5-V side	V _{CC} -0.8	4.6		
V_{OH}	High-level output voltage	See Figure 1	3.3-V side	V _{CC} -0.4	3		V
		$I_{OH} = -20 \mu A; S$	See Figure 1	V _{CC} -0.1	V _{CC}		
\ /	Laurelaurel autout valtaure	I _{OL} = 4 mA; See	e Figure 1		0.2	0.4	V
V _{OL}	Low-level output voltage	I _{OL} = 20 μA; Se	e Figure 1		0	0.1	V
V _{I(HYS)}	Input threshold voltage hysteresis				400		mV
I _{IH}	High-level input current	INIV at 0 1/ ar 1/				10	μΑ
I _{IL}	Low-level input current	INx at 0 V or V ₀	CC	-10			μΑ
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 V	; See Figure 3	25	40		kV/μs
SUPPL	CURRENT (All inputs switching w	ith square wave	clock signal for dynamic I _{CC} i	measurement)			
	ISO7420x						
I _{CC1}		DC to 1 Mbps	DC Input: $V_I = V_{CC}$ or 0 V		0.2	0.4	
I _{CC2}		DC to 1 Mbps	AC Input: C _L = 15 pF		3.4	5	
I _{CC1}		10 Mbps			0.4	0.6	
l _{CC2}	Supply current for V _{CC1} and V _{CC2}	TO IVIDPS	25 Mbps		4.5	6	mA
I _{CC1}	Supply current for V _{CC1} and V _{CC2}	25 Mhns			0.6	0.9	ША
I _{CC2}		25 Mibps			6.2	8	
I _{CC1}		50 Mbps			1	1.3	
I _{CC2}		30 Mbps			9	12	
	ISO7421x						
I _{CC1}		DC to 1 Mbps	DC Input: $V_I = V_{CC}$ or 0 V		1.8	2.8	
I _{CC2}		DC to 1 Mbps	AC Input: C _L = 15 pF		2.3	3.6	
I _{CC1}		10 Mbpc			2.2	3.2	
I _{CC2}	Supply current for V	10 Mbps			2.9	4.5	mA
I _{CC1}	Supply current for V _{CC1} and V _{CC2}	25 Mbpc	C _L = 15 pF		2.8	4.1	IIIA
I _{CC2}			OL = 10 ht		4.3	6	
I _{CC1}					3.8	5.8	
I _{CC2}	50 Mbps				6	9.1	

SWITCHING CHARACTERISTICS

 V_{CC1} at 3.3 V ± 5%, V_{CC2} at 5 V ± 5%, $T_A = -40^{\circ}$ C to 125°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1		10	17	ns
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}			0.5	4	ns
t _{sk(pp)}	Part-to-part skew time				8.5	ns
t _{sk(o)}	Channel-to-channel output skew time				4	ns
t _r	Output signal rise time	See Figure 1		2		ns
t _f	Output signal fall time			2		ns
t _{fs}	Fail-safe output delay time from input power loss	See Figure 2		6		μs

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ISO7421E-Q1

SLLSEA5B - MARCH 2012 - REVISED JUNE 2012

www.ti.com

ELECTRICAL CHARACTERISTICS

 V_{CC1} and V_{CC2} at 3.3 V ± 5%, $T_A = -40$ °C to 125°C

	PARAMETER	<u> </u>	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
\/	Lligh level cutout valtage	$I_{OH} = -4 \text{ mA}; S$	V _{CC} -0.4	3		V		
V _{OH}	High-level output voltage	$I_{OH} = -20 \mu A;$	See Figure 1	V _{CC} -0.1	3.3		V	
.,	La la de la de la desarra	I _{OL} = 4 mA; See Figure 1			0.2	0.4		
V_{OL}	Low-level output voltage	$I_{OL} = 20 \mu A; Second$	ee Figure 1		0	0.1	V	
V _{I(HYS)}	Input threshold voltage hysteresis				400		mV	
I _{IH}	High-level input current	IND: =4 0 1/ == 1	,				μΑ	
I _{IL}	Low-level input current	INx at 0 V or V	cc	-10			μΑ	
CMTI	Common-mode transient immunity	$V_I = V_{CC}$ or 0 \	/; See Figure 3	25	40		kV/μs	
SUPPL	CURRENT (All inputs switching w	ith square wave	e clock signal for dynamic I _{CC} n	neasurement)				
	ISO7420x							
I _{CC1}		DC to 4 Mb a	DC Input: V _I = V _{CC} or 0 V		0.2	0.4		
I _{CC2}	Supply current for V_{CC1} and V_{CC2}	DC to 1 Mbps AC Input: C _L		AC Input: C _L = 15 pF		2.6	3.7	
I _{CC1}		10 Mhna			0.4	0.6		
I _{CC2}		10 Mbps			3.3	4.3	mA	
I _{CC1}		OF Mhno	C _L = 15 pF		0.6	0.9		
I _{CC2}		25 Mbps			4.4	5.6		
I _{CC1}		50 Mhna			1	1.3		
I _{CC2}		50 Mbps			6.2	7.5		
	ISO7421x			·				
I _{CC1}		DC to 1 Mbno	DC Input: V _I = V _{CC} or 0 V		1.8	2.8		
I _{CC2}		DC to 1 Mbps	AC Input: C _L = 15 pF		1.8	2.8		
I _{CC1}	Supply current for V _{CC1} and V _{CC2}	10 Mbps			2.2	3.2		
I _{CC2}		10 Mbps			2.2	3.2	m ^	
I _{CC1}		25 Mbps	C _ 15 pE		2.8	4.1	mA	
I _{CC2}		25 Mbps	$C_L = 15 \text{ pF}$		2.8	4.1		
I _{CC1}		50 Mb = -			3.8	5.8		
I _{CC2}		50 Mbps			3.8	5.8		

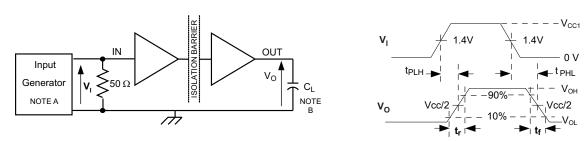
SWITCHING CHARACTERISTICS

 V_{CC1} and V_{CC2} at 3.3 V ± 5%. $T_A = -40$ °C to 125°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1		12	20	ns
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}			1	5	ns
t _{sk(pp)}	Part-to-part skew time				6.8	ns
t _{sk(o)}	Channel-to-channel output skew time				5.5	ns
t _r	Output signal rise time	See Figure 1		2		ns
t _f	Output signal fall time			2		ns
t _{fs}	Fail-safe output delay time from input power loss	See Figure 2		6		μs

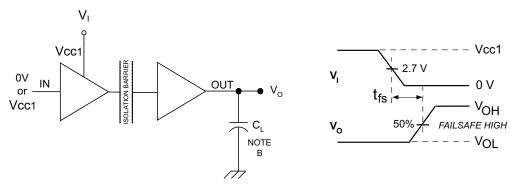
Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



ISO7421E-Q1

SLLSEA5B - MARCH 2012 - REVISED JUNE 2012


www.ti.com

PARAMETER MEASUREMENT INFORMATION

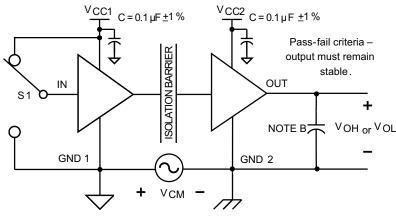

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq$ 3ns, $t_f \leq$ 3ns, $Z_0 = 50\Omega$.
- B. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 1. Switching Characteristic Test Circuit and Voltage Waveforms

A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 2. Failsafe Delay Time Test Circuit and Voltage Waveforms

A. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 3. Common-Mode Transient Immunity Test Circuit

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ISO7421E-Q1

SLLSEA5B - MARCH 2012 - REVISED JUNE 2012

www.ti.com

DEVICE INFORMATION

PACKAGE CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	PARAMETER TEST CONDITIONS			MAX	UNIT
L(I01)	Minimum air gap (Clearance)	Shortest terminal to terminal distance through air	8.34			mm
L(102)	Minimum external tracking (Creepage)	Shortest terminal to terminal distance across the package surface	8.1			mm
СТІ	Tracking resistance (Comparative Tracking Index)	DIN IEC 60112 / VDE 0303 Part 1	≥400			V
	Minimum internal gap (Internal Clearance)	Distance through the insulation	0.014			mm
R _{IO}	Isolation resistance, input to output ⁽¹⁾	Input to output, $V_{\rm IO}$ = 500 V, all pins on each side of the barrier tied together creating a two-terminal device		>10 ¹²		Ω
C _{IO}	Barrier capacitance input to output ⁽¹⁾	$V_{IO} = 0.4 \sin(2\pi ft), f = 1 \text{ MHz}$		2		pF
Cı	Input capacitance to ground (2)	$V_1 = V_{CC}/2 + 0.4 \sin(2\pi ft)$, $f = 1 \text{ MHz}$, $V_{CC} = 5 \text{ V}$		2		pF

⁽¹⁾ All pins on each side of the barrier tied together creating a two-terminal device.

NOTE

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed circuit board do not reduce this distance

Creepage and clearance on a printed circuit board become equal according to the measurement techniques shown in the Isolation Glossary. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.

IEC 60664-1 RATINGS TABLE

PARAMETER	TEST CONDITIONS	SPECIFICATION
Basic Isolation Group	Material Group	II
	Rated mains voltages <= 150 Vrms	I - IV
Installation Classification	Rated mains voltages <= 300 Vrms	I - IV
	Rated mains voltages <= 400 Vrms	I - III

⁽²⁾ Measured from input pin to ground.

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ISO7421E-Q1

SLLSEA5B -MARCH 2012-REVISED JUNE 2012

www.ti.com

INSULATION CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	SPECIFICATION	UNIT	
V _{IORM}	Maximum working insulation voltage		1414	Vpeak
		Method a, After environmental tests subgroup 1, $V_{PR} = V_{IORM} \times 1.6$, $t = 10 \text{ s}$, Partial discharge < 5 pC	2262	
V_{PR}	Input to output test voltage	Method b1, $V_{PR} = V_{IORM} \times 1.875$, $t = 1$ s (100% Production test) Partial discharge < 5 pC	2651	Vpeak
		After Input/Output Safety Test Subgroup 2/3, V _{PR} = V _{IORM} x 1.2, t = 10 s, Partial discharge < 5 pC		
V _{IOTM}	Transient overvoltage	t = 60 sec (qualification)	4242	Vpeak
V	locletion voltage per I II	V _{TEST} = V _{ISO} , t = 60 sec (qualification)	2500	Vrms
V _{ISO}	Isolation voltage per UL	t = 1 sec (100% production)	3000	VIIIIS
Rs	Insulation resistance	V _{TEST} = 500 V at T _S = 150°C	>109	Ω
	Pollution degree		2	

REGULATORY INFORMATION

VDE	CSA	UL		
Certified according to IEC 60747-5-2	Approved under CSA Component Acceptance Notice	Recognized under 1577 Component Recognition Program		
File Number: pending	File Number: pending	File Number: E181974		

IEC SAFETY LIMITING VALUES

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the IO can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.

PARAMETER		PARAMETER TEST CONDITIONS				UNIT
lo	Safety input, output, or supply current	θ_{JA} =212°C/W, V_I = 5.5 V, T_J = 170°C, T_A = 25°C			112	mΛ
Is		θ_{JA} =212°C/W, V_I = 3.6 V, T_J = 170°C, T_A = 25°C			171	mA
Ts	Maximum Case Temperature				150	°C

The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Characteristics table is that of a device installed on a High-K Test Board for Leaded Surface Mount Packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

0 Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

ISO7421E-Q1

SLLSEA5B - MARCH 2012 - REVISED JUNE 2012

www.ti.com

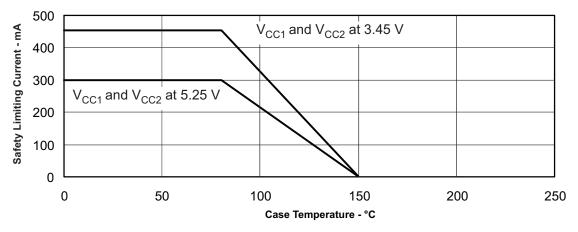


Figure 4. DW-16 Theta-JC Thermal Derating Curve per IEC 60747-5-2

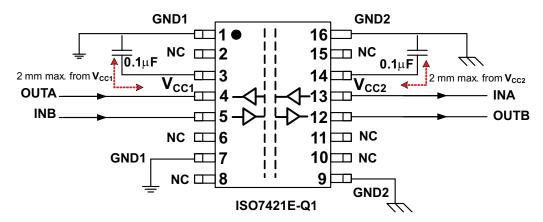


Figure 5. Typical ISO7421E-Q1 Application Circuit

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

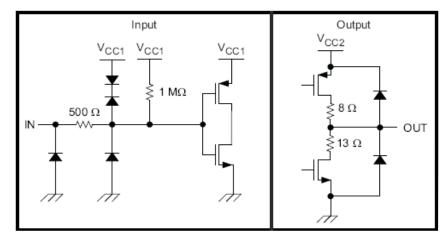


Figure 6. I/O Schematic

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

ISO7421E-Q1

SLLSEA5B - MARCH 2012 - REVISED JUNE 2012

www.ti.com

TYPICAL CHARACTERISTICS

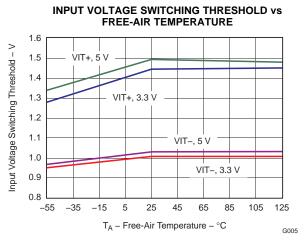


Figure 7.

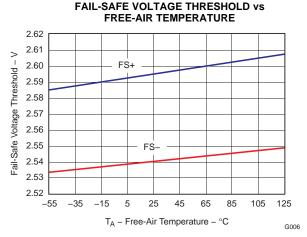


Figure 8.

HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE

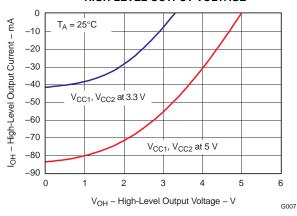


Figure 9.

LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE

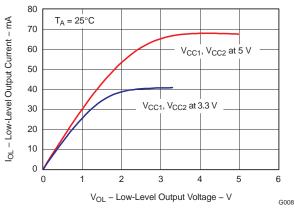


Figure 10.

Submit Documentation Feedback

12

Product Folder Link(s): ISO7421E-Q1

www.ti.com

Distributor of Texas Instruments: Excellent Integrated System Limited

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC

ISO7421E-Q1 SLLSEA5B – MARCH 2012 – REVISED JUNE 2012

REVISION HISTORY

CI	hanges from Revision A (March 2012) to Revision B	Page
•	Changed signaling rate info from 1 to 50 Mbps.	1
•	Changed Signaling rate max value from 1 to 50 Mbps, centered 0 in the min column.	3
•	Replaced Supply Current section with marked up table from commercial datasheet SLLSE45, changed 8.5 max value to 9.1.	4
•	Replaced Supply Current section with marked up table from commercial datasheet SLLSE45, changed 8.5 max value to 9.1 and changed 5.5 max value to 5.8.	5
•	Replaced Supply Current section with marked up table from commercial datasheet SLLSE45, changed 5.5 max value to 5.8 and changed 8.5 max value to 9.1.	6
•	Replaced Supply Current section with marked up table from commercial datasheet SLLSE45, changed 5.5 max value to 5.8.	7

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

11-Apr-2013

PACKAGING INFORMATION

MSL Peak Temp Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish Op Temp (°C) Top-Side Markings Samples Qty Drawing (1) (2) (3) ISO7421EQDWRQ1 CU NIPDAU Level-3-260C-168 HR ISO7421EQ **ACTIVE** SOIC 16 Green (RoHS -40 to 125 DW 2000 Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. Tl bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF ISO7421E-Q1:

Catalog: ISO7421E

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

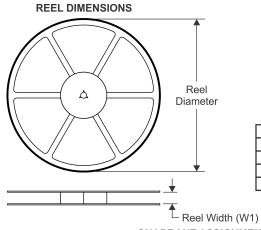
PACKAGE OPTION ADDENDUM

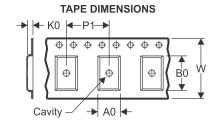
11-Apr-2013

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

Addendum-Page 2

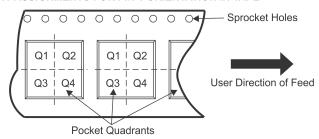

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jun-2013

TAPE AND REEL INFORMATION

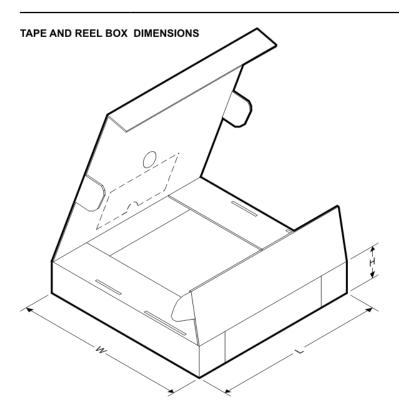


	Dimension designed to accommodate the component width
	Discoursian design of the engage data the engage ment law attacks

- B0 Dimension designed to accommodate the component length
- K0 Dimension designed to accommodate the component thickness
- W Overall width of the carrier tape
- P1 Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

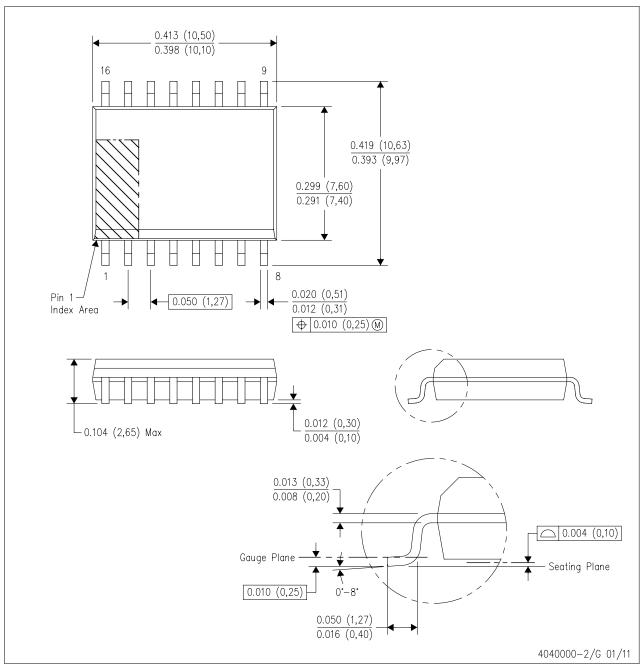

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO7421EQDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

Datasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jun-2013

*All dimensions are nominal


7 til dilliononono are memilia							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO7421EQDWRQ1	SOIC	DW	16	2000	367.0	367.0	38.0

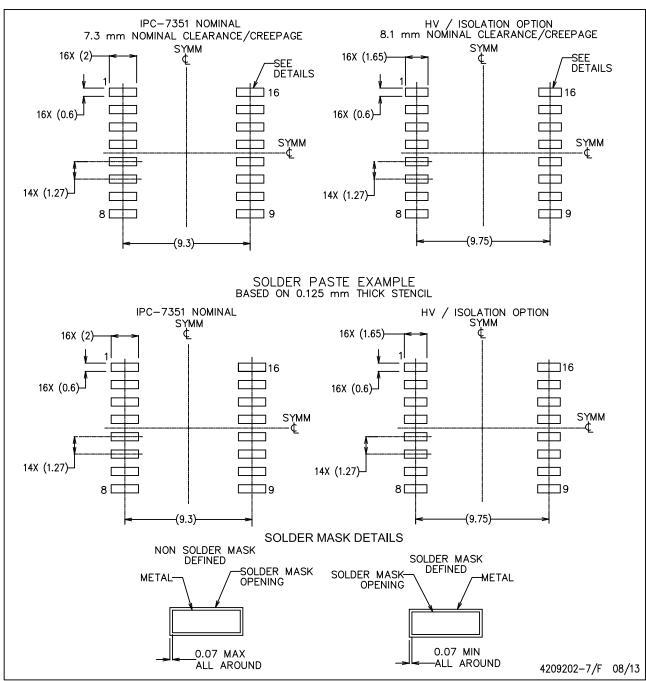
MECHANICAL DATA

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AA.



LAND PATTERN DATA

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- E. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- F. Board assembly site may have different recommendations for stencil design.

Distributor of Texas Instruments: Excellent Integrated System LimitedDatasheet of ISO7421EQDWRQ1 - DGTL ISO 2.5KV GEN PURP 16SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

www.ti.com/audio Audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated