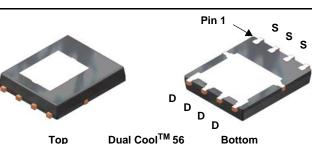


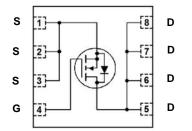
July 2015

FDMS3008SDC N-Channel Dual CoolTM 56 PowerTrench[®] SyncFETTM 30 V, 65 A, 2.6 m Ω

Features

- Dual CoolTM Top Side Cooling PQFN package
- Max $r_{DS(on)} = 2.6 \text{ m}\Omega \text{ at } V_{GS} = 10 \text{ V}, I_D = 28 \text{ A}$
- Max $r_{DS(on)}$ = 3.3 m Ω at V_{GS} = 4.5 V, I_D = 22 A
- High performance technology for extremely low r_{DS(on)}
- SyncFET Schottky Body Diode
- RoHS Compliant




General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process. Advancements in both silicon and Dual CoolTM package technologies have been combined to offer the lowest $r_{DS(on)}$ while maintaining excellent switching performance by extremely low Junction-to-Ambient thermal resistance. This device has the added benefit of an efficient monolithic Schottky body diode.

Applications

- Synchronous Rectifier for DC/DC Converters
- Telecom Secondary Side Rectification
- High End Server/Workstation Vcore Low Side

MOSFET Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V	
	Drain Current -Continuous (Package limited)	T _C = 25 °C		65	A	
	-Continuous (Silicon limited)	T _C = 25 °C		140		
D	-Continuous	T _A = 25 °C	(Note 1a)	29		
	-Pulsed			200		
E _{AS}	Single Pulse Avalanche Energy (Note 3)		(Note 3)	112	mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 5)	2.3	V/ns	
P _D	Power Dissipation	T _C = 25 °C		78		
	Power Dissipation	T _A = 25 °C	(Note 1a)	3.3	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Ra	ange		-55 to +150	°C	

Thermal Characteristics

R_{\thetaJC}	Thermal Resistance, Junction to Case	(Top Source)	3.5	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	1.6	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	38	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	81	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1i)	16	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1j)	23	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1k)	11	

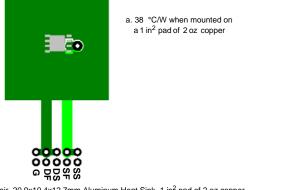
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
3008S	FDMS3008SDC	Dual Cool [™] 56	13"	12 mm	3000 units

FDMS3008SDC
N-Channel Dual Cool
R
56 PowerTrench [®] (
SyncFET TM

Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient					
Breakdown Voltage Temperature					
	I _D = 1 mA, V _{GS} = 0 V	30			V
	$I_D = 10$ mA, referenced to 25°C		13		mV/°C
Zero Gate Voltage Drain Current	$V_{DS} = 24 V, V_{GS} = 0 V$			500	μA
Gate to Source Leakage Current, Forward	$V_{GS} = 20 V, V_{DS} = 0 V$			100	nA
cteristics					
	$V_{00} = V_{00}$ $l_0 = 1$ mA	12	19	3.0	V
Gate to Source Threshold Voltage	$I_D = 10$ mA, referenced to 25°C		-5	0.0	mV/°C
	V _{GS} = 10 V, I _D = 28 A		1.8	2.6	
Static Drain to Source On Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 22 \text{ A}$		2.7	3.3	mΩ
	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 28 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$		2.4	3.6	
Forward Transconductance	$V_{DS} = 5 V, I_{D} = 28 A$		144		S
Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1MHz		3400 1115 80	4520 1485 120	pF pF pF
Turn On Dalay Time			15	07	20
Turn-On Delay Time	-			27	ns
Rise Time	$V_{DD} = 15 V, I_D = 28 A,$		4.7	10	ns
Rise Time Turn-Off Delay Time	$V_{\text{DD}} = 15 \text{ V}, \text{ I}_{\text{D}} = 28 \text{ A}, \\ V_{\text{GS}} = 10 \text{ V}, \text{ R}_{\text{GEN}} = 6 \Omega$		4.7 33	10 53	ns ns
Rise Time Turn-Off Delay Time Fall Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		4.7 33 3	10 53 10	ns ns ns
Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{GS} = 10 \text{ V}, \text{R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V} \text{ to } 10 \text{ V}$		4.7 33 3 46	10 53 10 64	ns ns ns nC
Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	$V_{GS} = 10$ V, $R_{GEN} = 6$ Ω $V_{GS} = 0$ V to 10 V $V_{GS} = 0$ V to 4.5 V $V_{DD} = 15$ V,		4.7 33 3 46 21	10 53 10	ns ns nS nC nC
Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge	$V_{GS} = 10 \text{ V}, \text{R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V} \text{ to } 10 \text{ V}$		4.7 33 3 46 21 9.6	10 53 10 64	ns ns nC nC nC
Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = 10$ V, $R_{GEN} = 6$ Ω $V_{GS} = 0$ V to 10 V $V_{GS} = 0$ V to 4.5 V $V_{DD} = 15$ V,		4.7 33 3 46 21	10 53 10 64	ns ns nS nC nC
Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{GS} = 10 \text{ V}, $		4.7 33 3 46 21 9.6 4.3	10 53 10 64 29	ns ns nC nC nC
Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = 10 \text{ V}, $		4.7 33 3 46 21 9.6	10 53 10 64	ns ns nC nC nC
Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{GS} = 10 \text{ V}, $		4.7 33 3 46 21 9.6 4.3	10 53 10 64 29 0.8	ns ns nC nC nC nC
	Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics	Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$ Gate to Source Threshold Voltage Temperature Coefficient $I_D = 10 \text{ mA}$, referenced to 25°CStatic Drain to Source On Resistance $V_{GS} = 10 \text{ V}$, $I_D = 28 \text{ A}$ VGS = 10 V, $I_D = 28 \text{ A}$ $V_{GS} = 4.5 \text{ V}$, $I_D = 22 \text{ A}$ VGS = 10 V, $I_D = 28 \text{ A}$, $T_J = 125°C$ Forward Transconductance $V_{DS} = 5 \text{ V}$, $I_D = 28 \text{ A}$ CharacteristicsInput Capacitance $V_{DS} = 15 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$ Reverse Transfer Capacitance $f = 1 \text{ MHz}$ Gate Resistance Q CharacteristicsCharacteristics	Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$ 1.2Gate to Source Threshold Voltage Temperature Coefficient $I_D = 10 \text{ mA}$, referenced to 25°C1Static Drain to Source On Resistance $V_{GS} = 10 \text{ V}$, $I_D = 28 \text{ A}$ 1VGS = 10 V, $I_D = 28 \text{ A}$ $V_{GS} = 4.5 \text{ V}$, $I_D = 22 \text{ A}$ 1Forward Transconductance $V_{DS} = 10 \text{ V}$, $I_D = 28 \text{ A}$ 1CharacteristicsInput Capacitance Output Capacitance $V_{DS} = 5 \text{ V}$, $I_D = 28 \text{ A}$ Reverse Transfer Capacitance Gate Resistance $V_{DS} = 15 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$ 1CharacteristicsImput CapacitanceImput CapacitanceImput CapacitanceCharacteristicsImput CapacitanceImput CapacitanceImput CapacitanceGate ResistanceImput CapacitanceImput CapacitanceImput CapacitanceImput CapacitanceImput CapacitanceImput Capacitance<	Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$ 1.21.9Gate to Source Threshold Voltage Temperature Coefficient $I_D = 10 \text{ mA}$, referenced to 25°C-5Static Drain to Source On Resistance $V_{GS} = 10 \text{ V}$, $I_D = 28 \text{ A}$ 1.8 $V_{GS} = 10 \text{ V}$, $I_D = 28 \text{ A}$ 2.7 $V_{GS} = 10 \text{ V}$, $I_D = 28 \text{ A}$ 2.4Forward Transconductance $V_{DS} = 5 \text{ V}$, $I_D = 28 \text{ A}$ 144CharacteristicsInput Capacitance $V_{DS} = 15 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$ 3400Output Capacitance $V_{DS} = 15 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$ 0.7Characteristics0.7	Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient $V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$ 1.21.93.0Gate to Source Threshold Voltage Temperature Coefficient $I_D = 10 \text{ mA}$, referenced to 25°C-5-5Static Drain to Source On Resistance $V_{GS} = 10 \text{ V}$, $I_D = 28 \text{ A}$ 1.82.6 $V_{GS} = 4.5 \text{ V}$, $I_D = 22 \text{ A}$ 2.73.3 $V_{GS} = 10 \text{ V}$, $I_D = 28 \text{ A}$, $T_J = 125^{\circ}$ C2.43.6Forward Transconductance $V_{DS} = 5 \text{ V}$, $I_D = 28 \text{ A}$ 144CharacteristicsInput Capacitance Output Capacitance $V_{DS} = 15 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{MHz}$ 34004520Quadratice $V_{DS} = 15 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$ 34004520Output Capacitance0.70.7Gate Resistance0.7Characteristics

b. 81 °C/W when mounted on


a minimum pad of 2 oz copper

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Top Source)	3.5	
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	1.6	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	38	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	81	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1c)	27	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1d)	34	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1e)	16	9 0 (M)
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1f)	19	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1g)	26	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1h)	61	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	16	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1j)	23	
R _{0JA}	Thermal Resistance, Junction to Ambient	(Note 1k)	11	
R _{0JA}	Thermal Resistance, Junction to Ambient	(Note 1I)	13	

NOTES:

1. R_{0JA} is determined with the device mounted on a FR-4 board using a specified pad of 2 oz copper as shown below. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

c. Still air, 20.9x10.4x12.7mm Aluminum Heat Sink, 1 in^2 pad of 2 oz copper

d. Still air, 20.9x10.4x12.7mm Aluminum Heat Sink, minimum pad of 2 oz copper

e. Still air, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper

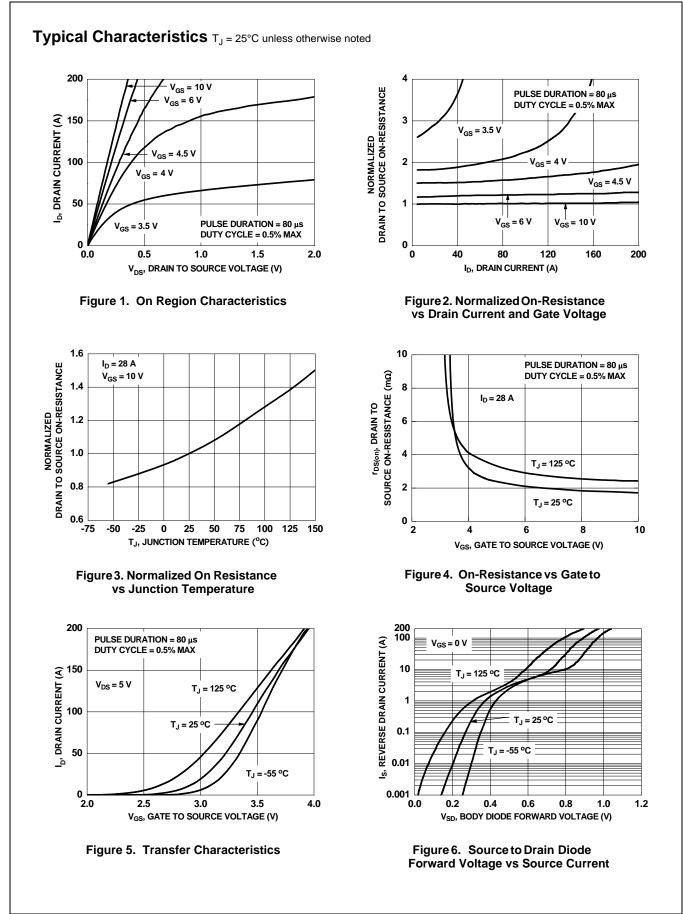
f. Still air, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper

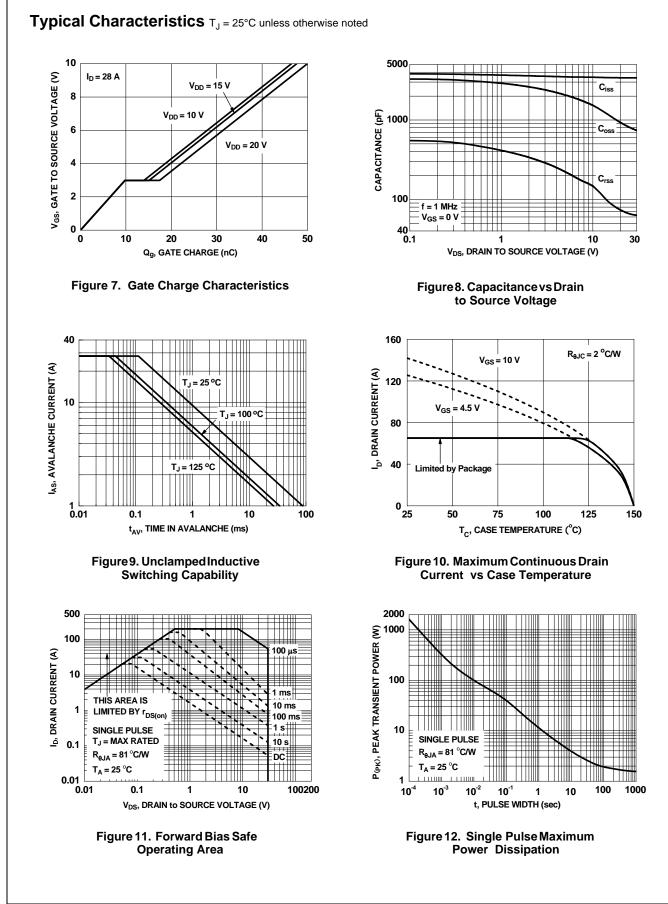
g. 200FPM Airflow, No Heat Sink,1 in² pad of 2 oz copper

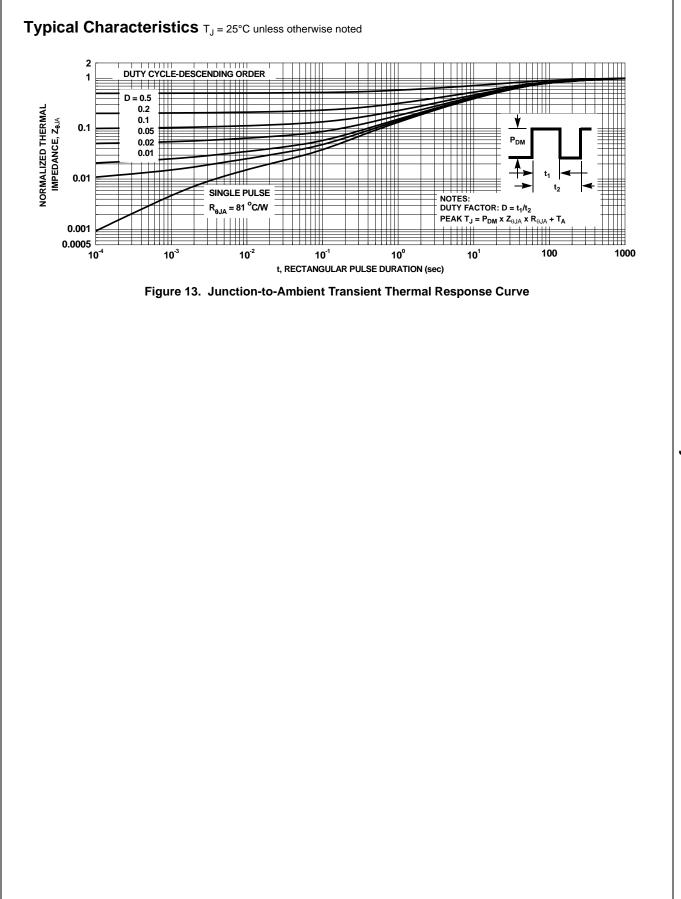
h. 200FPM Airflow, No Heat Sink, minimum pad of 2 oz copper

i. 200FPM Airflow, 20.9x10.4x12.7mm Aluminum Heat Sink, 1 in² pad of 2 oz copper

j. 200FPM Airflow, 20.9x10.4x12.7mm Aluminum Heat Sink, minimum pad of 2 oz copper


k. 200FPM Airflow, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper


I. 200FPM Airflow, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper


2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

3. E_{AS} of 112 mJ is based on starting T_J = 25 °C, L = 1 mH, I_{AS} = 15 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 33.4 A.

Typical Characteristics (continued)

SyncFET Schottky body diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 14 shows the reverse recovery characteristic of the FDMS3008SDC.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

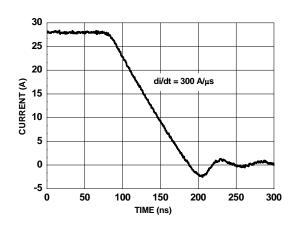
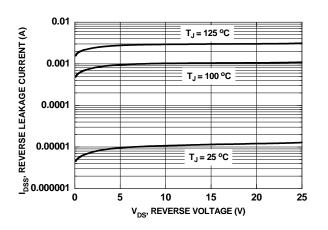
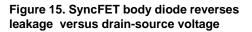
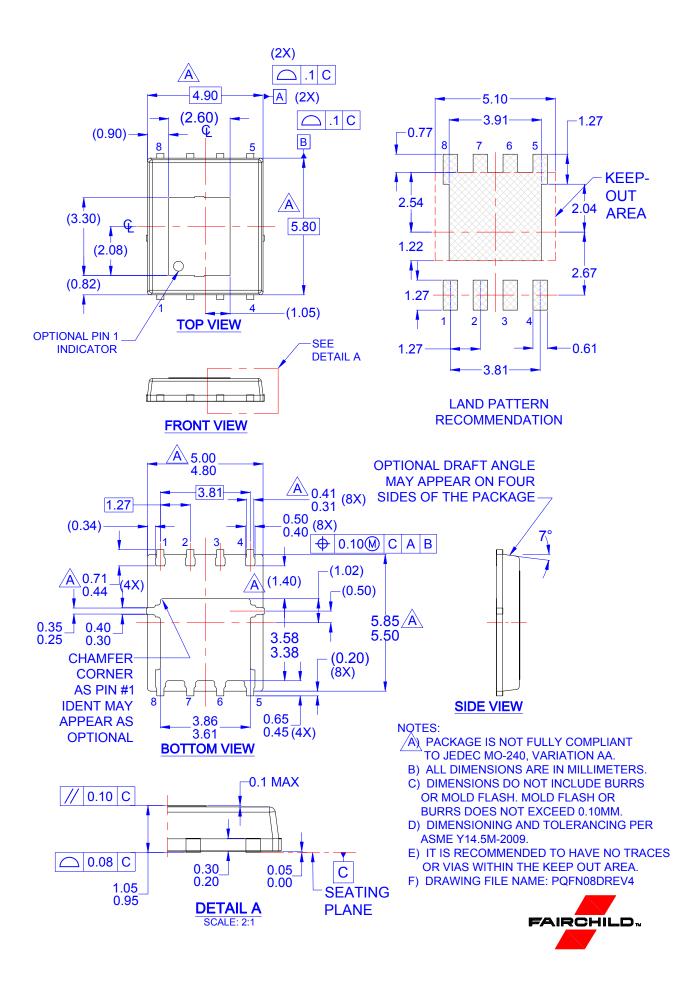
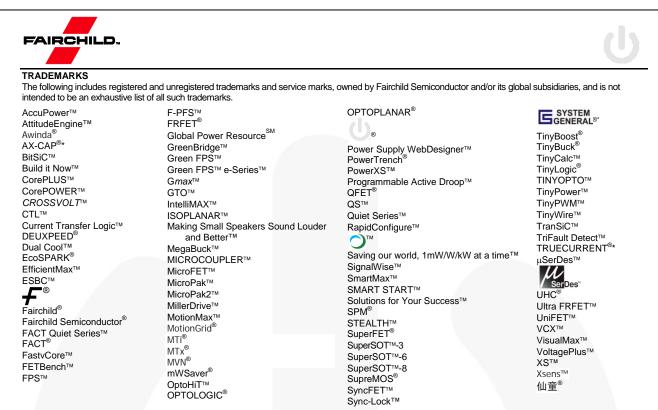






Figure 14. FDMS3008SDC SyncFET body diode reverse recovery characteristic

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms					
Datasheet Identification Product Status		Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 177