

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor MM74C42N

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

FAIRCHILD

SEMICONDUCTOR

MM74C42 BCD-to-Decimal Decoder

General Description

The MM74C42 one-of-ten decoder is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. This decoder produces a logical "0" at the output corresponding to a four bit binary input from zero to nine, and a logical "1" at the other outputs. For binary inputs from ten to fifteen all outputs are logical "1". October 1987 Revised May 2002

MM74C42 BCD-to-Decimal Decoder

Applications

Automotive

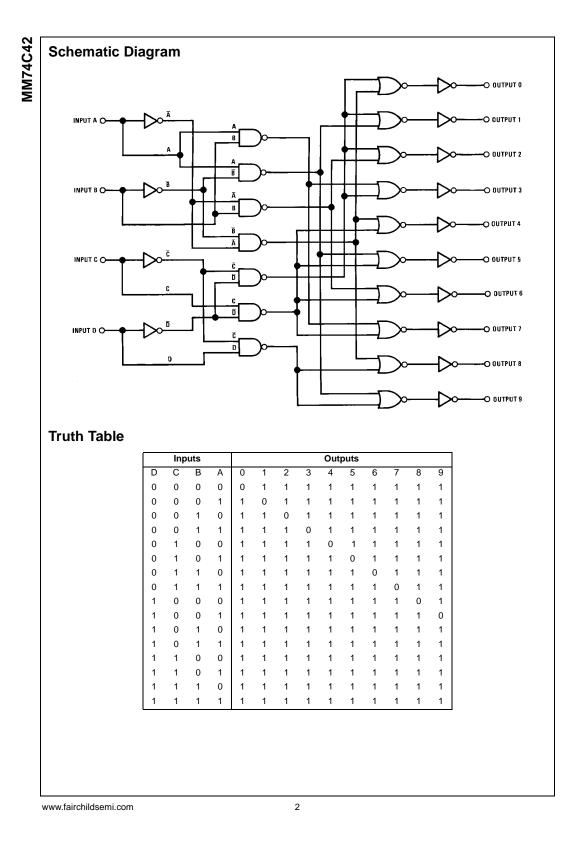
Features

■ Supply voltage range: 3V to 15V

■ Low power: 50 nW (typ.)

■ High noise immunity: 0.45 V_{CC} (typ.)

■ Tenth power TTL compatible: drive 2 LPTTL loads


Medium speed operation: 10 MHz (typ.) with 10V V_{CC}

- Data terminals
- Instrumentation
- Medical electronics
- Alarm systems
- Industrial electronics
- Remote metering
- Computers

Ordering Code: Image: marking the stage number of the stage number of

www.fairchildsemi.com

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of MM74C42N - IC DECODER BCD TO DECIMAL 16-DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin (Note 1)
Operating Temperature Range
Storage Temperature Range
Power Dissipation (P _D)
Dual-In-Line
Small Outline
Operating V _{CC} Range

-0.3V to V_{CC} + 0.3V -55°C to +125°C -65°C to +150°C 700 mW 500 mW

3.0V to 15V

Absolute Maximum V _{CC}
Lead Temperature
(Soldering, 10 seconds)

MM74C42

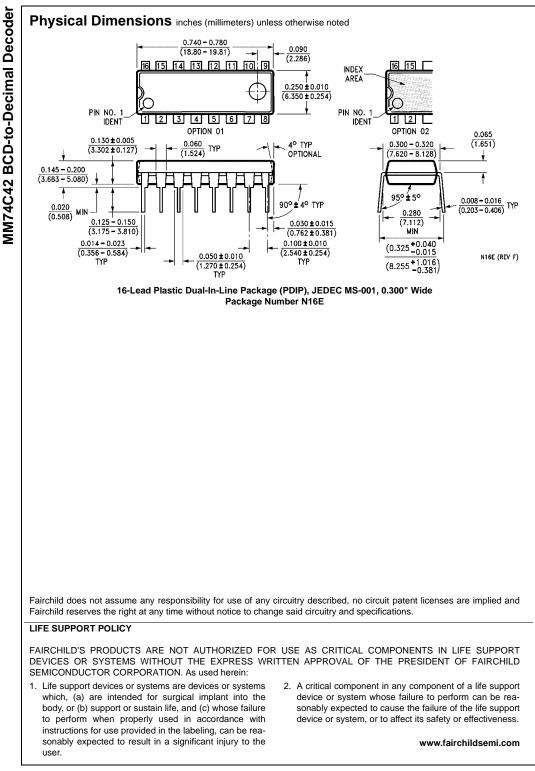
18V

260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics tables provide conditions for actual device operation.

DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO C	MOS	I				
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0V$	3.5			V
		$V_{CC} = 10V$	8.0			
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0V$			1.5	V
		V _{CC} = 10V			2.0	
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_{O} = -10 \ \mu A$	4.5			V
		$V_{CC} = 10V, I_{O} = -10 \ \mu A$	9.0			
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_O = 10 \ \mu A$			0.5	V
		$V_{CC} = 10V, I_{O} = 10 \ \mu A$			1.0	v
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V			1.0	μA
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0			μA
I _{CC}	Supply Current	$V_{CC} = 15V$		0.05	300	μA
CMOS/LPTT						
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 4.75V	V _{CC} – 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 4.75V			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75V, I_{O} = -360 \ \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75V, I_{O} = 360 \ \mu A$			0.4	V
OUTPUT DR	IVE (see Family Characteristics D	ata Sheet) T _A = 25°C (short circuit current)				
ISOURCE	Output Source Current	$V_{CC} = 5.0V, V_{IN(0)} = 0V, V_{OUT} = 0V$	-1.75			mA
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V, V_{OUT} = 0V$	-8.0			mA
I _{SINK}	Output Sink Current	$V_{CC} = 5.0V, V_{IN(1)} = 5.0V, V_{OUT} = V_{CC}$	1.75			mA
ISINK	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V, V_{OUT} = V_{CC}$	8.0			mA


AC Electrical Characteristics (Note 2)

 ${\sf T}_A=25^\circ C,\ C_L=50$ pF, unless otherwise specified Symbol Parameter Conditions Min Max Units Тур $V_{CC} = 5.0V$ 200 300 t_{pd} Propagation Delay Time to ns Logical "0" or "1" $V_{CC} = 10V$ 90 140 ns Input Capacitance (Note 3) 5 C_{IN} рF C_{PD} Power Dissipation Capacitance (Note 4) 50 рF Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note— AN-90.

www.fairchildsemi.com