

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

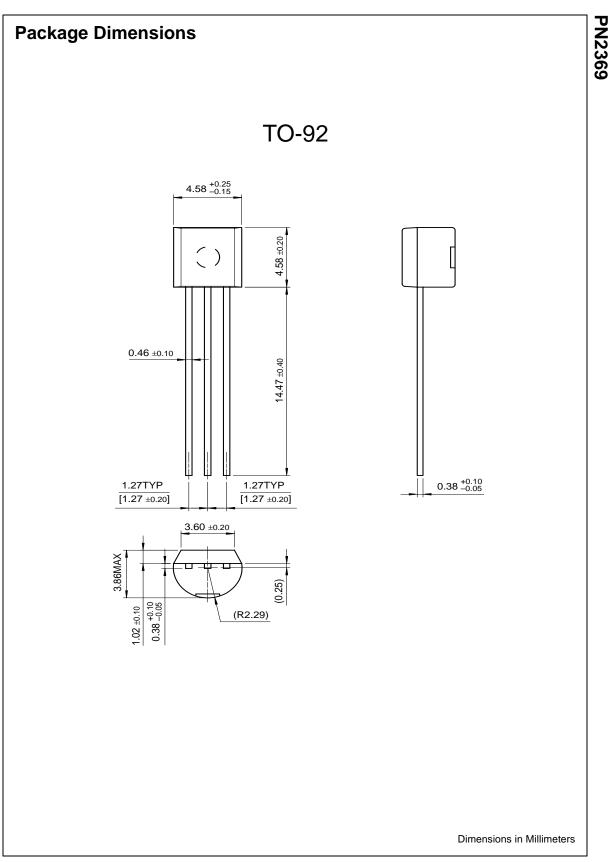
Fairchild Semiconductor PN2369

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

MICO	NDUCTOR®					
		PN2369				
his device urrents of	itching Transistor e is designed for high speed saturated sw 10mA to 100mA. om process 21.	1	mitter 2. Ba	TO-92	bliector	
osolut	e Maximum Ratings* T _a =25°	² C unless otherwise noted				
Symbol	l Paramo	meter F			Units	
CEO	Collector-Emitter Voltage		15		V	
СВО	Collector-Base Voltage		40		V	
BO	Emitter-Base Voltage		4.5		V	
		inuous	200		mA	
, T _{STG}	Operating and Storage Junction T limiting values above which the serviceability of any se		-55 ~ 150		°C	
	re based on a maximum junction temperature of 150 o ady limits. The factory should be consulted on applicat					
hese are stea		ions involving pulsed or low duty cycle operations	Min.	Max.	Units	
hese are stea	ady limits. The factory should be consulted on applicat al Characteristics T _a =25°C uni Parameter	ions involving pulsed or low duty cycle operations less otherwise noted		Max.	Units	
hese are stea ectrica ymbol	ady limits. The factory should be consulted on applicat al Characteristics T _a =25°C uni Parameter	ions involving pulsed or low duty cycle operations less otherwise noted Test Condition $I_{C} = 10$ mA, $I_{B} = 0$		Max.	Units V	
hese are stea ectrica ymbol	ady limits. The factory should be consulted on applicat al Characteristics T _a =25°C uni Parameter teristics	ions involving pulsed or low duty cycle operations less otherwise noted Test Condition	Min.	Max.		
hese are stea ectrica ymbol if Charact BR)CEO BR)CES BR)CBO	ady limits. The factory should be consulted on applicat AI Characteristics T _a =25°C uni Parameter teristics Collector-Emitter Breakdown Voltage * Collector-Emitter Breakdown Voltage Collector-Base Breakdown Voltage	ions involving pulsed or low duty cycle operations less otherwise noted $\hline I_{C} = 10 \text{mA}, I_{B} = 0$ $I_{C} = 10 \mu\text{A}, V_{BE} = 0$ $I_{C} = 10 \mu\text{A}, I_{E} = 0$	Min. 15 40 40	Max.	V V V	
hese are stea ectrica ymbol if Charact BR)CEO BR)CES	ady limits. The factory should be consulted on applicat Al Characteristics T _a =25°C unl Parameter teristics Collector-Emitter Breakdown Voltage * Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage	$\label{eq:loss} \begin{tabular}{ c c c c c } \hline less otherwise noted \\ \hline \hline Test Condition \\ \hline \hline I_C = 10mA, I_B = 0 \\ \hline I_C = 10\muA, V_{BE} = 0 \\ \hline I_C = 10\muA, I_E = 0 \\ \hline I_E = 10\muA, I_C = 0 \\ \hline \end{array}$	Min. 15 40		V V V V	
hese are stea ectrica ymbol if Charact BR)CEO BR)CES BR)CBO	ady limits. The factory should be consulted on applicat AI Characteristics T _a =25°C uni Parameter teristics Collector-Emitter Breakdown Voltage * Collector-Emitter Breakdown Voltage Collector-Base Breakdown Voltage	ions involving pulsed or low duty cycle operations less otherwise noted $\hline I_{C} = 10 \text{mA}, I_{B} = 0$ $I_{C} = 10 \mu\text{A}, V_{BE} = 0$ $I_{C} = 10 \mu\text{A}, I_{E} = 0$	Min. 15 40 40	Max.	V V V	
hese are stea ectrica ymbol ff Charact BR)CEO BR)CES BR)CBO BR)EBO	ady limits. The factory should be consulted on applicat Al Characteristics T _a =25°C uni Parameter teristics Collector-Emitter Breakdown Voltage * Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cutoff Current	$\label{eq:loss} \begin{tabular}{ c c c c c } \hline less otherwise noted \\ \hline \hline Test Condition \\ \hline \hline I_C = 10mA, I_B = 0 \\ \hline I_C = 10\muA, V_{BE} = 0 \\ \hline I_C = 10\muA, I_E = 0 \\ \hline I_E = 10\muA, I_C = 0 \\ \hline V_{CB} = 20V, I_E = 0 \\ \hline \end{tabular}$	Min. 15 40 40	0.4	V V V V μΑ	
hese are stea ectrica ymbol if Charact BR)CEO BR)CES BR)CBO BR)EBO BO BO	ady limits. The factory should be consulted on applicat Al Characteristics T _a =25°C uni Parameter teristics Collector-Emitter Breakdown Voltage * Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cutoff Current	ions involving pulsed or low duty cycle operations less otherwise noted $I_{C} = 10mA, I_{B} = 0$ $I_{C} = 10\muA, V_{BE} = 0$ $I_{C} = 10\muA, I_{E} = 0$ $I_{E} = 10\muA, I_{C} = 0$ $V_{CB} = 20V, I_{E} = 0$ $V_{CB} = 20V, I_{E} = 0, T_{a} = 125^{\circ}C$ $I_{C} = 10mA, V_{CE} = 1.0V$	Min. 15 40 40	0.4	V V V V μΑ	
hese are stea ectrica ymbol ff Charact BR)CEO BR)CES BR)CBO BR)EBO BO n Charact	ady limits. The factory should be consulted on applicat Al Characteristics T _a =25°C uni Parameter teristics Collector-Emitter Breakdown Voltage * Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cutoff Current teristics	ions involving pulsed or low duty cycle operations less otherwise noted $I_{C} = 10mA, I_{B} = 0$ $I_{C} = 10\muA, V_{BE} = 0$ $I_{C} = 10\muA, I_{E} = 0$ $I_{E} = 10\muA, I_{C} = 0$ $V_{CB} = 20V, I_{E} = 0$ $V_{CB} = 20V, I_{E} = 0, T_{a} = 125^{\circ}C$	Min. 15 40 40 4.5 40	0.4 30	V V V V μΑ	
hese are stea ectrica ymbol if Charact BR)CEO BR)CES BR)CBO BR)EBO BO n Charact E CE(sat) BE(sat)	ady limits. The factory should be consulted on applicat Al Characteristics T _a =25°C uni Parameter teristics Collector-Emitter Breakdown Voltage * Collector-Base Breakdown Voltage Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cutoff Current teristics DC Current Gain * Collector-Emitter Saturation Voltage * Base-Emitter Saturation Voltage	ions involving pulsed or low duty cycle operations less otherwise noted $I_{C} = 10mA, I_{B} = 0$ $I_{C} = 10\muA, V_{BE} = 0$ $I_{C} = 10\muA, I_{E} = 0$ $I_{E} = 10\muA, I_{C} = 0$ $V_{CB} = 20V, I_{E} = 0$ $V_{CB} = 20V, I_{E} = 0, T_{a} = 125^{\circ}C$ $I_{C} = 10mA, V_{CE} = 1.0V$ $I_{C} = 100mA, V_{CE} = 2.0V$	Min. 15 40 40 4.5 40	0.4 30	V V V V μΑ μΑ	
hese are stea ectrica ymbol if Charact BR)CEO BR)CES BR)CBO BR)EBO BO n Charact CE(sat) BE(sat) mall Signa	ady limits. The factory should be consulted on applicat Parameter teristics Collector-Emitter Breakdown Voltage * Collector-Emitter Breakdown Voltage Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cutoff Current teristics DC Current Gain * Collector-Emitter Saturation Voltage * Base-Emitter Saturation Voltage al Characteristics	ions involving pulsed or low duty cycle operations less otherwise noted $I_{C} = 10mA, I_{B} = 0$ $I_{C} = 10\muA, V_{BE} = 0$ $I_{C} = 10\muA, I_{E} = 0$ $I_{E} = 10\muA, I_{C} = 0$ $V_{CB} = 20V, I_{E} = 0, T_{a} = 125^{\circ}C$ $I_{C} = 10mA, V_{CE} = 1.0V$ $I_{C} = 10mA, I_{B} = 1.0mA$ $I_{C} = 10mA, I_{B} = 1.0mA$	Min. 15 40 40 4.5 40 20	0.4 30 120 0.25	V V V V μΑ μΑ	
hese are stea ectrica ymbol if Charact BR)CEO BR)CES BR)CBO BR)EBO BRO BR)EBO BRO BRO BRO BRO BRO BRO BRO B	ady limits. The factory should be consulted on applicat Parameter teristics Collector-Emitter Breakdown Voltage * Collector-Emitter Breakdown Voltage Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cutoff Current teristics DC Current Gain * Collector-Emitter Saturation Voltage * Base-Emitter Saturation Voltage al Characteristics Output Capacitance	$\label{eq:constraint} \begin{array}{c} \mbox{ions involving pulsed or low duty cycle operations} \\ \hline \mbox{less otherwise noted} \\ \hline \mbox{Test Condition} \\ \hline \mbox{I}_{C} = 10 \mu A, \ \mbox{I}_{B} = 0 \\ \hline \mbox{I}_{C} = 10 \mu A, \ \mbox{I}_{E} = 0 \\ \hline \mbox{I}_{C} = 10 \mu A, \ \mbox{I}_{E} = 0 \\ \hline \mbox{I}_{C} = 10 \mu A, \ \mbox{I}_{C} = 0 \\ \hline \mbox{V}_{CB} = 20 V, \ \mbox{I}_{E} = 0, \ \mbox{T}_{a} = 125^{\circ} C \\ \hline \mbox{I}_{C} = 10 m A, \ \mbox{V}_{CE} = 1.0 V \\ \hline \mbox{I}_{C} = 10 m A, \ \mbox{V}_{CE} = 2.0 V \\ \hline \mbox{I}_{C} = 10 m A, \ \mbox{I}_{B} = 1.0 m A \\ \hline \mbox{I}_{C} = 10 m A, \ \mbox{I}_{B} = 1.0 m A \\ \hline \mbox{I}_{C} = 5.0 V, \ \mbox{I}_{E} = 0, \ \mbox{f} = 1.0 M Hz \\ \hline \end{array}$	Min. 15 40 40 4.5 40 20	0.4 30 120 0.25	V V V V μΑ μΑ	
hese are stea ectrica ymbol if Charact BR)CEO BR)CES BR)CBO BR)EBO BO n Charact CE(sat) BE(sat) mall Signa	ady limits. The factory should be consulted on applicat Parameter teristics Collector-Emitter Breakdown Voltage * Collector-Emitter Breakdown Voltage Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cutoff Current teristics DC Current Gain * Collector-Emitter Saturation Voltage * Base-Emitter Saturation Voltage al Characteristics Output Capacitance Input Capacitance	$\label{eq:constraint} \begin{array}{c} \mbox{involving pulsed or low duty cycle operations} \\ \hline \mbox{less otherwise noted} \\ \hline \mbox{Test Condition} \\ \hline \mbox{I}_C = 10 \mu A, \ \mbox{I}_B = 0 \\ \hline \mbox{I}_C = 10 \mu A, \ \mbox{I}_E = 0 \\ \hline \mbox{I}_C = 10 \mu A, \ \mbox{I}_E = 0 \\ \hline \mbox{I}_C = 10 \mu A, \ \mbox{I}_C = 0 \\ \hline \mbox{V}_{CB} = 20 V, \ \mbox{I}_E = 0, \ \mbox{T}_a = 125^\circ C \\ \hline \mbox{V}_{CB} = 20 V, \ \mbox{I}_E = 0, \ \mbox{T}_a = 125^\circ C \\ \hline \mbox{I}_C = 10 m A, \ \mbox{V}_{CE} = 2.0 V \\ \hline \mbox{I}_C = 10 m A, \ \mbox{I}_B = 1.0 m A \\ \hline \mbox{I}_C = 10 m A, \ \mbox{I}_B = 1.0 m A \\ \hline \mbox{I}_C = 5.0 V, \ \mbox{I}_E = 0, \ \mbox{f} = 1.0 M Hz \\ \hline \mbox{V}_{CB} = 5.0 V, \ \mbox{I}_C = 0, \ \mbox{f} = 1.0 M Hz \\ \hline \mbox{V}_{EB} = 0.5 V, \ \mbox{I}_C = 0, \ \mbox{f} = 1.0 M Hz \\ \hline \end{tabular}$	Min. 15 40 40 4.5 40 20 0.7	0.4 30 120 0.25 0.85	V V V V μΑ μΑ V V	
esee are stea PCtriCa ymbol f Charact BR)CEO BR)CES BR)CES BR)CBO BR)CES BR)CBO BR)EBO 30 D Charact E E(sat) SE(sat) mall Signa abo po	ady limits. The factory should be consulted on applicat Parameter teristics Collector-Emitter Breakdown Voltage * Collector-Emitter Breakdown Voltage Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cutoff Current teristics DC Current Gain * Collector-Emitter Saturation Voltage * Base-Emitter Saturation Voltage al Characteristics Output Capacitance	$\label{eq:constraint} \begin{array}{c} \mbox{ions involving pulsed or low duty cycle operations} \\ \hline \mbox{less otherwise noted} \\ \hline \mbox{Test Condition} \\ \hline \mbox{I}_{C} = 10 \mu A, \ \mbox{I}_{B} = 0 \\ \hline \mbox{I}_{C} = 10 \mu A, \ \mbox{I}_{E} = 0 \\ \hline \mbox{I}_{C} = 10 \mu A, \ \mbox{I}_{E} = 0 \\ \hline \mbox{I}_{C} = 10 \mu A, \ \mbox{I}_{C} = 0 \\ \hline \mbox{V}_{CB} = 20 V, \ \mbox{I}_{E} = 0, \ \mbox{T}_{a} = 125^{\circ} C \\ \hline \mbox{I}_{C} = 10 m A, \ \mbox{V}_{CE} = 1.0 V \\ \hline \mbox{I}_{C} = 10 m A, \ \mbox{V}_{CE} = 2.0 V \\ \hline \mbox{I}_{C} = 10 m A, \ \mbox{I}_{B} = 1.0 m A \\ \hline \mbox{I}_{C} = 10 m A, \ \mbox{I}_{B} = 1.0 m A \\ \hline \mbox{I}_{C} = 5.0 V, \ \mbox{I}_{E} = 0, \ \mbox{f} = 1.0 M Hz \\ \hline \end{array}$	Min. 15 40 40 4.5 40 20 0.7	0.4 30 120 0.25 0.85 4.0	V V V V μA μA V V PF	
ectrica ymbol f Charact BR)CEO BR)CES BR)CBO BR)CBO BR)EBO BO D CE E E E E(sat) BE(sat) mall Sign bo	ady limits. The factory should be consulted on applicat Parameter teristics Collector-Emitter Breakdown Voltage * Collector-Emitter Breakdown Voltage Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cutoff Current teristics DC Current Gain * Collector-Emitter Saturation Voltage * Base-Emitter Saturation Voltage al Characteristics Output Capacitance Input Capacitance	$\label{eq:constraint} \hline $V_{CB} = 5.0V, \ I_{E} = 0, \ T_{est} \ Condition \\ \hline $V_{CB} = 5.0V, \ I_{E} = 0, \ T_{a} = 1.0MHz \\ \hline $V_{CB} = 5.0V, \ I_{E} = 0, \ T_{a} = 1.0MHz \\ \hline $V_{CB} = 5.0V, \ I_{E} = 0, \ T_{a} = 1.0MHz \\ \hline $V_{CB} = 5.0V, \ I_{E} = 0, \ T_{a} = 1.0MHz \\ \hline $V_{CB} = 5.0V, \ I_{E} = 0, \ T_{a} = 1.0MHz \\ \hline $V_{CB} = 5.0V, \ I_{C} = 0, \ T_{a} = 1.0MHz \\ \hline $V_{CB} = 5.0V, \ T_{C} = 0, \ T_{a} = 1.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 1.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 1.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 1.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 1.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 1.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 1.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 0.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 0.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 0.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 0.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 0.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 0.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 0.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 0.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 0.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{C} = 0, \ T_{a} = 0.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{a} = 0.0V, \ T_{a} = 0.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{a} = 0.0MHz \\ \hline $V_{CB} = 0.5V, \ T_{a} = 0.0MHz \\ \hline $V_{CB} = 0.0MHz$	Min. 15 40 40 4.5 40 20 0.7	0.4 30 120 0.25 0.85 4.0	V V V V μA μA V V PF	
hese are stea eCtriCa ymbol ff Charact BR)CEO BR)CES BR)CBO BR)CBO BR)EBO BO n Charact E CE(sat) BE(sat) mall Signa bo	ady limits. The factory should be consulted on applicat Parameter teristics Collector-Emitter Breakdown Voltage * Collector-Emitter Breakdown Voltage Collector-Base Breakdown Voltage Collector-Base Breakdown Voltage Collector Cutoff Current teristics DC Current Gain * Collector-Emitter Saturation Voltage * Base-Emitter Saturation Voltage * Base-Emitter Saturation Voltage al Characteristics Output Capacitance Input Capacitance Small -Signal Current Gain	$\label{eq:constraint} \hline $V_{CB} = 0.5V, \ I_C = 10mA, \ I_B = 0$ \\ \hline $I_C = 10\muA, \ V_{BE} = 0$ \\ \hline $I_C = 10\muA, \ V_{BE} = 0$ \\ \hline $I_C = 10\muA, \ I_E = 0$ \\ \hline $I_C = 10\muA, \ I_E = 0$ \\ \hline $V_{CB} = 20V, \ I_E = 0$ \\ \hline $V_{CB} = 20V, \ I_E = 0$ \\ \hline $V_{CB} = 20V, \ I_E = 0$ \\ \hline $V_{CB} = 20V, \ I_E = 0$ \\ \hline $V_{CB} = 20V, \ I_E = 0$ \\ \hline $V_{CB} = 20V, \ I_E = 0$ \\ \hline $V_{CB} = 20V, \ I_E = 0$ \\ \hline $V_{CB} = 20V, \ I_E = 0$ \\ \hline $V_{CB} = 20V, \ I_E = 0$ \\ \hline $V_{CB} = 2.0V$ \\ \hline $I_C = 10mA, \ V_{CE} = 2.0V$ \\ \hline $I_C = 10mA, \ I_B = 1.0mA$ \\ \hline $V_{CB} = 5.0V, \ I_E = 0$ \\ \hline $F_{CB} = 0.5V, \ I_C = 0$ \\ \hline $f = 1.0MHz$ \\ \hline $V_{CB} = 2.0k\Omega$ \\ \hline $I_C = 10mA, \ V_{CE} = 10V, \ R_G = 2.0k\Omega$ \\ \hline $f = 100MHz$ \\ \hline $I_{B1} = I_{B2} = I_C = 10mA$ \\ \hline $V_{CB} = 100mA$ \\ \hline$	Min. 15 40 40 4.5 40 20 0.7 5.0	0.4 30 120 0.25 0.85 4.0 5.0	V V V V μA μA V V PF	
hese are stea eCtriCa ymbol ff Charact BR)CEO BR)CES BR)CBO BR)CBO BR)EBO BO n Charact E CE(sat) BE(sat) mall Signa bo	ady limits. The factory should be consulted on applicat Parameter teristics Collector-Emitter Breakdown Voltage * Collector-Emitter Breakdown Voltage Collector-Base Breakdown Voltage Collector-Base Breakdown Voltage Collector Cutoff Current teristics DC Current Gain * Collector-Emitter Saturation Voltage * Base-Emitter Saturation Voltage * Base-Emitter Saturation Voltage al Characteristics Output Capacitance Input Capacitance Small -Signal Current Gain	$\label{eq:constraint} \hline $V_{CB} = 5.0V, \ I_{C} = 10 \ MA, \ I_{B} = 0 $$ V_{CB} = 2.0V, \ I_{E} = 0 $$ V_{CB} = 2.0V, \ I_{E} = 0, \ T_{a} = 125^{\circ}C $$ V_{CB} = 20V, \ I_{E} = 0, \ T_{a} = 125^{\circ}C $$ V_{CB} = 2.0V, \ I_{E} = 0, \ T_{B} = 1.0MA $$ V_{CE} = 2.0V $$ I_{C} = 100 \ MA, \ V_{CE} = 2.0V $$ I_{C} = 100 \ MA, \ I_{B} = 1.0MA $$ I_{C} = 10 \ MA, \ I_{B} = 1.0MA $$ I_{C} = 10 \ MA, \ I_{B} = 1.0MA $$ I_{C} = 10 \ MA, \ I_{C} = 0, \ f = 1.0MHz $$ V_{CB} = 2.0V, \ I_{C} = 0, \ f = 1.0MHz $$ V_{CB} = 2.0V, \ I_{C} = 100 \ MA, \ V_{CE} = 10V, \ R_{G} = 2.0K\Omega $$ f = 100 \ MHz $$ V_{CB} = 0.0V, \ R_{C} = 0, \ F = 100 \ MHz $$ V_{CB} = 0.0V, \ R_{C} = 0, \ F = 100 \ MHz $$ V_{CB} = 0.0V, \ R_{C} = 0.0V, \$	Min. 15 40 40 4.5 40 20 0.7 5.0	0.4 30 120 0.25 0.85 4.0 5.0	V V V V μA μA V V PF pF	

©2004 Fairchild Semiconductor Corporation

* Pulse Test: Pulse Width $\leq 300 \mu s, \, \text{Duty Cycle} \leq 2.0\%$


Rev. A, January 2004

Symbol	Parameter	Max.	Units
D	Total Device Dissipation Derate above 25°C	350 2.8	mW mW/°C
R ^{ejC}	Thermal Resistance, Junction to Case	125	°C/W
030 R _{θJA}	Thermal Resistance, Junction to Ambient	357	°C/W

PN2369

©2004 Fairchild Semiconductor Corporation

Rev. A, January 2004

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	LittleFET™	Power247™	SuperSOT™-3
ActiveArray™	FAST [®]	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
Bottomless™	FASTr™	MicroFET™	QFET [®]	SuperSOT™-8
CoolFET™	FRFET™	MicroPak™	QS™	SyncFET™
CROSSVOLT™	GlobalOptoisolator™	MICROWIRE™	QT Optoelectronics [™]	TinyLogic [®]
DOME™	GTO™	MSX™	Quiet Series™	TINYOPTO™
EcoSPARK™	HiSeC™	MSXPro™	RapidConfigure™	TruTranslation™
E ² CMOS™	I ² C [™]	OCX™	RapidConnect™	UHC™
EnSigna™	ImpliedDisconnect™	OCXPro™	SILENT SWITCHER®	UltraFET [®]
FACT™	ISOPLANAR™	OPTOLOGIC [®]	SMART START™	VCX™
Across the board.	Around the world. [™]	OPTOPLANAR™	SPM™	
The Power Franc	hise™	PACMAN™	Stealth™	
Programmable Ac	tive Droop™	POP™	SuperFET™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.