

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor MM74C908N

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

FAIRCHILD

SEMICONDUCTOR

MM74C908 Dual CMOS 30-Volt Relay Driver

General Description

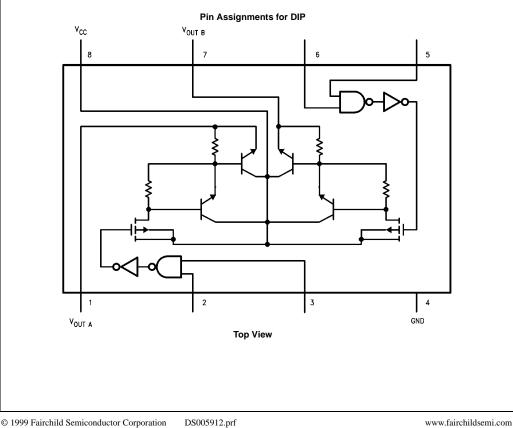
The MM74C908 is a general purpose dual high voltage driver capable of sourcing a minimum of 250 mA at V_{OUT} = V_{CC} – 3V, and T_J = 65°C.

The MM74C908 consists of two CMOS NAND gates driving an emitter follower Darlington output to achieve high current drive and high voltage capabilities. In the "OFF" state the outputs can withstand a maximum of –30V across the device. These CMOS drivers are useful in interfacing normal CMOS voltage levels to driving relays, regulators, lamps, etc.

October 1987

Revised January 1999

MM74C908 Dual CMOS 30-Volt Relay Driver


Features

- Wide supply voltage range: 3V to 18V
- High noise immunity: 0.45 V_{CC} (typ.)
- Low output "ON" resistance: 8Ω (typ.)
- High voltage: -30V
- High current: 250 mA

Ordering Code:

Order Number	Package Number	Package Description
MM74C908N	N08E	8-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited Datasheet of MM74C908N - IC DRIVER RELAY DUAL 30V 8-DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Absolute Maximum Ratings(Note 1)

Voltage at any Input Pin	–0.3V to V _{CC} +0.3V
Voltage at any Output Pin	32V
Operating Temperature Range	-40°C to +85°C
Operating V _{CC} Range	4V to 18V
Absolute Maximum V _{CC}	19V
ISOURCE	500 mA
Storage Temperature	+150°C
Range (T _S)	$-65^{\circ}C$ to $+150^{\circ}C$

Lead Temperature (T_L) (Soldering, 10 seconds) Power Dissipation (P_D)

Refer to Maximum Power **Dissipation vs Ambient** Temperature Graph

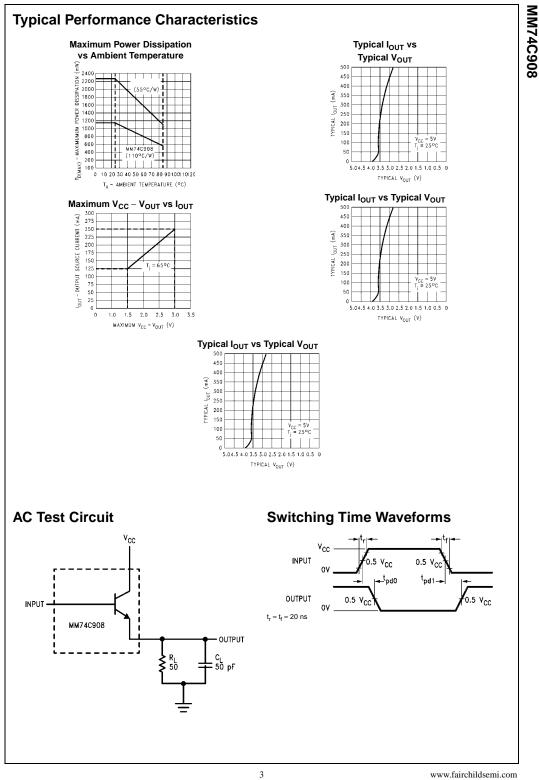
260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Tempera-ture Range" they are not meant to imply that the devices should be oper-ated at these limits. The Electrical Characteristics table provides conditions for actual device operation.

DC Electrical Characteristics

Min/Max limits apply across temperature range, unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	смоз					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			V
		$V_{CC} = 10V$	8.0			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	V
		$V_{CC} = 10V$			2.0	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
I _{CC}	Supply Current	V _{CC} = 15V, Outputs Open Circuit		0.05	15	μΑ
	Output "OFF" Voltage	$V_{IN} = V_{CC}, I_{OUT} = -200 \ \mu A$		-30		V
CMOS/LPT	TL INTERFACE	·				
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 4.75V$	V _{CC} – 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 4.75V$			0.8	V
OUTPUT D	RIVE					•
V _{OUT}	Output Voltage	$I_{OUT} = -300 \text{ mA}, V_{CC} \ge 5V, T_J = 25^{\circ}C$	V _{CC} -2.7	V _{CC} -1.8		V
		$I_{OUT} = -250$ mA, $V_{CC} \ge 5V$, $T_J = 65^{\circ}C$	V _{CC} -3.0	V _{CC} -1.9		V
		$I_{OUT} = -175 \text{ mA}, V_{CC} \ge 5V, T_J = 150^{\circ}\text{C}$	V _{CC} -3.15	V _{CC} -2.0		V
R _{ON}	Output Resistance	$I_{OUT} = -300 \text{ mA}, V_{CC} \ge 5V, T_J = 25^{\circ}C$		6.0	9.0	Ω
		$I_{OUT} = -250$ mA, $V_{CC} \ge 5V$, $T_J = 65^{\circ}C$		7.5	12	Ω
		$I_{OUT} = -175 \text{ mA}, V_{CC} \ge 5 \text{V}, T_J = 150^\circ \text{C}$		10	18	Ω
	Output Resistance			0.55	0.80	%/°C
	Coefficient					
θ_{JA}	Thermal Resistance	(Note 2)		100	110	°C/W
	MM74C908	(Note 2)		45	55	°C/W


AC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd1}	Propagation Delay	$V_{CC} = 5V, R_L = 50\Omega,$		150	300	ns
	to a Logical "1"	$C_L = 50 \text{ pF}, \text{T}_A = 25^{\circ}\text{C}$				
		$V_{CC} = 10V$, $R_L = 50\Omega$,		65	120	ns
		$C_L = 50 \text{ pF}, \text{T}_A = 25^{\circ}\text{C}$				
t _{pd0}	Propagation Delay	$V_{CC} = 5V, R_L = 50\Omega,$		2.0	10	μs
	to a Logic "0"	$C_L = 50 \text{ pF}, \text{T}_A = 25^{\circ}\text{C}$				
		$V_{CC} = 10V, R_L = 50\Omega,$		4.0	20	μs
		$C_L = 50 \text{ pF}, \text{T}_A = 25^{\circ}\text{C}$				
CIN	Input Capacitance	(Note 4)		5.0		pF

Note 3: AC Parameters are guaranteed by DC correlated testing. Note 4: Capacitance is guaranteed by periodic testing.

www.fairchildsemi.com

3

Power Considerations

Calculating Output "ON" Resistance ($R_L > 18\Omega$)

The output "ON" resistance, $\mathsf{R}_{ON},$ is a function of the junction temperature, $\mathsf{T}_J,$ and is given by:

 $R_{ON} = 9 (T_J - 25) (0.008) + 9$: (1)

and T_J is given by:

 $T_{J} = T_{A} + P_{DAV} \theta_{JA},: \quad (2)$

where T_A = ambient temperature, θ_{JA} = thermal resistance, and P_{DAV} is the average power dissipated within the device. P_{DAV} consists of normal CMOS power terms (due to leakage currents, internal capacitance, switching, etc.) which are insignificant when compared to the power dissipated in the outputs. Thus, the output power term defines the allowable limits of operation and includes both outputs, A and B. P_D is given by:

 $P_{D} = I_{OA}^{2}R_{ON} + I_{OB}^{2}R_{ON}, \quad (3)$

where \mathbf{I}_{O} is the output current, given by:

$$I_{O} = \frac{V_{CC} - V_{L}}{R_{ON} + R_{L}}$$

(4)

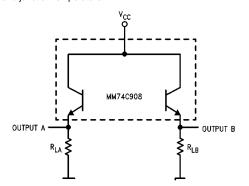
 V_{L} is the load voltage. The average power dissipation, P_{DAV} , is a function of the duty cycle:

 $P_{DAV} = I_{OA}^2 R_{ON} (Duty Cycle_A) + (5)$

I_{OB}² R_{ON}(Duty Cycle_B)

where the duty cycle is the % time in the current source state. Substituting equations (1) and (5) into (2) yields:

 $T_J = T_A + \theta_{JA} [9 (T_J - 25) (0.008) + 9]:$ (6a) $[I_{OA}^2 (Duty Cycle_A) + I_{OB}^2 (Duty Cycle_B)]$


simplifying:

 $\mathsf{T}_{\mathsf{J}} = \frac{\mathsf{T}_{\mathsf{A}} + 7.2 \; \theta_{\mathsf{J}\mathsf{A}} \left[\mathsf{I}_{\mathsf{O}\mathsf{A}^2} \left(\mathsf{Duty} \; \mathsf{Cycle}_{\mathsf{A}}\right) + \mathsf{I}_{\mathsf{O}\mathsf{B}^2} \left(\mathsf{Duty} \; \mathsf{Cycle}_{\mathsf{B}}\right)\right]}{1 - 0.072 \; \theta_{\mathsf{J}\mathsf{A}} \left[\mathsf{I}_{\mathsf{O}\mathsf{A}^2} \left(\mathsf{Duty} \; \mathsf{Cycle}_{\mathsf{A}}\right) + \mathsf{I}_{\mathsf{O}\mathsf{B}^2} \left(\mathsf{Duty} \; \mathsf{Cycle}_{\mathsf{B}}\right)\right]}$

Applications

(See AN-177 for applications)

Equations (1), (4), and (6b) can be used in an iterative method to determine the output current, output resistance and junction temperature.

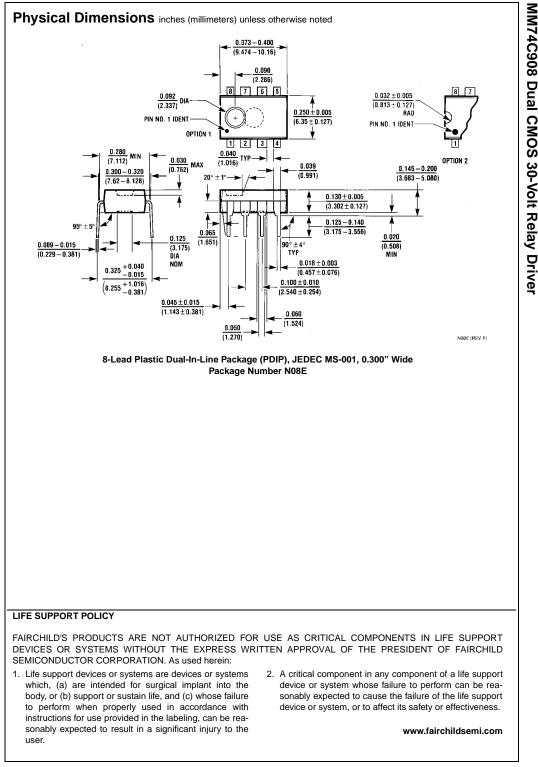
 $\label{eq:VL} \begin{array}{l} v_L & v_L \\ For example, let V_{CC} = 15V, R_{LA} = 100\Omega, R_{LB} = 100\Omega, \\ V_L = 0V, T_A = 25^\circ C, \ \theta_{JA} = 110^\circ C/W, \ Duty \ Cycle_A = 50\%, \\ Duty \ Cycle_B = 75\%. \end{array}$

Assuming $R_{ON} = 11\Omega$, then:

$$I_{OA} = \frac{V_{CC} - V_L}{R_{ON} + R_{LA}} = \frac{15}{11 + 100} = 135.1 \text{ mA},$$
$$I_{OB} = \frac{V_{CC} - V_L}{R_{ON} + R_{LB}} = 135.1 \text{ mA}$$

and

and


 $\mathsf{T}_{\mathsf{J}} = \frac{\mathsf{T}_{\mathsf{A}} + 7.2 \ \theta_{\mathsf{J}\mathsf{A}} \left[\mathsf{I}_{\mathsf{O}\mathsf{A}^2}\left(\mathsf{Duty} \ \mathsf{Cycle}_{\mathsf{A}}\right) + \mathsf{I}_{\mathsf{O}\mathsf{B}^2}\left(\mathsf{Duty} \ \mathsf{Cycle}_{\mathsf{B}}\right)\right]}{1 - 0.072 \ \theta_{\mathsf{J}\mathsf{A}} \left[\mathsf{I}_{\mathsf{O}\mathsf{A}^2}\left(\mathsf{Duty} \ \mathsf{Cycle}_{\mathsf{A}}\right) + \mathsf{I}_{\mathsf{O}\mathsf{B}^2}\left(\mathsf{Duty} \ \mathsf{Cycle}_{\mathsf{B}}\right)\right]}$

$$\begin{split} T_J &= \frac{25 + (7.2) \, (110) \, [(0.1351)^2 \, (0.5) + (0.1351)^2 \, (0.75)]}{1 - (0.072) \, (110) \, [(0.1351)^2 \, (0.5) + (0.1351)^2 \, (0.75)]} \\ T_J &= 52.6^\circ C \\ R_{ON} &= 9 \, (T_J - 25) \, (0.008) + 9 \end{split}$$

$$= 9(52.6 - 25) (0.008) + 9 = 11\Omega$$

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.