

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Diodes Incorporated DMHC3025LSD-13

For any questions, you can email us directly: sales@integrated-circuit.com

Datasheet of DMHC3025LSD-13 - MOSFET 2N/2P-CH 30V 8SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

DMHC3025LSD

30V COMPLEMENTARY ENHANCEMENT MODE MOSFET H-BRIDGE

Product Summary

Device	V _{(BR)DSS}	R _{DS(ON)} max	I _D max T _A = +25°C
NI Obsessed	00)/	$25m\Omega$ @ V_{GS} = $10V$	6.0
N-Channel	el 30V	$40m\Omega$ @ $V_{GS} = 4.5V$	4.6
D. Oharara	001/	$50m\Omega$ @ $V_{GS} = -10V$	-4.2
P-Channel -30V		80mΩ @ V _{GS} = -4.5V	-3.2

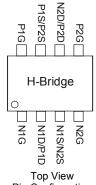
Description

This new generation complementary MOSFET H-Bridge features low on-resistance achievable with low gate drive.

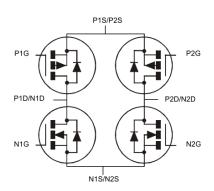
Applications

- DC Motor control
- DC-AC Inverters

Features


- 2 x N + 2 x P channels in a SOIC package
- Low On-Resistance
- Low Input Capacitance
- Fast Switching Speed
- Totally Lead-Free & Fully RoHS compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability

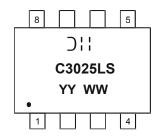
Mechanical Data


- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminal Connections Indicator: See diagram
- Terminals: Finish Matte Tin annealed over Copper leadframe. Solderable per MIL-STD-202, Method 208 (3)
- Weight: 0.008 grams (approximate)

Top View

Pin Configuration

Internal Schematic


Ordering Information (Note 4)

Part Number	Case	Packaging
DMHC3025LSD-13	SO-8	2500/Tape & Reel

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at http://www.diodes.com/products/packages.html.

Marking Information

⊃¦¦ = Manufacturer's Marking C3025LS = Product Type Marking Code YYWW = Date Code Marking YY = Year (ex: 09 = 2009) WW = Week (01 - 53)

Datasheet of DMHC3025LSD-13 - MOSFET 2N/2P-CH 30V 8SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

DMHC3025LSD

Thermal Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic		Symbol	Value	Units	
Total Power Dissipation (Note 5)		P_{D}	1.5	W	
Thermal Resistance, Junction to Ambient (Note 5)	Steady State	D	83		
Thermal Resistance, Junction to Ambient (Note 5)	t < 10s	$R_{\theta JA}$	50	°C/W	
Thermal Resistance, Junction to Case		$R_{ heta JC}$	14.5		
Operating and Storage Temperature Range		$T_{J_i}T_{STG}$	-55 to 150	°C	

Maximum Ratings N-CHANNEL (@TA = +25°C, unless otherwise specified.)

Characteristic			Symbol	Value	Units
Drain-Source Voltage			V _{DSS}	30	V
Gate-Source Voltage			V _{GSS}	±20	V
Continuous Drain Current (Note 5) // - 40 //	Steady State	T _A = +25°C T _A = +70°C	I _D	6.0 4.8	А
Continuous Drain Current (Note 5) V _{GS} = 10V	t < 10s	T _A = +25°C T _A = +70°C	I _D	7.8 6.1	Α
Continuous Drain Current (Note 5) V 4 5V	Steady State	$T_A = +25^{\circ}C$ $T_A = +70^{\circ}C$	I _D	4.6 3.6	Α
Continuous Drain Current (Note 5) V _{GS} = 4.5V	t < 10s	$T_A = +25^{\circ}C$ $T_A = +70^{\circ}C$	I _D	6.1 4.8	Α
Maximum Continuous Body Diode Forward Current (Note 5)			Is	2.5	Α
Pulsed Drain Current (10µs pulse, duty cycle = 1%)			I _{DM}	60	Α

Characteristic			Symbol	Value	Units
Drain-Source Voltage			V_{DSS}	30	V
Gate-Source Voltage			V_{GSS}	±20	V
		$T_A = +25^{\circ}C$ $T_A = +70^{\circ}C$	I _D	-4.2 -3.3	А
Continuous Drain Current (Note 5) V _{GS} = -10V	t < 10s	T _A = +25°C T _A = +70°C	I _D	-5.4 -4.3	А
Continuous Drain Current (Note 5) // - 45/	Steady State	T _A = +25°C T _A = +70°C	I _D	-3.2 -2.5	А
Continuous Drain Current (Note 5) V _{GS} = -4.5V	t < 10s	$T_A = +25^{\circ}C$ $T_A = +70^{\circ}C$	I _D	-4.3 -3.3	А
Maximum Continuous Body Diode Forward Current (Note 5)			I _S	-2.5	Α
Pulsed Drain Current (10µs pulse, duty cycle = 1%)			I _{DM}	-30	Α

Note: 5. Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

Datasheet of DMHC3025LSD-13 - MOSFET 2N/2P-CH 30V 8SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

DMHC3025LSD

Electrical Characteristics N-CHANNEL (@TA = +25°C, unless otherwise specified.)

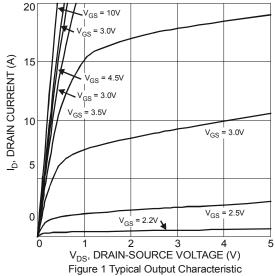
Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 6)							
Drain-Source Breakdown Voltage	BV _{DSS}	30	_	_	V	$V_{GS} = 0V, I_D = 250\mu A$	
Zero Gate Voltage Drain Current	I _{DSS}	_	_	0.5	μA	V _{DS} = 30V, V _{GS} = 0V	
Gate-Source Leakage	I _{GSS}		_	±1	μA	$V_{GS} = \pm 20V, V_{DS} = 0V$	
ON CHARACTERISTICS (Note 6)							
Gate Threshold Voltage	V _{GS(th)}	1		2	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	
Static Drain-Source On-Resistance			19	25	mΩ	V _{GS} = 10V, I _D = 5A	
Static Drain-Source On-Resistance	R _{DS (ON)}	_	26	40	11177	V _{GS} = 4.5V, I _D = 4A	
Forward Transfer Admittance	Y _{fs}		4	_	S	$V_{DS} = 5V, I_{D} = 5A$	
Diode Forward Voltage	V _{SD}	_	0.70	1.2	V	V _{GS} = 0V, I _S = 1.7A	
DYNAMIC CHARACTERISTICS (Note 7)							
Input Capacitance	C _{iss}		590	_		V _{DS} = 15V, V _{GS} = 0V, f = 1MHz	
Output Capacitance	Coss	_	122	_	pF		
Reverse Transfer Capacitance	C _{rss}	_	58	_			
Gate resistance	R_g	_	1.5	_	Ω	$V_{DS} = 0V$, $V_{GS} = 0V$, $f = 1MHz$	
Total Gate Charge (V _{GS} = 4.5V)	Qg	_	5.4	_			
Total Gate Charge (V _{GS} = 10V)	Qg	_	11.7	_	20	\\\ - 15\\\ \ - 7.0\\	
Gate-Source Charge	Q _{gs}		1.8	_	nC	$V_{DS} = 15V, I_D = 7.8A$	
Gate-Drain Charge	Q_{gd}	_	2.1	_			
Turn-On Delay Time	t _{D(on)}		11.2	_			
Turn-On Rise Time	t _r		15	_	20	$V_{DD} = 15V, V_{GS} = 4.5V,$	
Turn-Off Delay Time	t _{D(off)}		17.5	_	ns	$R_L = 2.4\Omega$, $R_G = 1\Omega$,	
Turn-Off Fall Time	t _f		8.7	_			
Reverse Recovery Time	t _{rr}		18.3	_	ns	104 37/44 5004/ -	
Reverse Recovery Charge	Qrr	_	12	_	nC	I _F = 12A, di/dt = 500A/μs	

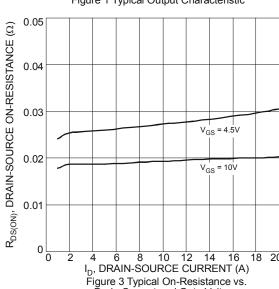
Electrical Characteristics P-CHANNEL (@TA = +25°C, unless otherwise specified.)

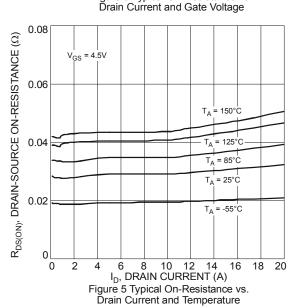
Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 6)						
Drain-Source Breakdown Voltage	BV _{DSS}	-30	_	_	V	$V_{GS} = 0V, I_D = -250\mu A$
Zero Gate Voltage Drain Current	I _{DSS}	_	_	-0.5	μΑ	$V_{DS} = -30V, V_{GS} = 0V$
Gate-Source Leakage	I _{GSS}	_	_	±1	μA	$V_{GS} = \pm 20V, V_{DS} = 0V$
ON CHARACTERISTICS (Note 6)						
Gate Threshold Voltage	V _{GS(th)}	-1		-2	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
Static Drain-Source On-Resistance		_	43	50	mΩ	$V_{GS} = -10V, I_D = -5A$
Static Drain-Source On-Resistance	R _{DS} (ON)	_	68	80	11177	$V_{GS} = -4.5V$, $I_{D} = -4A$
Forward Transfer Admittance	Y _{fs}	_	3.5	_	S	$V_{DS} = -5V, I_{D} = -5A$
Diode Forward Voltage	V _{SD}	_	-0.7	-1.2	V	V _{GS} = 0V, I _S = -1.7A
DYNAMIC CHARACTERISTICS (Note 7)						
Input Capacitance	C _{iss}	_	631	_	рF	45) () () () (
Output Capacitance	Coss	-	137	_	pF	V _{DS} = -15V, V _{GS} = 0V, -f = 1MHz
Reverse Transfer Capacitance	C _{rss}	_	70	_	pF	-1 - IIVIHZ
Gate resistance	Rg	_	10.8	_	Ω	V _{DS} = 0V, V _{GS} = 0V, f = 1MHz
Total Gate Charge (V _{GS} = 4.5V)	Qq	_	5.5	_	nC	
Total Gate Charge (V _{GS} = 10V)	Qq	_	11.4	_	nC	15)/ 1
Gate-Source Charge	Q _{qs}	_	1.8	_	nC	$V_{DS} = -15V, I_{D} = -6A$
Gate-Drain Charge	Q _{gd}	_	2.4	_	nC	
Turn-On Delay Time	t _{D(on)}	_	7.5	_	ns	
Turn-On Rise Time	t _r	_	4.9	_	ns	$V_{DD} = -15V, V_{GS} = -10V,$
Turn-Off Delay Time	t _{D(off)}	_	28.2	_	ns	$R_G = 6\Omega$, $I_D = -1A$
Turn-Off Fall Time	t _f	_	13.5	_	ns	7
Reverse Recovery Time	t _{rr}	_	15.1	_	ns	1 - 404 - 4:/
Reverse Recovery Charge	Qrr	_	15.3	_	nC	-I _F = 12A, di/dt = 500A/μs

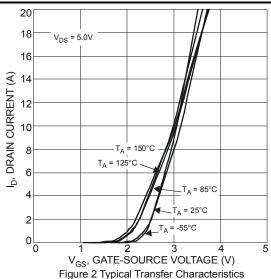
Notes: 6. Short duration pulse test used to minimize self-heating effect.

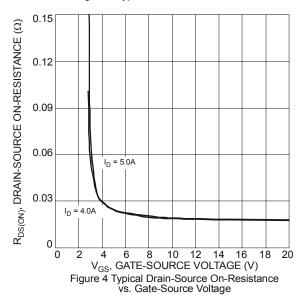
7. Guaranteed by design. Not subject to product testing.

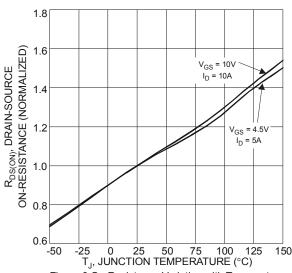
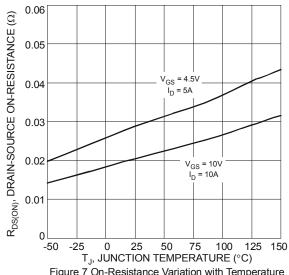
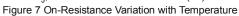

Datasheet of DMHC3025LSD-13 - MOSFET 2N/2P-CH 30V 8SOIC

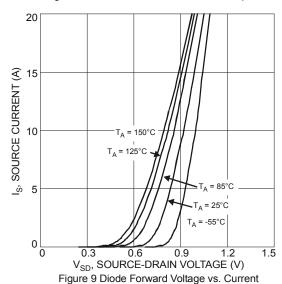

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com




DMHC3025LSD


Typical Characteristics - N-CHANNEL


Figure 6 On-Resistance Variation with Temperature

DMHC3025LSD

10 V_{GS} GATE THRESHOLD VOLTAGE (V) V_{DS} = 15V I_D = 7.8A 0 Q_g , TOTAL GATE CHARGE (nC) Figure 11 Gate Charge

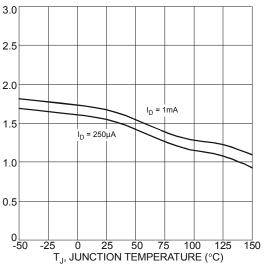
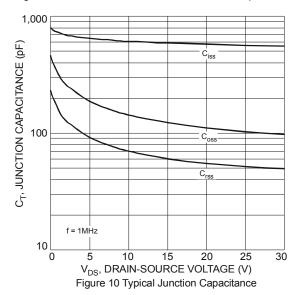
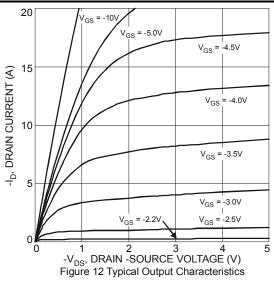
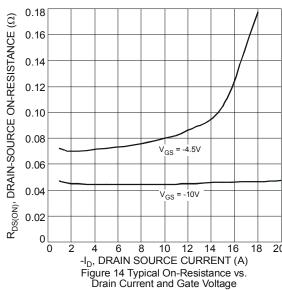
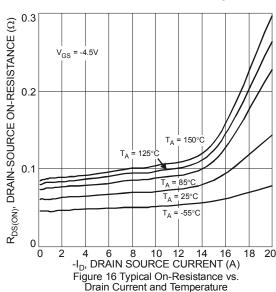
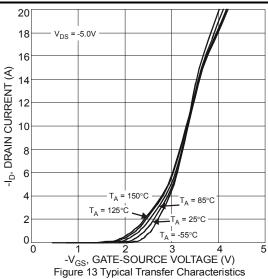



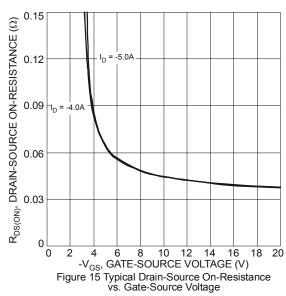
Figure 8 Gate Threshold Variation vs. Ambient Temperature

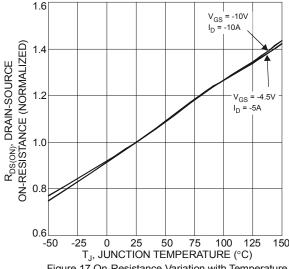

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


Datasheet of DMHC3025LSD-13 - MOSFET 2N/2P-CH 30V 8SOIC



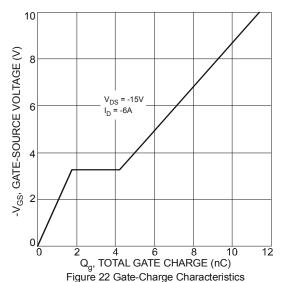

DMHC3025LSD


Typical Characteristics - P-CHANNEL



0.03 0.02


0.01


0 -50

0.10 $R_{DS(on)}$, DRAIN-SOURCE ON-RESISTANCE (Ω) 0.09 0.08 0.07 V_{GS} = -4.5V I_D = -5A 0.06 0.05 V_{GS} = -10V 0.04 $I_{D} = -10A$

5 0 25 50 75 100 12 ${
m T_J}$, JUNCTION TEMPERATURE (°C) Figure 18 On-Resistance Variation with Temperature

125

DMHC3025LSD

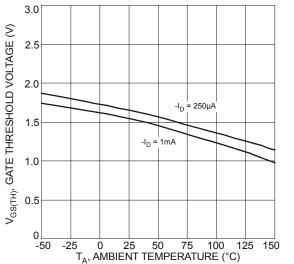
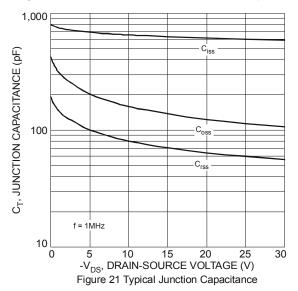
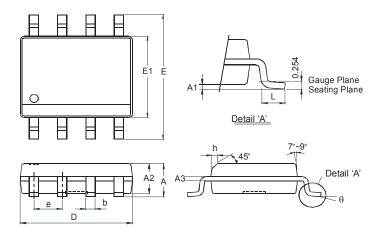



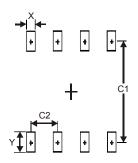
Figure 19 Gate Threshold Variation vs. Ambient Temperature

Datasheet of DMHC3025LSD-13 - MOSFET 2N/2P-CH 30V 8SOIC


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

DMHC3025LSD

Package Outline Dimensions


Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for latest version.

SO-8					
Dim	Min	Max			
Α	-	1.75			
A1	0.10	0.20			
A2	1.30	1.50			
A3	0.15	0.25			
b	0.3	0.5			
D	4.85	4.95			
Е	5.90	6.10			
E1	3.85	3.95			
e	1.27	Тур			
h	-	0.35			
L	0.62	0.82			
θ	0°	8°			
All Dimensions in mm					

Suggested Pad Layout

Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

Dimensions	Value (in mm)
X	0.60
Υ	1.55
C1	5.4
C2	1.27

Datasheet of DMHC3025LSD-13 - MOSFET 2N/2P-CH 30V 8SOIC

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

DMHC3025LSD

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2013, Diodes Incorporated

www.diodes.com