

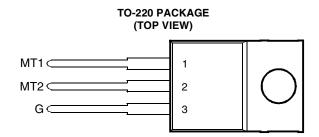
Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Bourns Inc. TIC216M-S

For any questions, you can email us directly: sales@integrated-circuit.com

Distributor of Bourns Inc.: Excellent Integrated System Limited


Datasheet of TIC216M-S - TRIAC SENS GATE 600V 6A TO220

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TIC216 SERIES SILICON TRIACS

BOURNS®

- Sensitive Gate Triacs
- 6 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 5 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

MDC2ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
	TIC216D		400		
Repetitive peak off-state voltage (see Note 1)	TIC216M		600	V	
	TIC216S	V _{DRM}	700		
	TIC216N		800	 -	
Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note	I _{T(RMS)}	6	Α		
Peak on-state surge current full-sine-waveat (or below) 25°C case temperature (s	I _{TSM}	60	Α		
Peak gate current	I _{GM}	±1	Α		
Peak gate power dissipation at (or below) 85°C case temperature (pulse width \$ 2	P_{GM}	2.2	W		
Average gate power dissipation at (or below) 85°C case temperature (see Note 4	$P_{G(AV)}$	0.9	W		
Operating case temperature range	T _C	-40 to +110	°C		
Storage temperature range	T _{stg}	-40 to +125	°C		
Lead temperature 1.6 mm from case for 10 seconds	T_L	230	°C		

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 150 mA/°C.
 - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
 - 4. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER		TEST CONDIT	IONS	MIN	TYP	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	$V_D = \text{rated } V_{DRM}$	I _G = 0	T _C = 110°C			±2	mA
I _{GT}	Gate trigger current	$\begin{aligned} &V_{supply} = +12 \text{ V}\dagger \\ &V_{supply} = +12 \text{ V}\dagger \\ &V_{supply} = -12 \text{ V}\dagger \\ &V_{supply} = -12 \text{ V}\dagger \end{aligned}$	$R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$	$t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$			5 -5 -5 10	mA

[†] All voltages are with respect to Main Terminal 1.

PRODUCT INFORMATION

Distributor of Bourns Inc.: Excellent Integrated System Limited

Datasheet of TIC216M-S - TRIAC SENS GATE 600V 6A TO220

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

BOURNS®

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

	PARAMETER		TEST CONDITIO	ONS	MIN	TYP	MAX	UNIT
		$V_{\text{supply}} = +12 \text{ V}^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs			2.2	
V _{GT}	Gate trigger	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$			-2.2	V
V GT	voltage	$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$			-2.2	v
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$			3	
V _T	On-state voltage	$I_T = \pm 8.4 \text{ A}$	I _G = 50 mA	(see Note 5)			±1.7	V
I _H	Holding current	$V_{\text{supply}} = +12 \text{ V}\dagger$	I _G = 0	Init' I _{TM} = 100 mA			30	mA
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$I_G = 0$	Init' $I_{TM} = -100 \text{ mA}$			-30	
IL	Latching current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$				4		mA
		$V_{\text{supply}} = -12 \text{ V}\dagger$			-2		ША	
dv/dt	Critical rate of rise of	V _{DRM} = Rated V _{DRM}	L. = 0	T _C = 110°C		±20		V/µs
uv/ut	off-state voltage	VDRM - Hated VDRM	ig – o	1C = 110 C		120		ν/μ5
dv/dt _(c)	Critical rise of	V _{DRM} = Rated V _{DRM}	I _{TRM} = ±8.4 A	T _C = 70°C	±2	±5		V/µs
	commutation voltage			1C - 10 C	12	±3		v/µS

[†] All voltages are with respect to Main Terminal 1.

NOTES: 5. This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

6. The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G=100~\Omega,~t_{p(g)}=20~\mu s,~t_r=\leq 15~ns,~f=1~kHz.$

thermal characteristics

PARAMETER				MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			2.5	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W