Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Texas Instruments
CD40107BE

For any questions, you can email us directly: sales@integrated-circuit.com

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Data sheet acquired from Harris Semiconductor SCHS098D – Revised October 2003

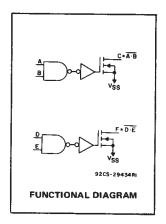
CD40107B Types

CMOS Dual 2-input **NAND Buffer/Driver**

High-Voltage Type (20-Volt Rating)

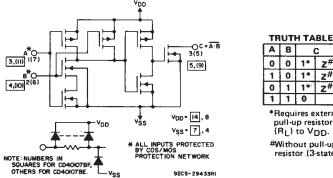
The CD40107B is a dual 2-input NAND buffer/driver containing two independent 2-input NAND buffers with open-drain single n-channel transistor outputs. This device features a wired-OR capability and high output sink current capability (136 mA typ. at $V_{DD} = 10 \text{ V}, V_{DS} = 1 \text{ V}$). The CD40107B is supplied in 8-lead hermetic dual-in-line ceramic packages (F3A suffix), 8-lead dual-in-line plastic packages (E suffix), 8-lead small-outline packages (M, M96, MT, and PSR suffixes), and 8-lead thin shrink small-outline packages (PW and PWR suffixes).

Features:


- 32 times standard B-Series output current drive sinking capability - 136 mA typ. @ VDD = 10 V, VDS = 1 V
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- 5-V, 10-V, and 15-V parametric ratings
- Noise margin, full package temperature range, R_L to $V_{DD} = 10 \text{ k}\Omega$:

1 V at V_{DD} = 5 V

2 V at V_{DD} = 10 V


2.5 V at $V_{DD} = 15 \text{ V}$

Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices'

Applications

- Driving relays, lamps, LEDs
- Line driver
- Level shifter (up or down)

0 1* Z# 0 1* _Z# 0 1 1* 1 1 0 *Requires external pull-up resistor (RL) to VDD. #Without pull-up resistor (3-state).

Fig.1 - Schematic diagram of CD40107B (one of 2 gates)

DRAIN-TO-SOURCE VOLTAGE (VDS) -V 92CS-29444RI

Fig.2 - Typical output low (sink) current characteristics.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (V _{DD})
Voltages referenced to V _{SS} Terminal)0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS0.5V to VDD +0.5V
DC INPUT CURRENT, ANY ONE INPUT ±10mA
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -55°C to +100°C
For T _A = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) 100mW
OPERATING-TEMPERATURE RANGE (T _A)55°C to +125°C
STORAGE TEMPERATURE RANGE (T _{stq})65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING);
At distance 1/16 + 1/32 inch /1 59 + 0.79mm\ from case for 10s may +36500

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LII		
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For TA=			i
Full Package-Temperature Range)	3	18	V

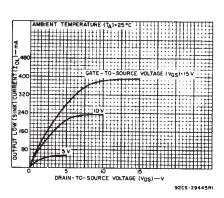


Fig.3 — Minimum output low (sink) current characteristics.

Copyright © 2003, Texas Instruments Incorporated

Datasheet of CD40107BE - IC GATE NAND 2CH 2-INP 8-DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

CD40107B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at TA = 25°C, CL = 50 pF, Input tr, tf = 20 ns

	TEST CONDIT	TIONS	LIN			
CHARACTERISTIC		V _{DD} Volts	Typ.	Max.	UNITS	
Propagation Delay:		5	100	200		
High-to-Low, tpHL	R _L * = 120 Ω	10	45	90	ns	
		15	30	60		
		5	100	200		
Low-to-High, tpLH	RL* = 120 Ω	10	60	120	ns	
		15	50	100		
Transition Time:		5	50	100		
High-to-Low, tTHL	RL* = 120 Ω	10	20	40	ns	
mgn-to-cow, tTHL		15	10	20	1	
		5	50	100		
Low-to-High, tTLH	R _L * = 120 Ω	10	35	70	ns	
		15	25	50	1	
Average Input Capacitance, CIN	Any Input		5	7.5	pF	
Average Output Capacitance, COUT	Any Output		30	-	pF	

^{*} R_L is external pull-up resistor to V_{DD}.

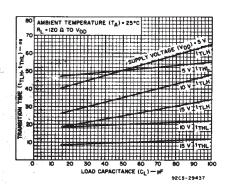


Fig.4 — Typical transition time as a function of load capacitance.

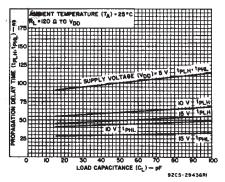


Fig.5 — Typical propagation delay time as a function of load capacitance.

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	CON	LIMIT	LIMITS AT INDICATED TEMPERATURES (°C)									
13110	V _O	VIN	V_{DD}						+25			
	(V)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.		
Quiescent Device	-	0,5	5	1	1	30	30	_	0.02	1		
Current	_	0,10	10	2	2	60	60	ì	0.02	2		
I _{DD} Max.		0,15	15	4	4	120	120	_	0.02	4	μΑ	
	-	0,20	20	20	20	600	600	_	0.04	20		
Outout Law	0.4	0,5	5	21	20	14	12	16	32	_		
Output Low (Sink) Current	1	0,5	5	44	42	30	25	34	68	_		
IOI Min.	0.5	0,10	10	49	46	32	28	37	74	_	mA	
.OL	1	0,10	10	89	85	60	51	68	136	_		
	0.5	0,15	15	66	63	44	38	50	100	-		
Output High (Source) Current IOH Min.	1. 1.	No Internal Pull-Up Device										
Input Low	4.5	1	5		1	.5				1.5		
Voltage	9	-	10		3				3	1		
VIL Max.*	13.5	_	15			4		_	_	4		
Input High	0.5,4.5	-	5		3	.5		3.5	_	_	V	
Voltage	1,9	_	10			7		7		_		
VIH Min.*	1.5,13.5	-	15		1	1		11	-	_		
Input Current IN Max.		0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μΑ	
Output Leakage Current IOZ Max.	18	0,18	18	2	2	20	20	-	10-4	2	μΑ	

* Measured with external pull-up resistor, RL = 10 k Ω to VDD.

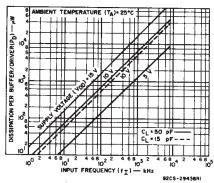


Fig.6 - Typical power dissipation as a function of input frequency.

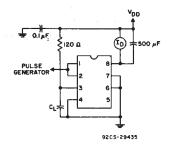
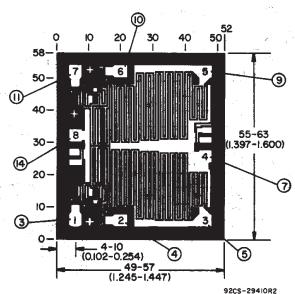



Fig. 7 — Power-dissipation test circuit for CD40107BE.

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

CD40107B Types

NOTE: NOS. IN PADS FOR CD40107BE NOS. OUTSIDE CHIP FOR CD40107BF

Dimensions and Pad Layout for CD40107BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

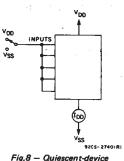


Fig.8 - Quiescent-device current test circuit.

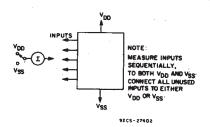


Fig. 9 - Input-current test circuit.

TERMINAL ASSIGNMENTS

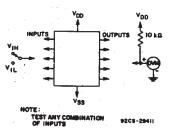


Fig. 10 — Input-voltage test circuit.

Special Considerations for CD40107B

Limiting Capacitive Currents for CL > 500 pF, V_{DD} > 15 V.

For VDD > 15 V, and load capacitance (CL) from output to ground > 500 pF, an external 25 Ω series limiting resistor should be inserted between the output terminal and CL. No external resistor is necessary if CL < 500 pF or VDD < 15 V.

2. Driving Inductive Loads

When using the CD40107B to drive inductive loads, the load should be shunted with a diode to prevent high voltages from developing across the CD40107B output.

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of CD40107BE - IC GATE NAND 2CH 2-INP 8-DIP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

24-Aug-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
OD40407DE	(1)	PDIP		_		(2)	(6) CU NIPDAU	(3)	55 to 405	(4/5)	
CD40107BE	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CO NIPDAO	N / A for Pkg Type	-55 to 125	CD40107BE	Samples
CD40107BEE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD40107BE	Samples
CD40107BF	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD40107BF	Samples
CD40107BF3A	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD40107BF3A	Samples
CD40107BM	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0107	Samples
CD40107BM96	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0107	Samples
CD40107BME4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0107	Samples
CD40107BMG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0107	Samples
CD40107BPSR	ACTIVE	so	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0107B	Samples
CD40107BPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0107B	Samples
CD40107BPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0107B	Samples

⁽¹⁾ The marketing status values are defined as follows:

The flatfeting status values are defined as follows.

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

 $\label{eq:obsolete} \textbf{OBSOLETE:} \ \ \text{TI has discontinued the production of the device}.$

Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Tl Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of CD40107BE - IC GATE NAND 2CH 2-INP 8-DIP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

www.ti.com 24-Aug-2014

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information that way not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD40107B, CD40107B-MIL:

- Catalog: CD40107B
- Military: CD40107B-MIL

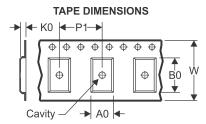
NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

Addendum-Page 2

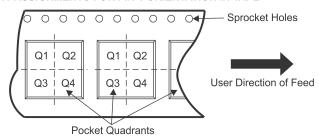
Datasheet of CD40107BE - IC GATE NAND 2CH 2-INP 8-DIP


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



PACKAGE MATERIALS INFORMATION

www.ti.com 21-Aug-2015


TAPE AND REEL INFORMATION

		Dimension designed to accommodate the component width
	B0	Dimension designed to accommodate the component length
ı	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
1	P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD40107BM96	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
CD40107BM96	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
CD40107BPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
CD40107BPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

Datasheet of CD40107BE - IC GATE NAND 2CH 2-INP 8-DIP

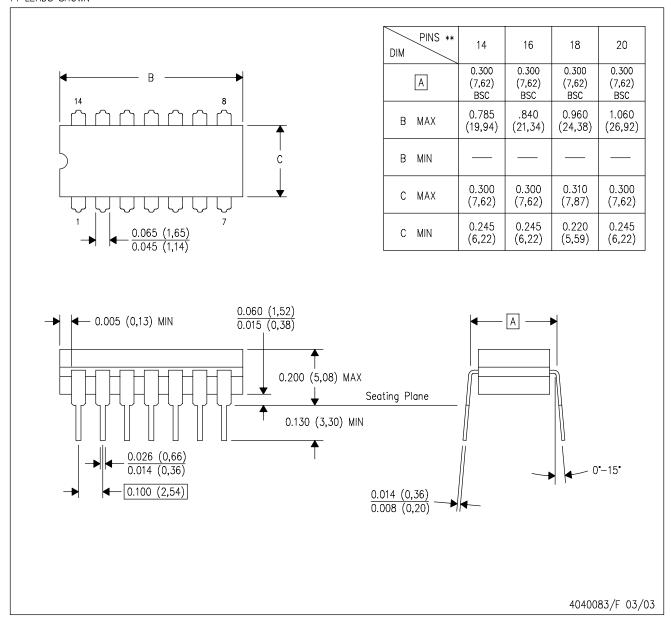
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE MATERIALS INFORMATION

www.ti.com 21-Aug-2015

*All dimensions are nominal

7 til dilliciololis arc Homiliai							
Device	Package Type Package Drawing		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD40107BM96	SOIC	D	8	2500	367.0	367.0	35.0
CD40107BM96	SOIC	D	8	2500	340.5	338.1	20.6
CD40107BPSR	SO	PS	8	2000	367.0	367.0	38.0
CD40107BPWR	TSSOP	PW	8	2000	367.0	367.0	35.0


Datasheet of CD40107BE - IC GATE NAND 2CH 2-INP 8-DIP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

J (R-GDIP-T**)

CERAMIC DUAL IN-LINE PACKAGE

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

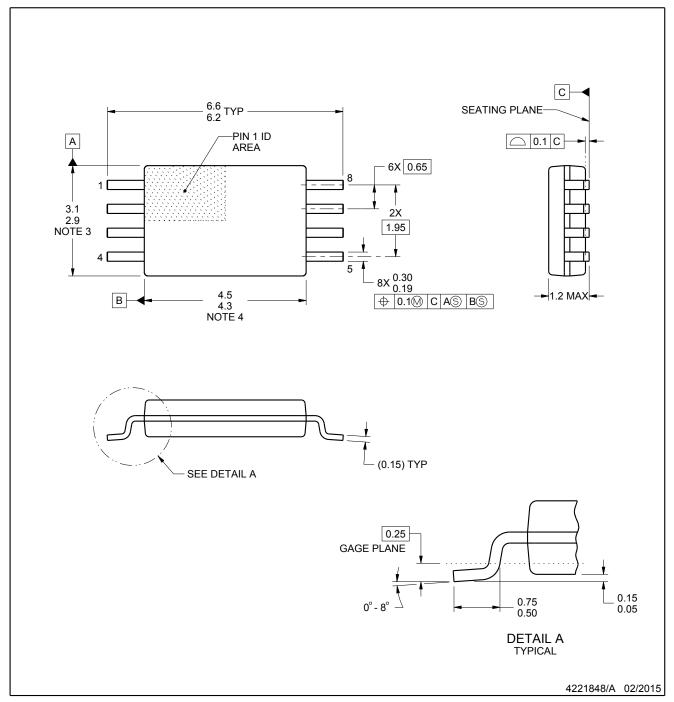
MECHANICAL DATA

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

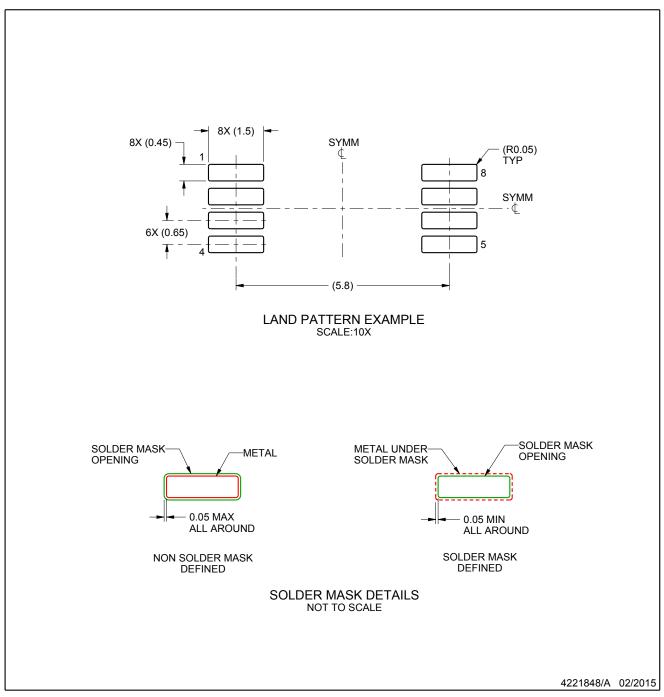

PW0008A

PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.



EXAMPLE BOARD LAYOUT

PW0008A

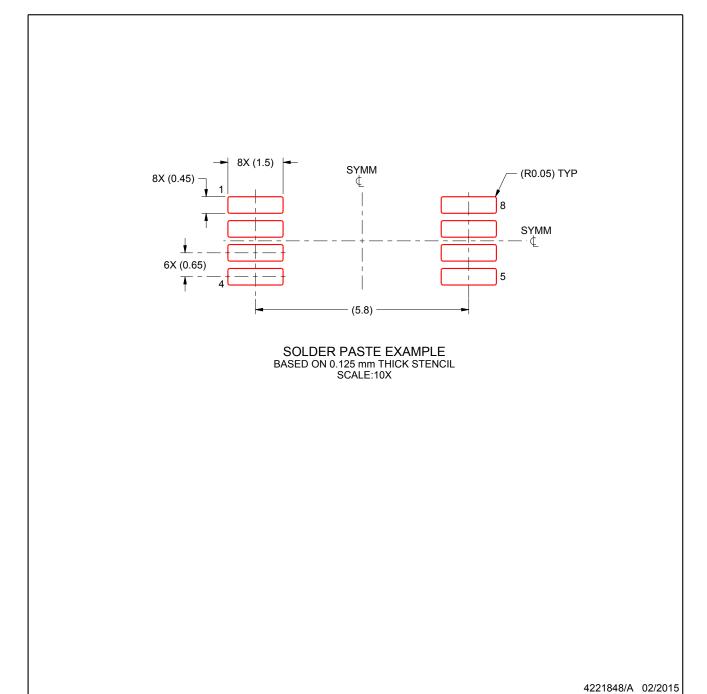
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



EXAMPLE STENCIL DESIGN

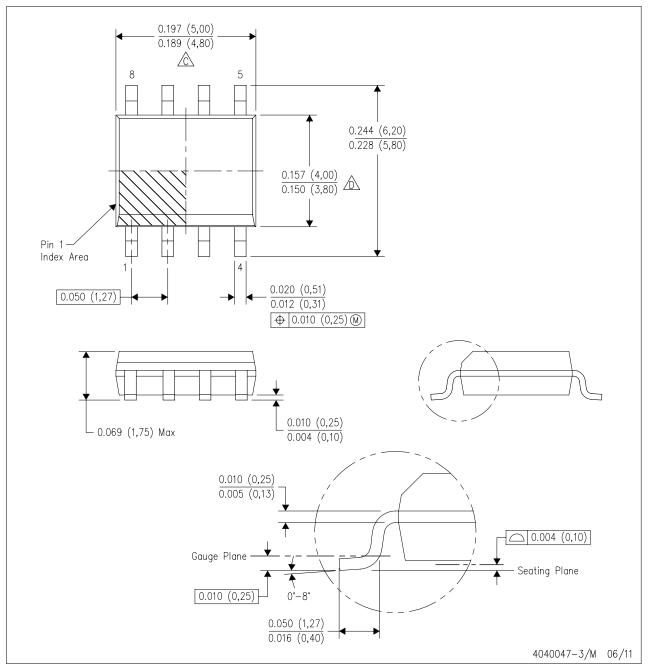
PW0008A

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

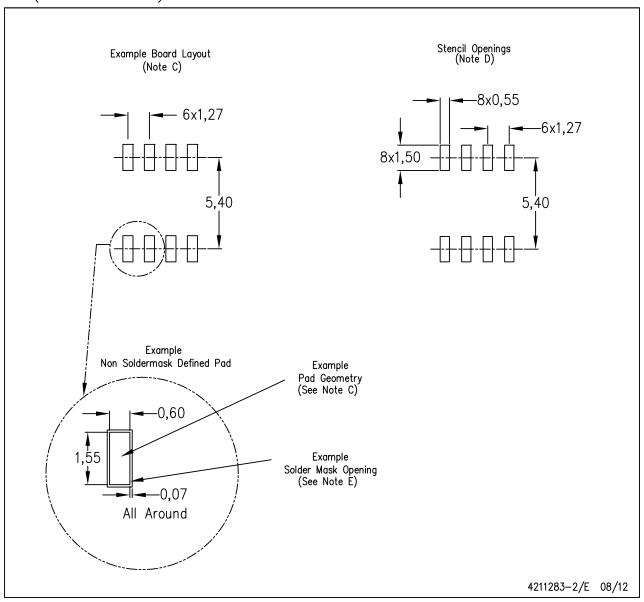


MECHANICAL DATA

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

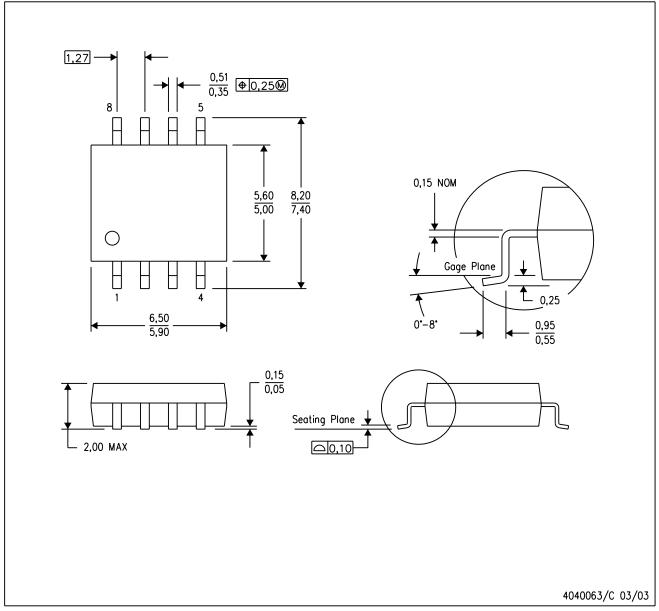


LAND PATTERN DATA

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

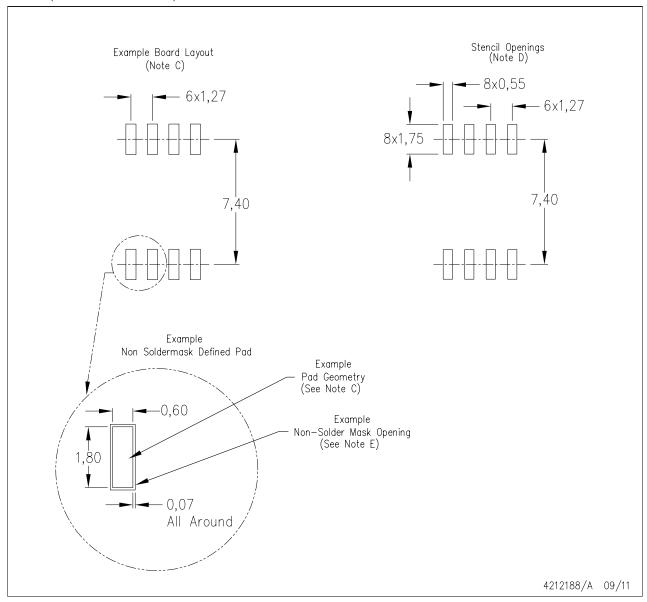


MECHANICAL DATA

PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of CD40107BE - IC GATE NAND 2CH 2-INP 8-DIP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

LAND PATTERN DATA

PS (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

Datasheet of CD40107BE - IC GATE NAND 2CH 2-INP 8-DIP

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Applications

Products Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Security www.ti.com/security Logic

Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors TI E2E Community www.ti.com/omap e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated