

# **Excellent Integrated System Limited**

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Texas Instruments</u> <u>SN74ALVTH16374KR</u>

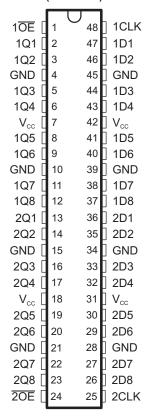
For any questions, you can email us directly: sales@integrated-circuit.com

Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



www.ti.com


## SN54ALVTH16374, SN74ALVTH16374 2.5-V/3.3-V 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

#### **FEATURES**

- State-of-the-Art Advanced BiCMOS
   Technology (ABT) Widebus™ Design for 2.5-V
   and 3.3-V Operation and Low Static Power
   Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V V<sub>CC</sub>)
- Typical V<sub>OLP</sub> (Output Ground Bounce) <0.8 V at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> = 25°C
- High Drive (-24/24 mA at 2.5-V V<sub>CC</sub> and -32/64 mA at 3.3-V)
- Power Off Disables Outputs, Permitting Live Insertion
- High-Impedance State During Power Up and Power Down Prevents Driver Conflict
- Uses Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating
- Auto3-State Eliminates Bus Current Loading When Output Exceeds V<sub>CC</sub> + 0.5 V
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection
  - Exceeds 2000 V Per MIL-STD-883, Method 3015
  - Exceeds 200 V Using Machine Model
  - Exceeds 1000 V Using Charged-Device Model, Robotic Method
- Flow-Through Architecture Facilitates Printed Circuit Board Layout
- Distributed V<sub>CC</sub> and GND Pin Configuration Minimizes High-Speed Switching Noise
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

#### SN54ALVTH16374...WD PACKAGE SN74ALVTH16374...DGG, DGV, OR DL PACKAGE (TOP VIEW)



#### **DESCRIPTION/ORDERING INFORMATION**

The 'ALVTH16374 devices are 16-bit edge-triggered D-type flip-flops with 3-state outputs designed for 2.5-V or 3.3-V  $V_{CC}$  operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

These devices can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK), the flip-flops store the logic levels set up at the data (D) inputs.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.



Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

## SN54ALVTH16374, SN74ALVTH16374 2.5-V/3.3-V 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS



SCES068G-JUNE 1996-REVISED NOVEMBER 2006

#### **DESCRIPTION/ORDERING INFORMATION (CONTINUED)**

A buffered output-enable ( $\overline{OE}$ ) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

When  $V_{CC}$  is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V,  $\overline{OE}$  should be tied to  $V_{CC}$  through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ALVTH16374 is characterized for operation over the full military temperature range of -55°C to 125°C.

The SN74ALVTH16374 is characterized for operation from -40°C to 85°C.

#### **ORDERING INFORMATION**

| T <sub>A</sub> | P/          | ACKAGE           | ORDERABLE PART NUMBER | TOP-SIDE MARKING |
|----------------|-------------|------------------|-----------------------|------------------|
|                | TSSOP – DGG | Reel of 2000     | 74ALVTH16374GRE4      |                  |
|                | 1330F - DGG | Reel of 2000     | SN74ALVTH16374GR      |                  |
|                | TVCOD DCV   | Dool of 2000     | 74ALVTH16374VRE4      |                  |
| 40°C to 05°C   | TVSOP – DGV | Reel of 2000     | SN74ALVTH16374VR      |                  |
| –40°C to 85°C  |             | Tube of 25       | 74ALVTH16374DL        |                  |
|                | CCOD DI     | Tube of 25       | SN74ALVTH16374DLG4    |                  |
|                | SSOP – DL   | D = =1 = £ 4.000 | SN74ALVTH16374DLR     |                  |
|                |             | Reel of 1000     | SN74ALVTH16374DLRG4   |                  |



Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



# SN54ALVTH16374, SN74ALVTH16374 2.5-V/3.3-V 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

#### **ZQL PACKAGE** (TOP VIEW)

1 2 3 4 5 6 000000 000000 В 000000 С 000000 D  $\bigcirc$  $\bigcirc$ Ε F  $\bigcirc$  $\bigcirc$ 000000 G 000000 Н 000000 J 000000 Κ

#### TERMINAL ASSIGNMENTS(1)

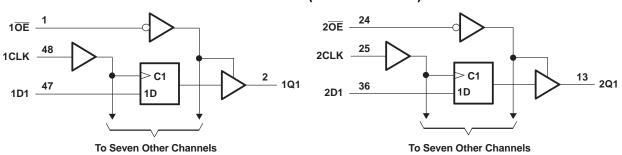
|   | 1               | 2   | 3               | 4               | 5   | 6    |
|---|-----------------|-----|-----------------|-----------------|-----|------|
| Α | 1 <del>OE</del> | NC  | NC              | NC              | NC  | 1CLK |
| В | 1Q2             | 1Q1 | GND             | GND             | 1D1 | 1D2  |
| С | 1Q4             | 1Q3 | V <sub>cc</sub> | V <sub>cc</sub> | 1D3 | 1D4  |
| D | 1Q6             | 1Q5 | GND             | GND             | 1D5 | 1D6  |
| E | 1Q8             | 1Q7 |                 |                 | 1D7 | 1D8  |
| F | 2Q1             | 2Q2 |                 |                 | 2D2 | 2D1  |
| G | 2Q3             | 2Q4 | GND             | GND             | 2D4 | 2D3  |
| Н | 2Q5             | 2Q6 | V <sub>CC</sub> | V <sub>CC</sub> | 2D6 | 2D5  |
| J | 2Q7             | 2Q8 | GND             | GND             | 2D8 | 2D7  |
| K | 2 <del>OE</del> | NC  | NC              | NC              | NC  | 2CLK |

<sup>(1)</sup> NC - No internal connection

#### **FUNCTION TABLE** (each 8-bit section)

|    | INPUTS     |   | OUTPUT |
|----|------------|---|--------|
| ΟE | CLK        | D | Q      |
| L  | 1          | Н | Н      |
| L  | $\uparrow$ | L | L      |
| L  | H or L     | Χ | $Q_0$  |
| Н  | Χ          | X | Z      |

Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


SN54ALVTH16374, SN74ALVTH16374 2.5-V/3.3-V 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS



SCES068G-JUNE 1996-REVISED NOVEMBER 2006

WITH 3-STATE OUTPUTS

#### **LOGIC DIAGRAM (POSITIVE LOGIC)**



Pin numbers shown are for the DGG, DL, and WD packages.

### Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

|                  |                                                       |                                         | MIN  | MAX | UNIT |
|------------------|-------------------------------------------------------|-----------------------------------------|------|-----|------|
| $V_{CC}$         | Supply voltage range                                  |                                         | -0.5 | 4.6 | V    |
| $V_{I}$          | Input voltage range <sup>(2)</sup>                    |                                         | -0.5 | 7   | V    |
| Vo               | Voltage range applied to any output in the high-imped | dance or power-off state <sup>(2)</sup> | -0.5 | 7   | V    |
| Vo               | Voltage range applied to any output in the high state | (2)                                     | -0.5 | 7   | V    |
|                  | Outside suggest in the law state                      | SN54ALVTH16374 <sup>(3)</sup>           |      | 96  | Λ    |
| IO               | Output current in the low state                       | SN74ALVTH16374                          |      | 128 | mA   |
|                  |                                                       | SN54ALVTH16374 <sup>(3)</sup>           |      | -48 |      |
| IO               | Output current in the high state                      | SN74ALVTH16374                          |      | -64 | mA   |
| I <sub>IK</sub>  | Input clamp current                                   | V <sub>I</sub> < 0                      |      | -50 | mA   |
| I <sub>OK</sub>  | Output clamp current                                  | V <sub>O</sub> < 0                      |      | -50 | mA   |
|                  |                                                       | DGG package                             |      | 89  |      |
| $\theta_{JA}$    | Package thermal impedance <sup>(4)</sup>              | DGV package                             |      | 93  | °C/W |
|                  |                                                       | DL package                              |      | 94  |      |
| T <sub>stg</sub> | Storage temperature range                             |                                         | -65  | 150 | °C   |

<sup>(1)</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

<sup>(2)</sup> The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

<sup>(3)</sup> Product preview

<sup>(4)</sup> The package thermal impedance is calculated in accordance with JESD 51.



Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



# SN54ALVTH16374, SN74ALVTH16374 2.5-V/3.3-V 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

#### Recommended Operating Conditions<sup>(1)</sup>

 $V_{CC}$  = 2.5 V  $\pm$  0.2 V

|                          |                                              |                  | SN54A | LVTH16   | 374 <sup>(2)</sup> | SN74AL | VTH163   | 374 | UNIT |
|--------------------------|----------------------------------------------|------------------|-------|----------|--------------------|--------|----------|-----|------|
|                          |                                              |                  | MIN   | TYP      | MAX                | MIN    | TYP      | MAX | UNII |
| V <sub>CC</sub>          | Supply voltage                               |                  | 2.3   |          | 2.7                | 2.3    |          | 2.7 | V    |
| V <sub>IH</sub>          | High-level input voltage                     |                  | 1.7   |          |                    | 1.7    |          |     | V    |
| V <sub>IL</sub>          | Low-level input voltage                      |                  |       |          | 0.7                |        |          | 0.7 | V    |
| VI                       | Input voltage                                |                  | 0     | $V_{CC}$ | 5.5                | 0      | $V_{CC}$ | 5.5 | V    |
| I <sub>OH</sub>          | High-level output current                    |                  |       |          | -6                 |        |          | -8  | mA   |
|                          | Low-level output current                     |                  |       |          | 6                  |        |          | 8   | mA   |
| I <sub>OL</sub>          | Low-level output current; current duty cycle | ≤ 50%; f ≥ 1 kHz |       |          | 18                 |        |          | 24  | IIIA |
| Δt/Δν                    | Input transition rise or fall rate           | Outputs enabled  |       |          | 10                 |        |          | 10  | ns/V |
| $\Delta t/\Delta V_{CC}$ | Power-up ramp rate                           |                  | 200   |          |                    | 200    |          |     | μs/V |
| T <sub>A</sub>           | Operating free-air temperature               |                  | -55   |          | 125                | -40    |          | 85  | Ô    |

All unused control inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

#### **Recommended Operating Conditions**(1)

 $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ 

|                          |                                           |                      | SN54AI      | _VTH163  | 374 <sup>(2)</sup> | SN74A | LVTH16   | 374 | UNIT |
|--------------------------|-------------------------------------------|----------------------|-------------|----------|--------------------|-------|----------|-----|------|
|                          |                                           |                      | MIN         | TYP      | MAX                | MIN   | TYP      | MAX | UNIT |
| $V_{CC}$                 | Supply voltage                            |                      | 3           |          | 3.6                | 3     |          | 3.6 | V    |
| $V_{IH}$                 | High-level input voltage                  |                      | 2           |          |                    | 2     |          |     | V    |
| $V_{IL}$                 | Low-level input voltage                   |                      |             |          | 0.8                |       |          | 8.0 | V    |
| VI                       | Input voltage                             |                      | 0           | $V_{CC}$ | 5.5                | 0     | $V_{CC}$ | 5.5 | V    |
| I <sub>OH</sub>          | High-level output current                 |                      |             |          | -24                |       |          | -32 | mA   |
|                          | Low-level output current                  |                      |             |          | 24                 |       |          | 32  | mΛ   |
| I <sub>OL</sub>          | Low-level output current; current duty cy | cle ≤ 50%; f ≥ 1 kHz |             |          | 48                 |       |          | 64  | mA   |
| $\Delta t/\Delta v$      | Input transition rise or fall rate        | Outputs enabled      |             |          | 10                 |       |          | 10  | ns/V |
| $\Delta t/\Delta V_{CC}$ | Power-up ramp rate                        |                      | 200         |          |                    | 200   |          |     | μs/V |
| T <sub>A</sub>           | Operating free-air temperature            |                      | <b>-</b> 55 |          | 125                | -40   |          | 85  | °C   |

<sup>(1)</sup> All unused control inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

<sup>(2)</sup> Product preview

<sup>(2)</sup> Product preview



Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

# SN54ALVTH16374, SN74ALVTH16374 2.5-V/3.3-V 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS



SCES068G-JUNE 1996-REVISED NOVEMBER 2006

#### **Electrical Characteristics**

over operating free-air temperature range  $V_{CC}$  = 2.5 V  $\pm$  0.2 V (unless otherwise noted)

|                               | DADAMETED            | TEST OF                                                                           | NOTIONS                                       | SN54ALVT              | H1637             | <b>4</b> (1) | SN74ALV               | /TH1637            | 4    | LINUT |
|-------------------------------|----------------------|-----------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|-------------------|--------------|-----------------------|--------------------|------|-------|
|                               | PARAMETER            | IESI CO                                                                           | ONDITIONS                                     | MIN T                 | YP <sup>(2)</sup> | MAX          | MIN                   | TYP <sup>(2)</sup> | MAX  | UNIT  |
| $V_{IK}$                      |                      | $V_{CC} = 2.3 \text{ V},$                                                         | $I_1 = -18 \text{ mA}$                        |                       |                   | -1.2         |                       |                    | -1.2 | V     |
|                               |                      | $V_{CC} = 2.3 \text{ V to } 2.7$                                                  | $V, I_{OH} = -100 \mu A$                      | V <sub>CC</sub> - 0.2 |                   |              | V <sub>CC</sub> - 0.2 |                    |      |       |
| $V_{OH}$                      |                      | V 0.0 V                                                                           | $I_{OH} = -6 \text{ mA}$                      | 1.8                   |                   |              |                       |                    |      | V     |
|                               |                      | V <sub>CC</sub> = 2.3 V                                                           | $I_{OH} = -8 \text{ mA}$                      |                       |                   |              | 1.8                   | ,                  |      |       |
|                               |                      | $V_{CC} = 2.3 \text{ V to } 2.7$                                                  | V, I <sub>OL</sub> = 100 μA                   |                       |                   | 0.2          |                       |                    | 0.2  |       |
|                               |                      |                                                                                   | I <sub>OL</sub> = 6 mA                        |                       |                   | 0.4          |                       | ,                  |      |       |
| $V_{OL}$                      |                      | V 22V                                                                             | I <sub>OL</sub> = 8 mA                        |                       |                   |              |                       |                    | 0.4  | V     |
|                               |                      | $V_{CC} = 2.3 \text{ V}$                                                          | I <sub>OL</sub> = 18 mA                       |                       |                   | 0.5          |                       |                    |      |       |
|                               |                      |                                                                                   | I <sub>OL</sub> = 24 mA                       |                       |                   |              |                       |                    | 0.5  |       |
|                               | Control innuts       | $V_{CC} = 2.7 \text{ V},$                                                         | $V_I = V_{CC}$ or GND                         |                       |                   | ±1           |                       | ,                  | ±1   |       |
|                               | Control inputs       | $V_{CC} = 0 \text{ or } 2.7 \text{ V},$                                           | V <sub>I</sub> = 5.5 V                        |                       |                   | 10           |                       |                    | 10   |       |
| $I_{\parallel}$               |                      |                                                                                   | V <sub>I</sub> = 5.5 V                        |                       |                   | 10           |                       |                    | 10   | μΑ    |
|                               | Data inputs          | $V_{CC} = 2.7 \text{ V}$                                                          | $V_I = V_{CC}$                                |                       |                   | 1            |                       |                    | 1    |       |
|                               |                      |                                                                                   | V <sub>I</sub> = 0                            |                       |                   | -5           |                       | ,                  | -5   |       |
| I <sub>off</sub>              |                      | $V_{CC} = 0,$<br>$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5$                    | i V                                           |                       |                   |              |                       |                    | ±100 | μΑ    |
| I <sub>BHL</sub> (            | 3)                   | $V_{CC} = 2.3 \text{ V},$                                                         | V <sub>I</sub> = 0.7 V                        |                       | 115               |              |                       | 115                |      | μΑ    |
| I <sub>BHH</sub>              | (4)                  | $V_{CC} = 2.3 \text{ V},$                                                         | V <sub>I</sub> = 1.7 V                        |                       | -10               |              |                       | -10                |      | μΑ    |
| I <sub>BHLC</sub>             | ) <sup>(5)</sup>     | V <sub>CC</sub> = 2.7 V,                                                          | $V_I = 0$ to $V_{CC}$                         | 300                   |                   |              | 300                   |                    |      | μΑ    |
| I <sub>BHH</sub>              | O <sup>(6)</sup>     | $V_{CC} = 2.7 \text{ V},$                                                         | $V_I = 0$ to $V_{CC}$                         | -300                  |                   |              | -300                  | ,                  |      | μΑ    |
| I <sub>EX</sub> <sup>(7</sup> | )                    | $V_{CC} = 2.3 \text{ V},$                                                         | V <sub>O</sub> = 5.5 V                        |                       |                   | 125          |                       | ,                  | 125  | μΑ    |
| I <sub>OZ(P</sub>             | U/PD) <sup>(8)</sup> | $V_{CC} \le 1.2 \text{ V}, V_O = V_I = \text{GND or } V_{CC},$                    | 0.5 V to V <sub>CC</sub> ,<br>OE = don't care |                       |                   | ±100         |                       |                    | ±100 | μΑ    |
| I <sub>OZH</sub>              |                      | $V_{CC} = 2.7 \text{ V}, V_{O} = V_{I} = 0.7 \text{ V} \text{ or } 1.7 \text{ V}$ | 2.3 V,                                        |                       |                   | 5            |                       |                    | 5    | μΑ    |
| I <sub>OZL</sub>              |                      | $V_{CC} = 2.7 \text{ V}, V_{O} = V_{I} = 0.7 \text{ V} \text{ or } 1.7 \text{ V}$ |                                               |                       |                   | -5           |                       |                    | -5   | μΑ    |
|                               |                      | V <sub>CC</sub> = 2.7 V,                                                          | Outputs high                                  |                       | 0.04              | 0.1          |                       |                    | 0.1  |       |
| $I_{CC}$                      |                      | $I_0 = 0$                                                                         | Outputs low                                   |                       | 2.3               | 4.5          |                       |                    | 4.5  | mA    |
|                               |                      | $V_I = V_{CC}$ or GND                                                             | Outputs disabled                              |                       | 0.04              | 0.1          |                       |                    | 0.1  |       |
| Ci                            |                      | V <sub>CC</sub> = 2.5 V,                                                          | V <sub>I</sub> = 2.5 V or 0                   |                       | 3.5               |              |                       |                    |      | pF    |
| C <sub>o</sub>                |                      | $V_{CC} = 2.5 \text{ V},$                                                         | V <sub>O</sub> = 2.5 V or 0                   |                       | 6                 |              |                       |                    |      | pF    |

- (1) Product preview
- All typical values are at  $V_{CC} = 2.5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ . (2)
- (3) The bus-hold circuit can sink at least the minimum low sustaining current at V<sub>IL</sub> max. I<sub>BHL</sub> should be measured after lowering V<sub>IN</sub> to GND and then raising it to V<sub>IL</sub> max.
- (4) The bus-hold circuit can source at least the minimum high sustaining current at V<sub>IH</sub> min. I<sub>BHH</sub> should be measured after raising V<sub>IN</sub> to V<sub>CC</sub> and then lowering it to V<sub>IH</sub> min.
- An external driver must source at least I<sub>BHLO</sub> to switch this node from low to high.
- An external driver must sink at least  $I_{BHHO}$  to switch this node from high to low. Current into an output in the high state when  $V_O > V_{CC}$ (6)
- (8) High-impedance state during power up or power down



Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



## SN54ALVTH16374, SN74ALVTH16374 2.5-V/3.3-V 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

#### **Electrical Characteristics**

over recommended operating free-air temperature range  $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$  (unless otherwise noted)

|                    | DADAMETED             | TEST COM                                                                                            | DITIONS                                | SN54AL\               | /TH1637            | <b>4</b> (1) | SN74                  | ALVTH16            | 374  | LINUT |
|--------------------|-----------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------|--------------------|--------------|-----------------------|--------------------|------|-------|
|                    | PARAMETER             | TEST CON                                                                                            | DITIONS                                | MIN                   | TYP <sup>(2)</sup> | MAX          | MIN                   | TYP <sup>(2)</sup> | MAX  | UNIT  |
| $V_{IK}$           |                       | V <sub>CC</sub> = 3 V,                                                                              | $I_1 = -18 \text{ mA}$                 |                       |                    | -1.2         |                       |                    | -1.2 | V     |
|                    |                       | $V_{CC} = 3 \text{ V to } 3.6 \text{ V},$                                                           | $I_{OH} = -100  \mu A$                 | V <sub>CC</sub> - 0.2 |                    |              | V <sub>CC</sub> - 0.2 |                    |      |       |
| V <sub>OH</sub>    |                       | V 2.V                                                                                               | $I_{OH} = -24 \text{ mA}$              | 2                     |                    |              |                       |                    |      | V     |
|                    |                       | $V_{CC} = 3 V$                                                                                      | $I_{OH} = -32 \text{ mA}$              |                       |                    |              | 2                     |                    |      |       |
|                    |                       | $V_{CC} = 3 \text{ V to } 3.6 \text{ V},$                                                           | I <sub>OL</sub> = 100 μA               |                       |                    | 0.2          |                       |                    | 0.2  |       |
|                    |                       |                                                                                                     | I <sub>OL</sub> = 16 mA                |                       |                    |              |                       |                    | 0.4  |       |
| \/                 |                       |                                                                                                     | I <sub>OL</sub> = 24 mA                |                       |                    | 0.5          |                       |                    |      | V     |
| V <sub>OL</sub>    |                       | $V_{CC} = 3 V$                                                                                      | I <sub>OL</sub> = 32 mA                |                       |                    |              |                       |                    | 0.5  | V     |
|                    |                       |                                                                                                     | I <sub>OL</sub> = 48 mA                |                       |                    | 0.55         |                       |                    |      |       |
|                    |                       |                                                                                                     | I <sub>OL</sub> = 64 mA                |                       |                    |              |                       |                    | 0.55 |       |
|                    | Control innute        | $V_{CC} = 3.6 \text{ V}, V_{I} = V_{CC}$                                                            | or GND                                 |                       |                    | ±1           |                       |                    | ±1   |       |
|                    | Control inputs        | $V_{CC} = 0 \text{ or } 3.6 \text{ V}, V_{I} =$                                                     | 5.5 V                                  |                       |                    | 10           |                       |                    | 10   |       |
| I                  |                       |                                                                                                     | V <sub>I</sub> = 5.5 V                 |                       |                    | 10           |                       |                    | 10   | μΑ    |
|                    | Data inputs           | V <sub>CC</sub> = 3.6 V                                                                             | $V_I = V_{CC}$                         |                       |                    | 1            |                       |                    | 1    |       |
|                    |                       |                                                                                                     | V <sub>I</sub> = 0                     |                       |                    | -5           |                       |                    | -5   |       |
| I <sub>off</sub>   |                       | $V_{CC} = 0$ , $V_I$ or $V_O = 0$                                                                   | to 4.5 V                               |                       |                    |              |                       |                    | ±100 | μΑ    |
| I <sub>BHL</sub>   | (3)                   | V <sub>CC</sub> = 3 V,                                                                              | V <sub>I</sub> = 0.8 V                 | 75                    |                    |              | 75                    |                    |      | μΑ    |
| I <sub>BHH</sub>   | (4)                   | V <sub>CC</sub> = 3 V,                                                                              | V <sub>I</sub> = 2 V                   | -75                   |                    |              | -75                   |                    |      | μΑ    |
| I <sub>BHL</sub>   | o <sup>(5)</sup>      | V <sub>CC</sub> = 3.6 V,                                                                            | $V_I = 0$ to $V_{CC}$                  | 500                   |                    |              | 500                   |                    |      | μΑ    |
| I <sub>BHH</sub>   | O <sup>(6)</sup>      | V <sub>CC</sub> = 3.6 V,                                                                            |                                        | -500                  |                    |              | -500                  |                    |      | μΑ    |
| I <sub>EX</sub> (7 | 7)                    | V <sub>CC</sub> = 3 V,                                                                              | V <sub>O</sub> = 5.5 V                 |                       |                    | 125          |                       |                    | 125  | μΑ    |
| I <sub>OZ(F</sub>  | PU/PD) <sup>(8)</sup> | $V_{CC} \le 1.2 \text{ V}, V_{O} = 0.5 \text{ V}_{I} = \text{GND or } V_{CC}, \overline{\text{OE}}$ | V to V <sub>CC</sub> ,<br>= don't care |                       |                    | ±100         |                       |                    | ±100 | μΑ    |
| I <sub>OZH</sub>   |                       | $V_{CC} = 3.6 \text{ V}, V_{O} = 3 \text{ V}$<br>$V_{I} = 0.8 \text{ V or } 27 \text{ V}$           | ′,                                     |                       |                    | 5            |                       |                    | 5    | μΑ    |
| I <sub>OZL</sub>   |                       | $V_{CC} = 3.6 \text{ V}, V_{O} = 0.5 \text{ V}_{I} = 0.8 \text{ V or 2 V}$                          | V,                                     |                       |                    | <b>-</b> 5   |                       |                    | -5   | μΑ    |
|                    |                       | $V_{CC} = 3.6 \text{ V},$                                                                           | Outputs high                           |                       | 0.07               | 0.1          |                       | 0.07               | 0.1  |       |
| $I_{CC}$           |                       | $I_0 = 0$                                                                                           | Outputs low                            |                       | 3.2                | 5            |                       | 3.2                | 5    | mA    |
|                    |                       | $V_I = V_{CC}$ or GND                                                                               | Outputs disabled                       |                       | 0.07               | 0.1          |                       |                    | 0.1  |       |
| Δl <sub>CC</sub>   | (9)                   | $V_{CC}$ = 3 V to 3.6 V,<br>One input at $V_{CC}$ – 0.6<br>Other inputs at $V_{CC}$ o               | S V,<br>r GND                          |                       |                    | 0.4          |                       |                    | 0.4  | mA    |
| Ci                 |                       | $V_{CC} = 3.3 \text{ V},$                                                                           | $V_{I} = 3.3 \text{ V or } 0$          |                       | 3.5                |              |                       | 3.5                |      | pF    |
| Co                 |                       | V <sub>CC</sub> = 3.3 V,                                                                            | $V_0 = 3.3 \text{ V or } 0$            |                       | 6                  |              |                       | 6                  |      | pF    |

- Product preview
- All typical values are at  $V_{CC}$  = 2.5 V,  $T_A$  = 25°C. The bus-hold circuit can sink at least the minimum low sustaining current at  $V_{IL}$  max.  $I_{BHL}$  should be measured after lowering  $V_{IN}$  to GND and then raising it to V<sub>II</sub> max.
- The bus-hold circuit can source at least the minimum high sustaining current at V<sub>IH</sub> min. I<sub>BHH</sub> should be measured after raising V<sub>IN</sub> to (4)  $V_{\mbox{\footnotesize CC}}$  and then lowering it to  $V_{\mbox{\footnotesize IH}}$  min.
- An external driver must source at least I<sub>BHLO</sub> to switch this node from low to high.
- An external driver must sink at least  $I_{\mbox{\footnotesize{BHHO}}}$  to switch this node from high to low. (6)
- Current into an output in the high state when  $V_O > V_{CC}$
- High-impedance state during power up or power down
- This is the increase in supply current for each input that is at the specified TTL voltage level rather than V<sub>CC</sub> or GND.



Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

# SN54ALVTH16374, SN74ALVTH16374 2.5-V/3.3-V 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS



SCES068G-JUNE 1996-REVISED NOVEMBER 2006

#### **Timing Requirements**

over recommended operating free-air temperature range  $V_{CC}$  = 2.5 V  $\pm$  0.2 V (unless otherwise noted) (see Figure 1)

|                    |                                 |           | SN54ALVTH | 16374 <sup>(1)</sup> | SN74ALVTH | 16374 | UNIT |
|--------------------|---------------------------------|-----------|-----------|----------------------|-----------|-------|------|
|                    |                                 |           | MIN       | MAX                  | MIN       | MAX   | UNIT |
| f <sub>clock</sub> | Clock frequency                 |           |           | 150                  |           | 150   | MHz  |
| t <sub>w</sub>     | Pulse duration, CLK high or low |           | 1.5       |                      | 1.5       |       | ns   |
|                    | Setup time, data before CLK↑    | Data high | 1.1       |                      | 1         |       | 20   |
| t <sub>su</sub>    | Setup time, data before CLK     | Data low  | 1.4       |                      | 1.3       |       | ns   |
|                    | Hold time, data after CLK↑      | Data high | 0.6       |                      | 0.5       |       | 20   |
| t <sub>h</sub>     | Hold time, data after CLK       | Data low  | 0.9       |                      | 0.8       |       | ns   |

<sup>(1)</sup> Product preview

#### **Timing Requirements**

over recommended operating free-air temperature range  $V_{CC}$  = 3.3 V  $\pm$  0.3 V (unless otherwise noted) (see Figure 2)

|                    |                                 |           | SN54ALVTH | 16374 <sup>(1)</sup> | SN74ALVTI | 116374 | LINUT |
|--------------------|---------------------------------|-----------|-----------|----------------------|-----------|--------|-------|
|                    |                                 |           | MIN       | MAX                  | MIN       | MAX    | UNIT  |
| f <sub>clock</sub> | Clock frequency                 |           |           | 25                   |           | 250    | MHz   |
| t <sub>w</sub>     | Pulse duration, CLK high or low |           | 1.5       |                      | 1.5       |        | ns    |
|                    | Saturations data before CLIV    | Data high | 1.1       |                      | 1         |        |       |
| l <sub>su</sub>    | Setup time, data before CLK↑    | Data low  | 1.6       |                      | 1.5       |        | ns    |
|                    | Hald time and the CLIVA         | Data high | 0.6       |                      | 0.5       |        |       |
| t <sub>h</sub>     | Hold time, data after CLK↑      | Data low  | 1.1       |                      | 1         |        | ns    |

<sup>(1)</sup> Product preview



Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



# SN54ALVTH16374, SN74ALVTH16374 2.5-V/3.3-V 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

#### **Switching Characteristics**

over recommended operating free-air temperature range,  $C_L$  = 30 pF,  $V_{CC}$  = 2.5 V  $\pm$  0.2 V (unless otherwise noted) (see Figure 1)

| DADAMETED        | FROM    | то       | SN54ALVTH10 | 6374 <sup>(1)</sup> | SN74ALVTH | 116374 | LINUT |
|------------------|---------|----------|-------------|---------------------|-----------|--------|-------|
| PARAMETER        | (INPUT) | (OUTPUT) | MIN         | MAX                 | MIN       | MAX    | UNIT  |
| f <sub>max</sub> |         |          | 150         |                     | 150       |        | MHz   |
| t <sub>PLH</sub> | CLK     | 0        | 1.4         | 3.9                 | 1.5       | 3.8    |       |
| t <sub>PHL</sub> | CLK     | Q        | 1.4         | 3.9                 | 1.5       | 3.8    | ns    |
| t <sub>PZH</sub> | - OE    | 0        | 1           | 4.2                 | 1         | 4.1    | no    |
| t <sub>PZL</sub> | OE OE   | Q        | 1           | 3.8                 | 1         | 3.7    | ns    |
| t <sub>PHZ</sub> | - OE    | 0        | 1.7         | 4.3                 | 1.8       | 4.2    |       |
| t <sub>PLZ</sub> | OE OE   | Q        | 1           | 3.5                 | 1         | 3.4    | ns    |

<sup>(1)</sup> Product preview

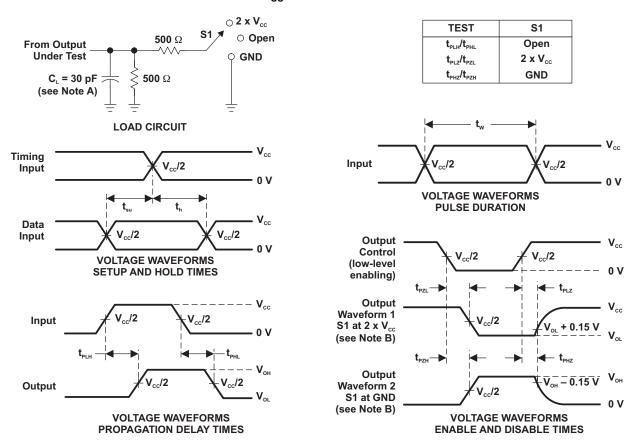
#### **Switching Characteristics**

over recommended operating free-air temperature range,  $C_L$  = 50 pF,  $V_{CC}$  = 3.3 V  $\pm$  0.3 V (unless otherwise noted) (see Figure 2)

| DADAMETED        | FROM    | то       | SN54ALVTH1 | 6374 <sup>(1)</sup> | SN74ALVTH | 16374 | LIMIT |
|------------------|---------|----------|------------|---------------------|-----------|-------|-------|
| PARAMETER        | (INPUT) | (OUTPUT) | MIN        | MAX                 | MIN       | MAX   | UNIT  |
| f <sub>max</sub> |         |          | 250        |                     | 250       |       | MHz   |
| t <sub>PLH</sub> | CLK     | Q        | 1          | 3.4                 | 1         | 3.2   | 20    |
| t <sub>PHL</sub> | CLK     | Q        | 1          | 3.3                 | 1         | 3.2   | ns    |
| t <sub>PZH</sub> | ŌĒ      | Q        | 1          | 3.9                 | 1         | 3.8   | 20    |
| t <sub>PZL</sub> | OE      | Q        | 1          | 3.4                 | 1         | 3.3   | ns    |
| t <sub>PHZ</sub> | ŌĒ      | 0        | 1          | 4.7                 | 1         | 4.6   | 20    |
| t <sub>PLZ</sub> | OE      | Q        | 1          | 4.4                 | 1         | 4.2   | ns    |

(1) Product preview

Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

## SN54ALVTH16374, SN74ALVTH16374 2.5-V/3.3-V 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS



SCES068G-JUNE 1996-REVISED NOVEMBER 2006

#### PARAMETER MEASUREMENT INFORMATION $V_{cc} = 2.5 V \pm 0.2 V$

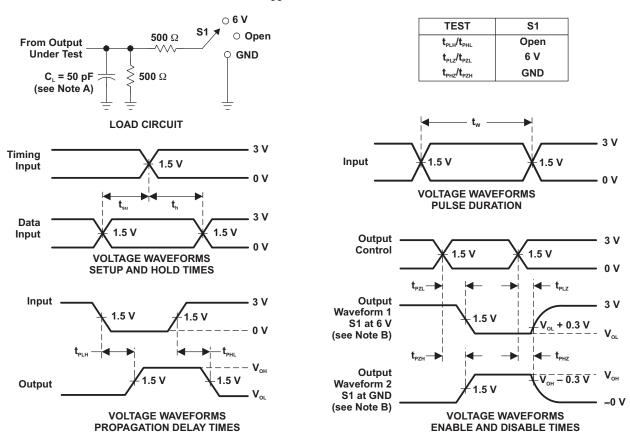


NOTES: A.  $C_L$  includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_o$  = 50  $\Omega$ ,  $t_i \leq$  2 ns,
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



## SN54ALVTH16374, SN74ALVTH16374 2.5-V/3.3-V 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCES068G-JUNE 1996-REVISED NOVEMBER 2006

# PARAMETER MEASUREMENT INFORMATION $V_{cc}$ = 3.3 V $\pm 0.3$ V



NOTES: A.  $C_L$  includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_o = 50 \Omega$ ,  $t_i \leq 2.5 \text{ ns}$ ,  $t_i \leq 2.5 \text{ ns}$
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms



Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

10-Jun-2014

#### PACKAGING INFORMATION

| Orderable Device  | Status   | Package Type               | Package<br>Drawing |    | Package<br>Qty | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp      | Op Temp (°C) | Device Marking (4/5) | Samples |
|-------------------|----------|----------------------------|--------------------|----|----------------|----------------------------|------------------|--------------------|--------------|----------------------|---------|
| 74ALVTH16374ZQLR  | ACTIVE   | BGA<br>MICROSTAR<br>JUNIOR | ZQL                | 56 | 1000           | Green (RoHS<br>& no Sb/Br) | SNAGCU           | Level-1-260C-UNLIM | -40 to 85    | VT374                | Samples |
| SN74ALVTH16374DL  | ACTIVE   | SSOP                       | DL                 | 48 | 25             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ALVTH16374           | Samples |
| SN74ALVTH16374DLR | ACTIVE   | SSOP                       | DL                 | 48 | 1000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ALVTH16374           | Samples |
| SN74ALVTH16374GR  | ACTIVE   | TSSOP                      | DGG                | 48 | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | ALVTH16374           | Samples |
| SN74ALVTH16374KR  | OBSOLETI | BGA<br>MICROSTAR<br>JUNIOR | GQL                | 56 |                | TBD                        | Call TI          | Call TI            | -40 to 85    |                      |         |
| SN74ALVTH16374VR  | ACTIVE   | TVSOP                      | DGV                | 48 | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM | -40 to 85    | VT374                | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

Information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free/Green conversio

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device

Addendum-Page 1



# Distributor of Texas Instruments: Excellent Integrated System Limited Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PACKAGE OPTION ADDENDUM

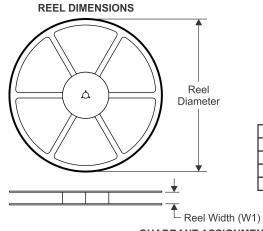
www.ti.com 10-Jun-2014

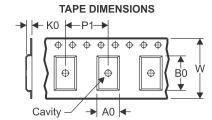
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "--" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information that way not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



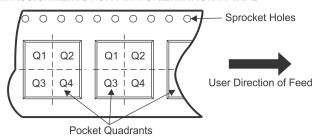

#### PACKAGE MATERIALS INFORMATION

www.ti.com 9-Jan-2013

#### TAPE AND REEL INFORMATION






| A0  | Dimension designed to accommodate the component width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B0  | Dimension designed to accommodate the component length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 140 | Discouries desired to a second state the |

K0 Dimension designed to accommodate the component thickness

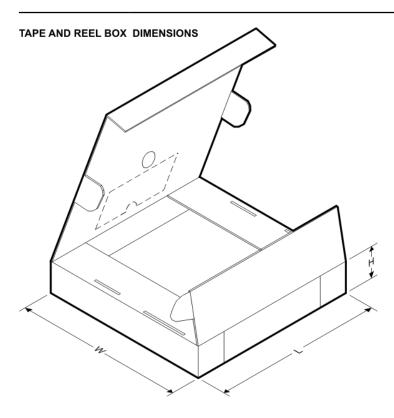
W Overall width of the carrier tape

P1 Pitch between successive cavity centers

#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



#### \*All dimensions are nominal


| Device            | Package<br>Type                  | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------------|----------------------------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| 74ALVTH16374ZQLR  | BGA MI<br>CROSTA<br>R JUNI<br>OR | ZQL                | 56 | 1000 | 330.0                    | 16.4                     | 4.8        | 7.3        | 1.5        | 8.0        | 16.0      | Q1               |
| SN74ALVTH16374DLR | SSOP                             | DL                 | 48 | 1000 | 330.0                    | 32.4                     | 11.35      | 16.2       | 3.1        | 16.0       | 32.0      | Q1               |
| SN74ALVTH16374GR  | TSSOP                            | DGG                | 48 | 2000 | 330.0                    | 24.4                     | 8.6        | 15.8       | 1.8        | 12.0       | 24.0      | Q1               |
| SN74ALVTH16374VR  | TVSOP                            | DGV                | 48 | 2000 | 330.0                    | 16.4                     | 7.1        | 10.2       | 1.6        | 12.0       | 16.0      | Q1               |

Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

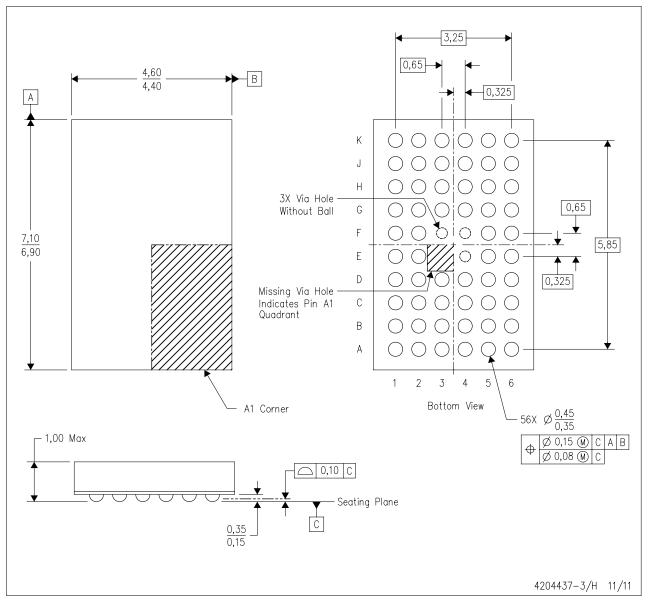


# **PACKAGE MATERIALS INFORMATION**

www.ti.com 9-Jan-2013



#### \*All dimensions are nominal


| Device            | Package Type            | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------------|-------------------------|-----------------|------|------|-------------|------------|-------------|
| 74ALVTH16374ZQLR  | BGA MICROSTAR<br>JUNIOR | ZQL             | 56   | 1000 | 333.2       | 345.9      | 28.6        |
| SN74ALVTH16374DLR | SSOP                    | DL              | 48   | 1000 | 367.0       | 367.0      | 55.0        |
| SN74ALVTH16374GR  | TSSOP                   | DGG             | 48   | 2000 | 367.0       | 367.0      | 45.0        |
| SN74ALVTH16374VR  | TVSOP                   | DGV             | 48   | 2000 | 367.0       | 367.0      | 38.0        |



## **MECHANICAL DATA**

ZQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY



NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

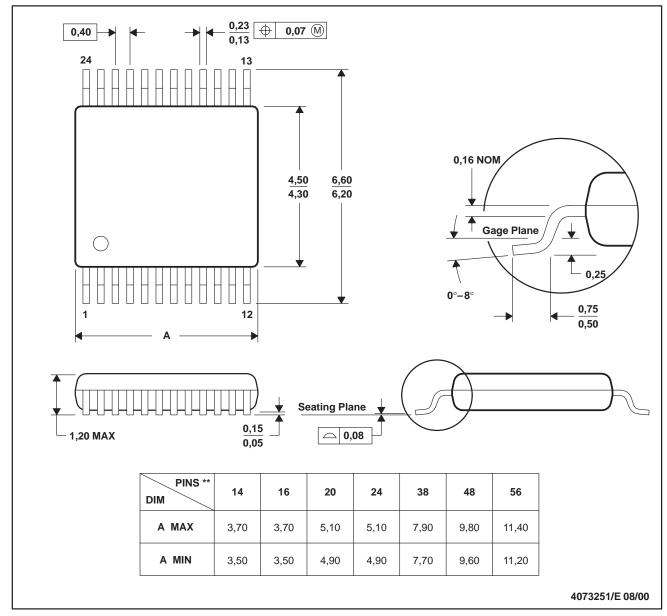
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is Pb-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

MicroStar Junior is a trademark of Texas Instruments





Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


#### MECHANICAL DATA

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

#### DGV (R-PDSO-G\*\*)

#### **24 PINS SHOWN**

#### **PLASTIC SMALL-OUTLINE**



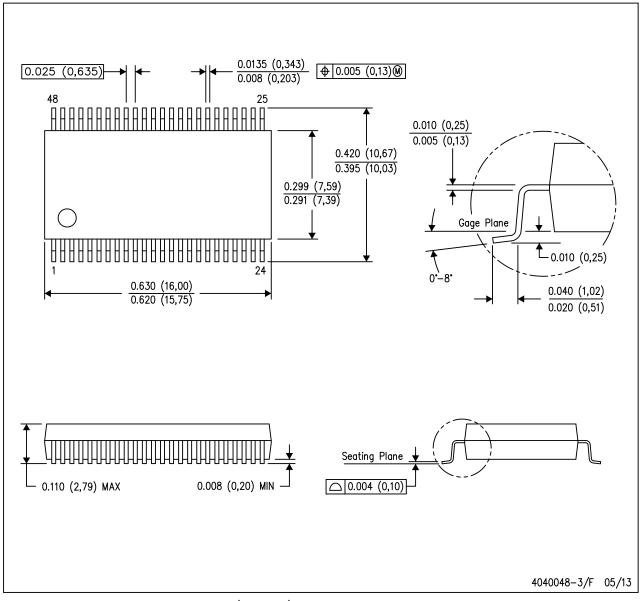
NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153

14/16/20/56 Pins - MO-194






#### **MECHANICAL DATA**

DL (R-PDSO-G48)

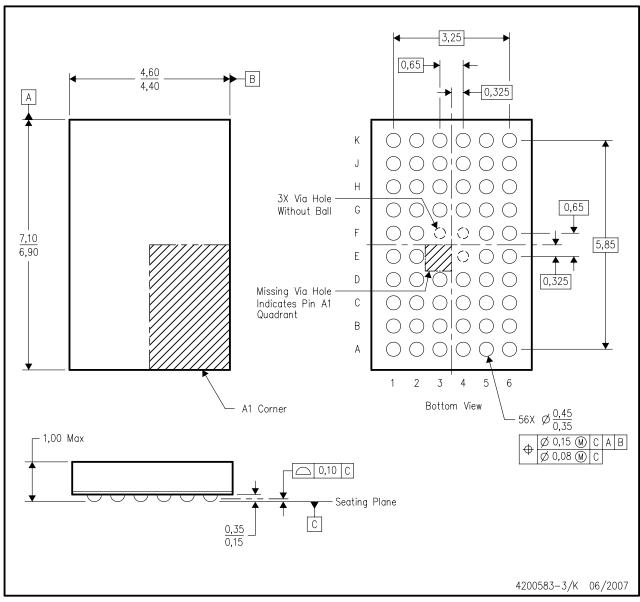
PLASTIC SMALL-OUTLINE PACKAGE



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.






### **MECHANICAL DATA**

# GQL (R-PBGA-N56)

## PLASTIC BALL GRID ARRAY



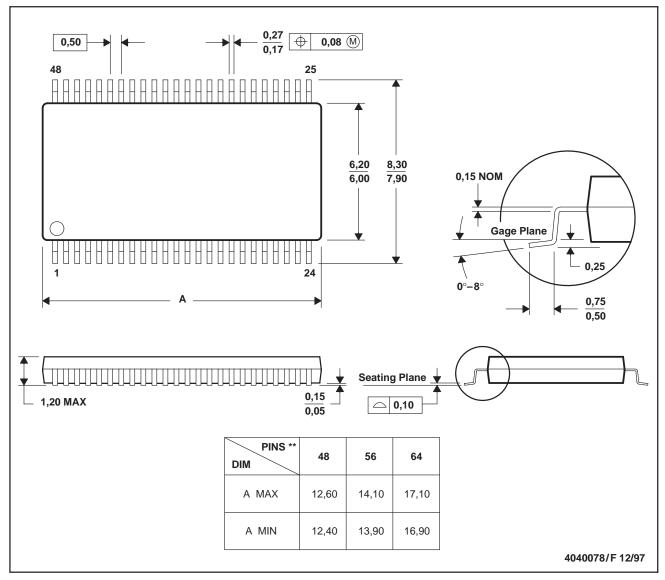
NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.





Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


#### **MECHANICAL DATA**

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

#### DGG (R-PDSO-G\*\*)

#### **48 PINS SHOWN**

#### PLASTIC SMALL-OUTLINE PACKAGE



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153





# **Distributor of Texas Instruments: Excellent Integrated System Limited**Datasheet of SN74ALVTH16374KR - IC D-TYPE POS TRG DUAL 56BGA

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

www.ti.com/audio Audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals www.ti.com/computers **Data Converters** dataconverter.ti.com **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

 Clocks and Timers
 www.ti.com/clocks
 Industrial
 www.ti.com/industrial

 Interface
 interface.ti.com
 Medical
 www.ti.com/medical

 Logic
 logic.ti.com
 Security
 www.ti.com/security

Power Mgmt Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors <a href="https://www.ti.com/omap">www.ti.com/omap</a> TI E2E Community <a href="https://e2e.ti.com">e2e.ti.com</a>

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated