Excellent Integrated System Limited

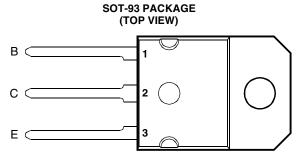
Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Bourns Inc. BD245C-S

For any questions, you can email us directly: sales@integrated-circuit.com

Distributor of Bourns Inc.: Excellent Integrated System Limited


Datasheet of BD245C-S - TRANS NPN DARL 100V 10A

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

BD245, BD245A, BD245B, BD245C NPN SILICON POWER TRANSISTORS

BOURNS®

- Designed for Complementary Use with the BD246 Series
- 80 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- 15 A Peak Collector Current
- Customer-Specified Selections Available

Pin 2 is in electrical contact with the mounting base.

MDTRAAA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
	BD245		55		
Collector-emitter voltage ($R_{BF} = 100 \Omega$)	BD245A	N.	70	V	
Collector-enfilter voltage (N _{BE} = 100 sz)	BD245B	VCER	90	v	
	BD245C		115		
	BD245		45		
Collector-emitter voltage (I _C = 30 mA)	BD245A	V _{CEO}	60	V	
	BD245B		80		
	BD245C		100		
Emitter-base voltage		V _{EBO}	5	V	
Continuous collector current		I _C	10	Α	
Peak collector current (see Note 1)	I _{CM}	15	Α		
Continuous base current	I _B	3	Α		
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	P _{tot}	80	W		
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3	P _{tot}	3	W		
Unclamped inductive load energy (see Note 4)		½Ll _C ²	62.5	mJ	
Operating junction temperature range		T _j	-65 to +150	°C	
Storage temperature range		T _{stg}	-65 to +150	°C	
Lead temperature 3.2 mm from case for 10 seconds	T_L	250	°C		

- NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.
 - 2. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.
 - 3. Derate linearly to 150°C free air temperature at the rate of 24 mW/°C.
 - 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 20 V.

Distributor of Bourns Inc.: Excellent Integrated System Limited

Datasheet of BD245C-S - TRANS NPN DARL 100V 10A

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

BD245, BD245A, BD245B, BD245C NPN SILICON POWER TRANSISTORS

electrical characteristics at 25°C case temperature

	PARAMETER		TEST CONDITION	S	MIN	TYP	MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = 30 mA	I _B = 0	BD245 BD245A BD245B	45 60 80			V
	-	(see Note 5)		BD245C	100			
		$V_{CE} = 55 V$	$V_{BE} = 0$	BD245			0.4	
I _{CES}	Collector-emitter	$V_{CE} = 70 V$	$V_{BE} = 0$	BD245A			0.4	mA
CES	cut-off current	$V_{CE} = 90 V$	$V_{BE} = 0$	BD245B			0.4	1117
		V _{CE} = 115 V	$V_{BE} = 0$	BD245C			0.4	
loso	Collector cut-off	V _{CE} = 30 V	I _B = 0	BD245/245A			0.7	mA
ICEO	current	$V_{CE} = 60 V$	$I_B = 0$	BD245B/245C			0.7	
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	I _C = 0				1	mA
h _{FE}	Forward current	$V_{CE} = 4 V$ $V_{CE} = 4 V$	$I_C = 1 A$ $I_C = 3 A$	(see Notes 5 and 6)	40 20			
''FE	transfer ratio	$V_{CE} = 4 V$	$I_{\rm C} = 10 {\rm A}$	(See Notes o and o)	4			
V _{CE(sat)}	Collector-emitter saturation voltage	$I_B = 0.3 \text{ A}$ $I_B = 2.5 \text{ A}$	$I_C = 3 A$ $I_C = 10 A$	(see Notes 5 and 6)			1 4	٧
	Base-emitter	$I_B = 2.5 A$ $V_{CE} = 4 V$	$I_C = 10 \text{ A}$ $I_C = 3 \text{ A}$				1.6	
V_{BE}	voltage	$V_{CE} = 4V$ $V_{CE} = 4V$	$I_C = 3A$ $I_C = 10 A$	(see Notes 5 and 6)	3		3	V
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 kHz	20			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 MHz	3			

NOTES: 5. These parameters must be measured using pulse techniques, $t_0 = 300 \, \mu s$, duty cycle $\leq 2\%$.

thermal characteristics

PARAMETER	MIN	TYP	MAX	UNIT
R _{0JC} Junction to case thermal resistance			1.56	°C/W
R _{0JA} Junction to free air thermal resistance			42	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _{on}	Turn-on time	I _C = 1 A	$I_{B(on)} = 0.1 A$	$I_{B(off)} = -0.1 \text{ A}$		0.3		μs
t _{off}	Turn-off time	$V_{BE(off)} = -3.7 \text{ V}$	$R_L = 20 \Omega$	$t_p = 20 \mu s, dc \le 2\%$		1		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

BD245, BD245A, BD245B, BD245C NPN SILICON POWER TRANSISTORS

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN vs COLLECTOR CURRENT $T_{CE} = 4 \text{ V}$ $T_{CE} = 25 ^{\circ}\text{C}$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} < 2\%$ $T_{DE} = 300 \text{ µs, duty cycle} <$

Figure 1.

COLLECTOR-EMITTER SATURATION VOLTAGE

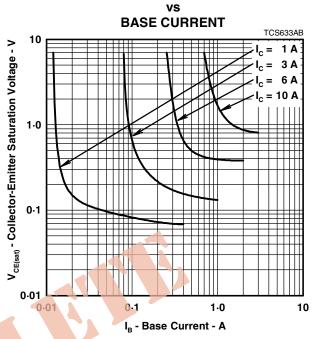


Figure 2.

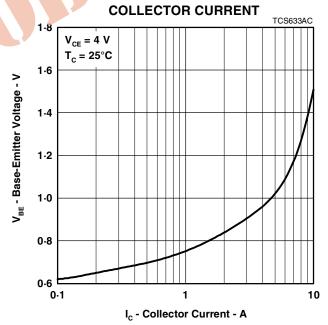
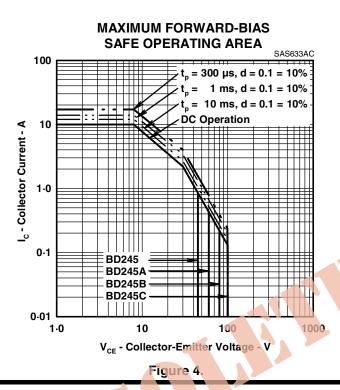
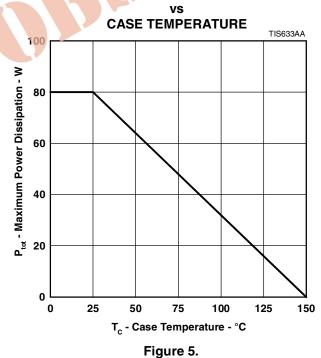



Figure 3.


Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

PRODUCT INFORMATION