

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

	NONVOLATILE 5-BIT REGISTER WITH I ² C INTERFACE SCPS050A – MARCH 1999 – REVISED APRIL 1999
 EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process 	D, DB, OR PW PACKAGE (TOP VIEW)
 Useful for Jumperless Configuration of PC Motherboard 	$I^{2}C$ SCL $\begin{bmatrix} 1 \\ 1 \end{bmatrix} V_{CC}$ $I^{2}C$ SDA $\begin{bmatrix} 2 \\ 15 \end{bmatrix}$ WP
 Inputs Accept Voltages to 5.5 V 	OVERRIDE 3 14 NON-MUXED OUT
 MUX OUT Signals are 2.5-V Outputs 	MUX IN A 🛛 4 13 🗍 MUX SELECT
 NON-MUXED OUT Signal is a 3.3-V Output 	MUX IN B 🛛 5 12 🛛 MUX OUT A
 Minimum of 1000 Write Cycles 	
 Minimum of 10 Years Data Retention 	
 Package Options Include Plastic Small-Outline (D), Shrink Small-Outline 	

description

Packages

This 4-bit 1-of-2 multiplexer with I²C input interface is designed for 3-V to 3.6-V V_{CC} operation.

The PCA8550 is designed to multiplex four bits of data from parallel inputs or from I^2C input data stored in a nonvolatile register. An additional bit of register output also is provided, which is latched to prevent changes in the output value during the write cycle. The factory default for the contents of the register is all low. These stored values can be read from, or written to, using the I^2C bus. The ability to control writing to the register is provided by the write protect (WP) input. The override (OVERRIDE) input forces all the register outputs to a low.

This device provides a fast-mode (400 kbit/s) or standard-mode (100 kbit/s) I²C serial interface for data input and output. The implementation is as a slave. The device address is specified in the I²C interface definition table. Both of the I²C Schmitt-trigger inputs (SCL and SDA) provide integrated pullup resistors and are 5-V tolerant.

The PCA8550 is characterized for operation from 0°C to 70°C.

(DB), and Thin Shrink Small-Outline (PW)

FUNCTION TABLE				
INPU	JTS	OUTPUTS		
MUX SELECT	MUX SELECT OVERRIDE		NON-MUXED OUT	
L	L	L	L	
L	н	Nonvolatile register	Nonvolatile register	
н	Х	MUX IN	Latched NON-MUXED OUT [†]	

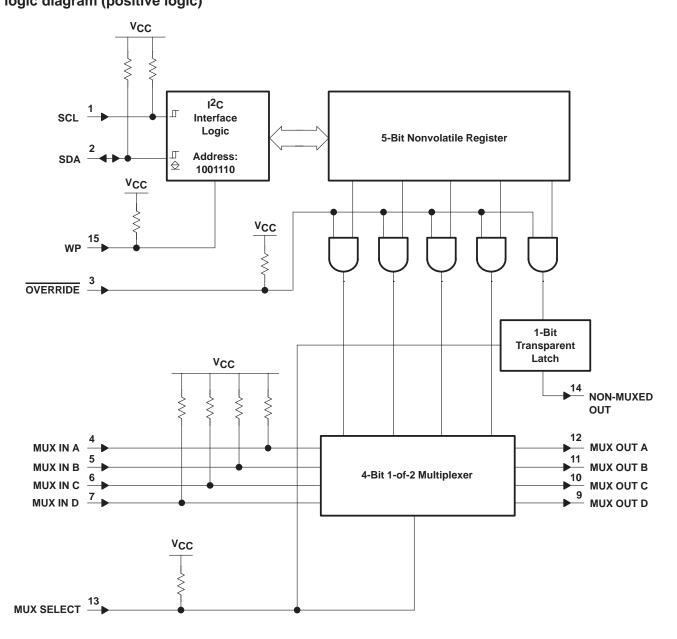
FUNCTION TABLE

[†] The latched NON-MUXED OUT state is the value present on the NON-MUXED OUT output at the time the MUX SELECT input transitions from the low to the high state.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


PCA8550

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

PCA8550 **NONVOLATILE 5-BIT REGISTER** WITH I²C INTERFACE SCPS050A – MARCH 1999 – REVISED APRIL 1999

logic diagram (positive logic)

I²C interface

 $I^{2}C$ communication with this device is initiated by a master sending a start condition, a high-to-low transition on the serial data (SDA) input/output while the serial clock (SCL) input is high. After the start condition, the device address byte is sent, MSB first, including the data-direction bit (R/W). This device does not respond to the general call address. After receiving the valid address byte, this device responds with an acknowledge, a low on the SDA input/output during the high of the acknowledge-related clock pulse.

The data byte follows the address acknowledge. If the R/\overline{W} bit is high, the data from this device are the values read from the nonvolatile register. If the R/\overline{W} bit is low, the data are from the master, to be written into the register. A valid data byte is one in which the three high-order bits are low. The first valid data byte that is received is written into the register, following the stop condition. If an invalid data byte is received, it is acknowledged, but is not written into the register. The data byte is followed by an acknowledge sent from this device. If other data bytes are sent from the master following the acknowledge, they are ignored by this device.

A stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master. If the WP input is low during the falling edge of the first valid data byte acknowledge on the SCL input and the R/\overline{W} bit is low, the stop condition causes the I²C interface logic to write the data byte value into the nonvolatile register. Data are written only if complete bytes are received and acknowledged. Writing to the register takes time (t_{wr}), during which the device does not respond to its slave address. If the WP input is high, the I²C interface logic does not write to the register.

I²C INTERFACE DEFINITION TABLE

DVTE	BIT							
BYTE	7 (MSB)	6	5	4	3	2	1	0 (LSB)
Address	Н	L	L	Н	Н	Н	L	R/W
Data	L	L	L	NON- MUXED OUT	MUX OUT D	MUX OUT C	MUX OUT B	MUX OUT A

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} –0.5 V to 6.5 V
Input voltage range, V _I (see Note 1)–0.5 V to 6.5 V
Output voltage range, V _O (SDA) (see Note 1)
Output voltage range, V _O (MUX OUT outputs) (see Note 1)
Output voltage range, V _O (NON-MUXED OUT output) (see Notes 1 and 2)0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)–50 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) (see Note 2)
Input/output clamp current, I _{OK} (V _O < 0)
Continuous output current, I _O (V _O = 0 to V _{CC}) (see Note 2) ±15 mA
Continuous current through V _{CC} or GND ±30 mA
Package thermal impedance, θ_{JA} (see Note 3): D package 113°C/W
DB package 131°C/W
PW package 149°C/W
Storage temperature range, T _{stg} –65°C to 85°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The value of V_{CC} is provided in the recommended operating conditions table.

3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions

		MIN	MAX	UNIT
VCC	Supply voltage	3	3.6	V
	SCL, SDA	2.7	4	
VIH	High-level input voltage OVERRIDE, MUX IN, MUX SELECT, WP	2	4	V
	SCL, SDA	-0.5	0.9	
VIL	Low-level input voltage OVERRIDE, MUX IN, MUX SELECT, WP	-0.5	0.8	V
ЮН	High-level output current MUX OUT, NON-MUXED OUT		-2	mA
	SDA		6	
IOL	Low-level output current MUX OUT, NON-MUXED OUT		2	mA
Δt/Δv	Input transition rise or fall rate OVERRIDE, MUX IN, MUX SELECT, WP		10	ns/V
Т _А	Operating free-air temperature	0	70	°C

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
VIK	Input diode clamp voltage	II = -18 mA	-1.5		V
V _{hys} †	SCL, SDA		0.19		V
		I _{OH} = -100 μA	2	2.625	
	MUX OUT	I _{OH} = -1 mA	1.7	2.625	
VOH	NON-MUXED OUT	I _{OH} = -100 μA	2.4	3.6	V
	NON-MOXED OUT	I _{OH} = -2 mA	2	3.6	
	MUX OUT	I _{OL} = 100 μA	-0.3	0.4	
		$I_{OL} = 2 \text{ mA}$	-0.3	0.7	
Ve	NON-MUXED OUT	I _{OL} = 100 μA	-0.5	0.4	v
VOL		$I_{OL} = 2 \text{ mA}$	-0.5		
	SDA	I _{OL} = 3 mA		0.4	
		I _{OL} = 6 mA		0.6	
	SCL, SDA		-1.5	-12	
IIН	OVERRIDE, MUX SELECT, WP	$V_{IH} = 2.4 V$		-100	μA
	MUX IN		-0.166	-0.75	mA
	SCL, SDA		-7	-32	
Ι _Ι	OVERRIDE, MUX SELECT, WP	$V_{IL} = 0.4 V$	-86	-267	μA
	MUX IN		-0.72	-2	mA
	During read or write cycle	$V_{I} = 0 \text{ to } V_{CC}, \qquad I_{O} = 0, \qquad \qquad V_{CC} = 3.3 \text{ V}$		10	mA
ICC	Not during read or write cycle	$V_{I} = V_{CC},$ $I_{O} = 0$		500	μΑ
Ci		$V_{I} = V_{CC}$ or GND		10	рF

 $^{\dagger}V_{hys}$ is the hysteresis of Schmitt-trigger inputs.

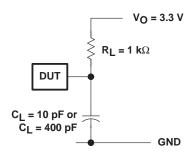
nonvolatile storage specifications

PARAMETER	SPECIFICATIONS
Write time (t _{wr})	10 ms, typical
Memory-cell data retention	10 years, minimum
Maximum number of memory-cell write cycles	1000 cycles, minimum

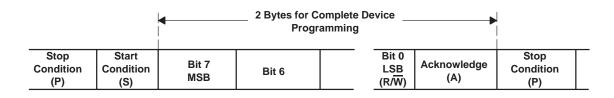
I²C interface timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

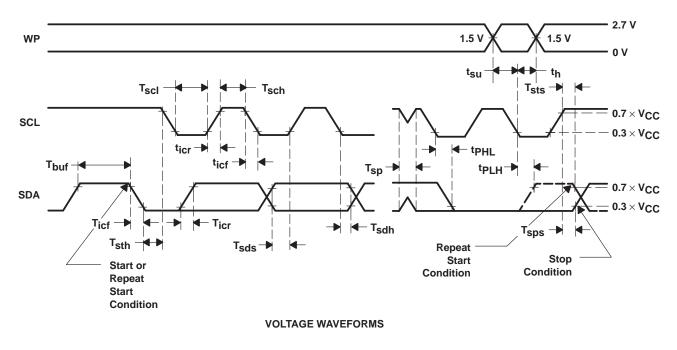
		V _{CC} = 3.3	V_{CC} = 3.3 V \pm 0.3 V	
		MIN	MAX	UNIT
fscl	I ² C clock frequency	10	400	kHz
T _{sch}	I ² C clock high time	600		ns
T _{scl}	I ² C clock low time	1.3		μs
Т _{sp}	I ² C spike time	0	50	ns
T _{sds}	I ² C serial data setup time	100		ns
T _{sdh}	I ² C serial data hold time	0	900	ns
Ticr	I ² C input rise time	20	300	ns
Ticf	I ² C input fall time	20	300	ns
T _{ocf}	I ² C output fall time (10-pF to 400-pF bus)	20 + 0.1 C _b †	250	ns
Tbuf	I ² C bus free time between stop and start	1.3		μs
T _{sts}	I ² C start or repeated start condition setup	600		ns
T _{sth}	I ² C start or repeated start condition hold	600		ns
T _{sps}	I ² C stop condition setup	600		ns
C _b †	I ² C bus capacitive load		400	pF

 † C_b = capacitance of one bus line in pF.

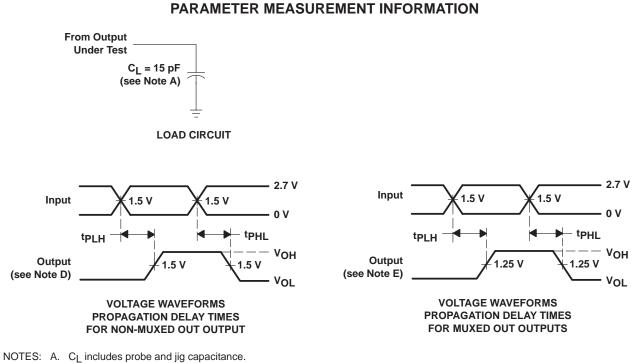

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

PARAMETER		FROM (INPUT)	TO (OUTPUT)	V _{CC} = 3.3 V ± 0.3 V		UNIT
				MIN	MAX	
t _{mpd}	Mux input to output propagation delay	MUX IN	MUX OUT		20	ns
t _{sov}	MUX SELECT to output valid	MUX SELECT	Output valid		22	ns
t _{ovn}	OVERRIDE to NON-MUXED OUT output delay	OVERRIDE	NON-MUXED OUT		15	ns
t _{ovm}	OVERRIDE to MUX OUT output delay	OVERRIDE	MUX OUT		25	ns
t _{su}	Setup time	WP	Falling edge of first valid data byte acknowledge on the SCL input	30		ns
th	Hold time	WP	Falling edge of first valid data byte acknowledge on the SCL input	120		ns
tr	Output rise time			1	3	ns/V
t _f	Output fall time			1	3	ns/V





LOAD CIRCUIT



BYTE	DESCRIPTION
1	I ² C address
2	Nonvolatile register data

Figure 1. I²C Interface Load Circuit and Voltage Waveforms

- - B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns. C. The outputs are measured one at a time with one transition per measurement.
 - D. tpLH and tpHL are the same as t_{SOV} and t_{OVN}.
 - E. tpLH and tpHL are the same as t_{mpd} , t_{sov} , and t_{ovm} .

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated