

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Walsin Technology Corporation RFBPF2012080A7T

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

Approval sheet

APPROVAL SHEET

RFBPF Series – 2012(0805)- RoHS Compliance

MULTILAYER CERAMIC BAND PASS FILTER

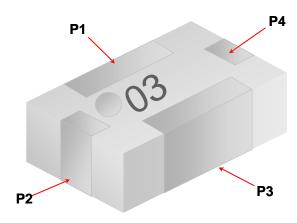
2.4 GHz ISM Band Working Frequency

P/N: RFBPF2012080A7T

*Contents in this sheet are subject to change without prior notice.

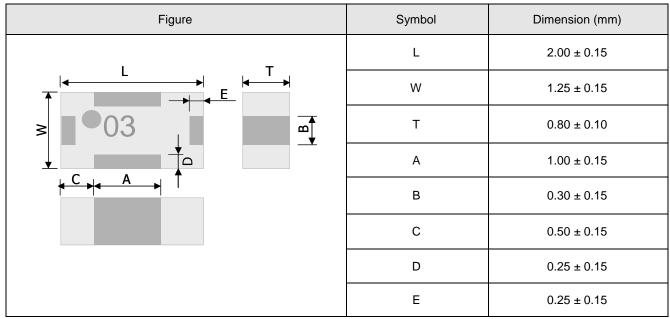
Approval sheet

華新科技股份有限公司 Walsin Technology Corporation


FEATURES

- 1. Miniature footprint: 2.0 X 1.2 X 0.8 mm³
- 2. Low Profile Thickness
- 3. Low Insertion loss
- 4. High Rejection Rate
- 5. High attenuation on 2nd harmonic suppressed
- 6. LTCC process

APPLICATIONS


- 1. 2.4GHz ISM band RF applications
- 2. Bluetooth, Wireless LAN 802.11b/g, HomeRF

CONSTRUCTION

PIN	Connection	PIN	Connection
1	GND	4	INPUT/OUTPUT
2	INPUT/OUTPUT		
3	GND		

DIMENSIONS

Approval sheet

ELECTRICAL CHARACTERISTICS

8

華新科技股份有限公司 Walsin Technology Corporation

RFBPF2012080A7T **Specification** Frequency range 2450 ± 50 MHz Insertion Loss 2.8 dB max (typ. 2.5 dB) VSWR 2.0 max Impedance **50** Ω 40 dB @ DC~1600 MHz 35 dB @ 1710 MHz 25 dB @ 1900 MHz 12 dB @ 2100 MHz Attenuation (min.) 8 dB @ 2170 MHz 30 dB @ 3100 MHz 40 dB @ 4800~5000 MHz 20 dB @ 7200~7500 MHz **Operation Temperature Range** -45°C ~ +85°C **Typical Electrical Chart** 0 S-Parameters, dB -20--40 -60

SOLDER LAND PATTERN

Figure	Symbol	Dimension (mm)
	L1	1.270 ± 0.10
L1 W_1 S_2 S_3 L_2 W_2 W_3 W_4 U_4 U_3 U_3 U_4 U_3 U_4 U_3 U_4 U_3 U_3 U_4 U_3	L2	0.508 ± 0.05
	L3	0.610 ± 0.05
	L4	0.381 ± 0.05
	L5	0.508 ± 0.05
	W1	0.762 ± 0.10
	W2	1.016 ± 0.10
	W3	0.406 ± 0.05
	W4	0.762 ± 0.05
	S1	0.489 ± 0.05
	S2	0.254 ± 0.05
epending on PCB material and thickness.	S3	0.381 ± 0.05
▶ are the grounding through holes.	Φ	0.406 ± 0.10

Frequency, GHz

3

Approval sheet

華新科技股份有限公司 Walsin Technology Corporation

RELIABILITY TEST

Test item	Test condition / Test method	Specification
Solderability JIS C 0050-4.6	*Solder bath temperature : $235 \pm 5^{\circ}$ C	At least 95% of a surface of each terminal electrode must be covered by fresh solder.
JESD22-B102D	*Immersion time : 2 ± 0.5 sec *Solder : Sn3Ag0.5Cu for lead-free	
Leaching (Resistance to dissolution of metallization) IEC 60068-2-58	*Solder bath temperature : $260 \pm 5^{\circ}$ C *Leaching immersion time : 30 ± 0.5 sec *Solder : SN63A	Loss of metallization on the edges of each electrode shall not exceed 25%.
Resistance to soldering heat JIS C 0050-5.4	*Preheating temperature : 120~150°C, 1 minute. *Solder temperature : 270±5°C *Immersion time : 10±1 sec *Solder : Sn3Ag0.5Cu for lead-free Measurement to be made after keeping at room temperature for 24±2 hrs	No mechanical damage. Samples shall satisfy electrical specification after test. Loss of metallization on the edges of each electrode shall not exceed 25%.
Drop Test JIS C 0044	 *Height : 75 cm *Test Surface : Rigid surface of concrete or steel. *Times : 6 surfaces for each units ; 2 times for each side. 	No mechanical damage. Samples shall satisfy electrical specification after test.
Adhesive Strength of Termination JIS C 0051- 7.4.3	*Pressurizing force : 5N(≦0603) ; 10N(>0603) *Test time : 10±1 sec	No remarkable damage or removal of the termination.
Bending test JIS C 0051- 7.4.1	The middle part of substrate shall be pressurized by means of the pressurizing rod at a rate of about 1 mm/s per second until the deflection becomes 1mm/s and then pressure shall be maintained for 5±1 sec. Measurement to be made after keeping at room temperature for 24±2 hours	No mechanical damage. Samples shall satisfy electrical specification after test.

Approval sheet

華新科技股份有限公司 Walsin Technology Corporation

Temperature cycle	1. 30±3 minutes at -40°C±3°C,	No mochanical damage
JIS C 0025		No mechanical damage.
	2. 10~15 minutes at room temperature,	Samples shall satisfy electrical
	3. 30±3 minutes at +85°C±3°C,	specification after test.
	4. 10~15 minutes at room temperature,	
	Total 100 continuous cycles	
	Measurement to be made after keeping at	
	room temperature for 24±2 hrs	
Vibration	*Frequency : 10Hz~55Hz~10Hz(1min)	No mechanical damage.
JIS C 0040	*Total amplitude : 1.5mm	Samples shall satisfy electrical specification
	*Test times : 6hrs.(Two hrs each in three	after test.
	mutually perpendicular directions)	
High temperature	*Temperature : 85°C±2°C	No mechanical damage
JIS C 0021		No mechanical damage. Samples shall satisfy electrical specification
	*Test duration : 1000+24/-0 hours	after test.
	Measurement to be made after keeping at	
	room temperature for 24±2 hrs	
Humidity	*Humidity : 90% to 95% R.H.	No mechanical damage.
(steady conditions)	*Temperature : 40±2°C	Samples shall satisfy electrical specification
JIS C 0022	*Time : 1000+24/-0 hrs.	after test.
	Measurement to be made after keeping at	
	room temperature for 24±2 hrs	
	※ 500hrs measuring the first data then	
	1000hrs data	
Low temperature	*Temperature : -40°C±2°C	No mechanical damage.
JIS C 0020	*Test duration : 1000+24/-0 hours	Samples shall satisfy electrical specification
	Measurement to be made after keeping at	after test.
	room temperature for 24 ± 2 hrs	

> 華新科技股份有限公司 Walsin Technology Corporation

Approval sheet

SOLDERING CONDITION

Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 2,

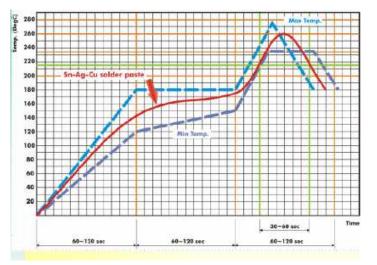


Fig 2. Infrared soldering profile

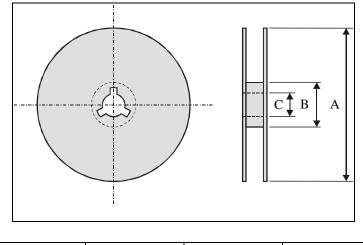
ORDERING CODE

RF	BPF	201208	0	Α	7	Т
Walsin	Product Code	Dimension code	Unit of	Application	Specification	Packing
RF device	BPF : Band Pass	Per 2 digits of	dimension	A : 2.4GHZ ISM	Design Code	T: Reeled
	Filter	Length, Width,	0 : 0.1 mm	Band		
		Thickness :	1 : 1.0 mm			
		e.g. :				
		201208 =				
		Length 20,				
		Width 12,				
		Thickness 08				

Minimum Ordering Quantity: 2000 pcs per reel.

PACKAGING

Plastic Tape specifications (unit :mm)


Index	Ao	Во	ΦD	Т	W
Dimension (mm)	1.45 ± 0.10	2.25 ± 0.10	1.55 ± 0.10	1.10 ± 0.10	8.00 ± 0.30
Index	Е	F	Po	P1	P2
Dimension (mm)	1.75± 0.10	3.50 ± 0.05	4.00 ± 0.10	4.00 ± 0.10	2.00± 0.10

> 華新科技股份有限公司 Walsin Technology Corporation

Approval sheet

Reel dimensions

Index	А	В	С
Dimension (mm)	Φ 178.0	Φ 60.0	Φ 13.0

Taping Quantity:2000 pieces per 7" reel

CAUTION OF HANDLING

Limitation of Applications

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects, which might directly cause damage to the third party's life, body or property.

- (1) Aircraft equipment
- (2) Aerospace equipment
- (3) Undersea equipment
- (4) Medical equipment
- (5) Disaster prevention / crime prevention equipment
- (6) Traffic signal equipment
- (7) Transportation equipment (vehicles, trains, ships, etc.)
- (8) Applications of similar complexity and /or reliability requirements to the applications listed in the above.

Storage condition

- (1) Products should be used in 6 months from the day of WALSIN outgoing inspection, which can be confirmed.
- (2) Storage environment condition.
 - Products should be storage in the warehouse on the following conditions.
 - Temperature : -10 to +40°C
 - Humidity : 30 to 70% relative humidity
 - Don't keep products in corrosive gases such as sulfur. Chlorine gas or acid or it may cause oxidization of electrode, resulting in poor solderability.
 - Products should be storage on the palette for the prevention of the influence from humidity, dust and son on.
 - Products should be storage in the warehouse without heat shock, vibration, direct sunlight and so on.
 - Products should be storage under the airtight packaged condition.